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Abstract

A broadcast protocol allows a sender to distribute a value among a set of players such that
it is guaranteed that all players receive the same value (consistency), and if the sender is honest,
then all players receive the sender’s value (validity). Classical broadcast protocols for n players
provide security with respect to a fixed threshold t < n/3, where both consistency and validity are
guaranteed as long as at most t players are corrupted, and no security at all is guaranteed as soon
as t + 1 players are corrupted. Depending on the environment, validity or consistency may be the
more important property.

We generalize the notion of broadcast by introducing an additional threshold t+ ≥ t. In a
broadcast protocol with extended validity, both consistency and validity are achieved when no more
than t players are corrupted, and validity is achieved even when up to t+ players are corrupted.
Similarly, we define broadcast with extended consistency. We prove that broadcast with extended
validity as well as broadcast with extended consistency is achievable if and only if t + 2t+ < n (or
t = 0). For example, six players can achieve broadcast when at most one player is corrupted (this
result was known to be optimal), but they can even achieve consistency (or validity) when two
players are corrupted.

Furthermore, our protocols achieve detection in case of failure, i.e., if at most t players are
corrupted then broadcast is achieved, and if at most t+ players are corrupted then broadcast is
achieved or every player learns that the protocol failed. This protocol can be employed in the
precomputation of a secure multi-party computation protocol, resulting in detectable multi-party
computation, where up to t corruptions can be tolerated and up to t+ corruptions can either be
tolerated or detected in the precomputation, for any t, t+ with t + 2t+ < n.

1 Introduction

1.1 Background

Byzantine agreement refers to two slightly different concepts, namely broadcast and consensus. In
a broadcast protocol, a sender distributes a value among a set of players in such a way that it is
guaranteed that all players indeed receive the same value (even when the sender is corrupted). In
a consensus protocol, a set of players each holding some value decide on one single value, with the
property that if they all hold the same value in the beginning then they will decide on this value. A
bit more formally, a protocol for Byzantine agreement must satisfy validity and consistency. Validity
means that all players will end up with the correct value in case that the dealer is honest (broadcast),
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respectively in case that all honest players start with the same input value (consensus). Consistency
means that all players must end up with the same value, independent of whether or not the dealer is
honest, respectively whether or not all honest players start with the same input value.
The problem of Byzantine agreement was introduced by Lamport, Shostak, and Pease [LSP82]. In
a model with pairwise authentic channels, they achieve broadcast (as well as consensus) among n
players in presence of an adversary that corrupts up to t < n/3 players and make them misbehave
arbitrarily. If a secure signature scheme can be used, they achieve broadcast even for any number
t < n of corruptions, consensus for up to t < n/2. All these bounds are tight [LSP82, KY84, FLM86],
but the proposed protocols are inefficient. Efficient protocols were given in [DS83, DFF+82, TPS87,
BDDS92, FM97, BGP89, CW92, GM98].
The bounds t < n for broadcast and t < n/2 for consensus can also be achieved with unconditional
security, when an unconditionally-secure pseudo-signature scheme is set up [BPW91, PW96].
Broadcast is a key ingredient of secure multi-party computation (MPC) protocols. Here, a set of
players, each holding a secret input, want to compute an arbitrary function of these inputs in such a
way that the inputs remain secret and the outcome of the computation is guaranteed to be correct,
even when some of the players are corrupted and misbehave. The problem of MPC was proposed
by Yao [Yao82] and first solved by Goldreich, Micali, and Wigderson [GMW87]. This protocol is
secure with respect to a computationally bounded adversary that may corrupt up to t < n/2 players,
which is optimal. When bilateral secure channels are available, security is achievable with respect
to an unbounded adversary that corrupts up to t < n/3 players [BGW88, CCD88]; also this bound
is proven tight. If additionally to the secure channels also secure broadcast channels are available,
then information-theoretic security is achievable even for up to t < n/2 corruptions [Bea89, RB89,
CDD+99].

1.2 Contributions

Classical protocols for Byzantine agreement provide security with respect to a fixed threshold t, where
absolute security is guaranteed as long as at most t players are corrupted, and no security at all is
guaranteed for the case when t + 1 or more players are corrupted. We generalize this notion in the
sense that broadcast (according to the classical definition) is achieved as long as up to t players are
corrupted, but some (reduced) requirements are still guaranteed even when up to t+ ≥ t players are
dishonest.

We propose two concrete primitives:

• In a broadcast protocol with extended validity, broadcast is achieved when at most t players are
corrupted, and validity (i.e., correctness of the output values) is achieved even when up to t+

players are corrupted.

• In a broadcast protocol with extended consistency, broadcast is achieved when at most t players
are corrupted, and consistency (i.e., equality of all outputs) is achieved even when up to t+

players are corrupted.

For each primitive, we propose an efficient protocol for t + 2t+ < n (special cases for t = 0 are known
[FGH+02, GL02] in the literature). Furthermore, the protocol with extended consistency also achieves
agreement about the fact whether or not validity is achieved (validity detection). The protocol with
extended validity can be extended such that even when the sender is malicious, every player receives
the same value or learns that no consistency could be reached (consistency detection).
As a special case of these results, we can construct protocols for detectable broadcast, where broadcast
is achieved even when up to t players are corrupted, and either broadcast is achieved or a failure
is detected by all honest players when no more than t+ players are corrupted, for t + 2t+ < n.
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This strictly generalizes the result for detectable broadcast in [FGH+02]. This broadcast protocol
can be plugged into a multi-party computation protocol for the unconditional model with broadcast
(e.g., [Bea89, RB89, CDD+99]), which results in a detectable MPC protocol [FGMR02]. Here, the
computation is secure and robust as long as at most t players are corrupted, and either the computation
is secure or it is aborted before any honest player has distributed his input when up to t+ players are
corrupted, for any t, t+ with t + 2t+ < n (respectively, for t = 0 and t+ < n/2).
Finally, we prove that the achieved bounds are tight, i.e., broadcast with extended validity (resp. con-
sistency) is impossible for t + 2t+ ≥ n.

1.3 Outline

In Section 2, we formally introduce the used model and state some definitions. In Sections 3 and 4,
we propose families of efficient deterministic protocols for broadcast with extended validity and ex-
tended consistency, respectively. Optimality of our protocols is proven in Section 5, and some final
observations and conclusions are given in Section 6.

2 Models and Definitions

We consider a set P = {p1, . . . , pn} of players, connected with a complete network of pairwise syn-
chronous authenticated (or secure) channels. The players do not share any consistent information
(as a PKI setup). We assume an adaptive adversary that actively corrupts some of the players. The
adversary’s computational power is unlimited (though the tightness of the protocols will be proved
even with respect to a non-adaptive probabilistic polytime adversary).
A broadcast protocol allows a player (the sender) to consistently send a message to all other players,
such that all players receive the sender’s value, or at least, when the sender is malicious, all players
receive the same value.

Definition 1 (Broadcast): Let P = {p1, . . . , pn} be a set of n players and let D be a finite domain.
A protocol Π among P where player ps ∈ P (called the sender) holds an input value xs ∈ D and every
player pi ∈ P finally decides on an output value yi ∈ D achieves broadcast (or is a broadcast protocol)
with respect to P , ps, and D, if it satisfies the following conditions:

Validity: If the sender ps is correct then all correct players pi decide on the sender’s input value,
yi = xs.

Consistency (or Agreement): All correct players decide on the same output value, i.e., if pi ∈
P and pj ∈ P are correct then yi = yj. �

In a consensus protocol, every player starts with an input value, and the goal is to make all players
agree on the same output value. If all correct players hold the same input value then the output value
is required to be the same as this input value.

Definition 2 (Consensus): Let P = {p1, . . . , pn} be a set of n players and let D be a finite domain.
A protocol Π among P where every player pi ∈ P holds an input value xi ∈ D and finally decides on
an output value yi ∈ D achieves consensus (or is a consensus protocol) with respect to P and D if it
satisfies the following conditions:

Persistency (or Validity): If all correct players pi hold the same input value xi = v then all
correct players pi decide on it, yi = v.

Consistency (or Agreement): All correct players decide on the same output value, i.e., if pi ∈
P and pj ∈ P are correct then yi = yj.
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When clear from the context, we simply say that a given protocol achieves broadcast (or consensus),
neglecting the parameters P , ps, and D.
Furthermore, we focus on binary Byzantine agreement (domain D = {0, 1}) since Byzantine agreement
for any finite domain D can be efficiently solved with any binary protocol [TC84].
Graded consensus, derived from graded broadcast in [FM97], is a variation of consensus where, addi-
tionally to the output value, every player gets a grade g ∈ {0, 1, 2} on the outcome of the protocol.
We present a slightly modified version with binary grades. If any correct player gets grade 1 then all
correct players decide on the same output value, i.e., getting grade 1 implies detecting agreement. If
all correct players start with the same input value then all correct players detect agreement, i.e., they
get grade 1.

Definition 3 (Graded Consensus): Let P = {p1, . . . , pn} be a set of n players and let D be a finite
domain. A protocol Π among P where every player pi ∈ P holds an input value xi ∈ D and finally
decides on an output value yi ∈ D and a grade gi ∈ {0, 1} achieves graded consensus with respect to
P and D, if it satisfies the following conditions:

Persistency (or Validity): If all correct players pi hold the same input value xi = v then all
correct players pi decide on it, yi = v, and get grade gi = 1.

Consistency: If any correct player pi gets grade gi = 1 then all correct players pj decide on the
same output value yi = yj. �

A broadcast protocol with extended consistency is a protocol which, for two given thresholds t and
t+ with t ≤ t+, achieves broadcast as long as no more than t players are corrupted, and achieves
consistency (but potentially not validity) as long as no more than t+ players are corrupted

Definition 4 (Broadcast with extended consistency): Let P = {p1, . . . , pn} be a set of n players
and let D be a finite domain. A protocol Π among P where player ps ∈ P (called the sender) holds
an input value xs ∈ D and every player pi ∈ P finally decides on an output value yi ∈ D achieves
broadcast with extended consistency with respect to P , ps, D, and thresholds t and t+ if it satisfies the
following conditions:

Validity: If the sender ps is correct and at most t players are corrupted then all correct players
pi decide on the sender’s input value, yi = xs.

Consistency (or Agreement): If at most f ≤ t+ players are corrupted then all correct players
decide on the same output value. �

A broadcast protocol with extended validity is a protocol which, for two given thresholds t and t+

with t ≤ t+, achieves broadcast as long as no more than t players are corrupted, and achieves validity
(but potentially not consistency) as long as no more than t+ players are corrupted

Definition 5 (Broadcast with extended validity): Let P = {p1, . . . , pn} be a set of n players
and let D be a finite domain. A protocol Π among P where player ps ∈ P (called the sender) holds
an input value xs ∈ D and every player pi ∈ P finally decides on an output value yi ∈ D achieves
broadcast with extended validity with respect to P , ps, D, and thresholds t and t+ if it satisfies the
following conditions:

Validity: If the sender ps is correct and at most t+ players are corrupted then all correct players
pi decide on the sender’s input value, yi = xs.

Consistency (or Agreement): If at most f ≤ t players are corrupted then all correct players
decide on the same output value.
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Whereas the computation complexities of all our protocols are obviously polynomial and thus will not
be explicitly stated, we state the protocol’s communication complexities with respect to two measures.
R denotes the worst-case round complexity, i.e., the maximal possible number of communication
rounds required by the protocol. B denotes the worst-case bit-complexity of a protocol, i.e., the
maximal possible number of bits to be sent by all correct players overall during the whole protocol.

3 Broadcast with Extended Validity

We directly present a construction for broadcast with extended validity and consistency detection
which is strictly stronger than ordinary broadcast with extended validity.

Definition 6 (Broadcast with Extended Validity and Consistency Detection): Let P be a
set of n players and let D be a finite domain. A protocol Π among P where player ps ∈ P (called the
sender) holds an input value xs ∈ D and every player pi ∈ P finally decides on an output value yi ∈ D
and a grade value gi ∈ {0, 1} achieves broadcast with extended validity and consistency detection
(ECBC+ for short) with respect to P , ps, D, and thresholds t and t+ if it satisfies the following
conditions:

Validity: If the sender ps is correct and at most f ≤ t+ players are corrupted then all correct
players pi decide on the sender’s input value, yi = xs.

Consistency: If at most f ≤ t players are corrupted then every correct player pi decides on the
same output value yi = v and gi = 1.

Consistency Detection: If at most f ≤ t+ players are corrupted and any correct player pi

computes gi = 1 then every correct player pj computes yj = yi. �

Note that however, it is not possible that the players achieve common knowledge about whether or
not consistency has been achieved. However, it can be achieved that all players “completely” detect
consistency if f ≤ t and “soundly” detect consistency if f ≤ t+, i.e., gi = 1 always implies reliable
detection of consistency.
Note that the special case t = 0 (and t+ < n) can be achieved by a protocol wherein the sender
simply multi-sends his input to all players who in turn redistribute the received value to everybody
(see Protocol CondGradecast in [FGH+02] and Protocol 1 in [GL02]). We thus focus on protocols for
t > 0. The final protocol is based on the implementation of a protocol to solve the following problem:

Definition 7 (Two-level Graded Consensus): A protocol among n players, where every player
pi ∈ P holds an input value xi ∈ D and every player pi decides on an value yi ∈ D and a grade
gi ∈ {0, 1, 2}, achieves two-level graded consensus with respect to thresholds t and t+ if it satisfies

Persistency: If f ≤ t and all correct players pi enter the protocol with the same input value
xi = v then every correct player pi computes outputs yi = v and gi = 2. If f ≤ t+ and all
correct players pi enter the protocol with the same input value xi = v then every correct player
pi computes outputs yi = v and gi ≥ 1.

Consistency: If f ≤ t and any correct player pi computes gi ≥ 1 then every correct player pj

computes yj = yi. If f ≤ t+ and any correct player pi computes gi = 2 then every correct
player pj computes yj = yi. �
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Protocol 1 TLGradedConsensusp1(P, x1, t, t
+)

1. SendToAll(xi); P : Receive(x1
i , . . . , x

n
i );

2. S0
i :=

{
j ∈ {1, . . . , n} | xj

i = 0
}
; S1

i :=
{

j ∈ {1, . . . , n} | xj
i = 1

}
;

3. if |Sxi

i | ≥ n − t+ then zi := xi else zi :=⊥ fi;
4. SendToAll(zi); P : Receive(z1

i , . . . , zn
i );

5. T 0
i :=

{
j ∈ {1, . . . , n} | zj

i = 0
}

; T 1
i :=

{
j ∈ {1, . . . , n} | zj

i = 1
}

;
6. if |T 0

i | ≥ |T 1
i | then yi := 0 else yi := 1 fi;

7. if |T yi

i | ≥ n − t then gi := 2
8. elseif |T yi

i | ≥ n − t+ then gi := 1
9. else gi := 0 fi;

10. return (yi, gi);

Lemma 3.1. In Model Maut, Protocol 1 achieves TLGC if t + 2t+ < n and t+ ≥ t.

Proof.
Persistency: Suppose that all correct players pi enter the protocol with the same input value xi = v
and suppose that at most f ≤ t+ players are corrupted. Then at least n− t+ correct players distribute
value xi = v in Step 1, and every correct player pi computes Sv

i such that |Sv
i | ≥ n− t+. Furthermore,

since t + 2t+ < n, it holds that |S1−v
i | ≤ t+ < n− t+, and every correct pi computes zi = v in Step 3.

Hence, in Step 4, every such pi redistributes value zi = v, gets |T v
i | ≥ n − t+ > t+, and computes

yi = v and gi ≥ 1. Finally, if only f ≤ t players are corrupted then |T v
i | ≥ n − t, and every correct

player pi computes gi = 2.

Consistency: For v ∈ {0, 1}, let Sv∗ and T v∗ be the set of correct players sending value v in Step 1,
and Step 4, respectively. Furthermore, let F ⊂ P be the set of corrupted players.
Suppose first, that f ≤ t players are corrupted (|F | ≤ t) and that some correct player pi computes
gi ≥ 1 and yi = v ∈ {0, 1}. Hence, |Tv

i | ≥ n − t+, and since |F | ≤ t, it follows that |Tv∗ | ≥ n − t+ − t.
Furthermore, as follows from Step 3 of the protocol, for every correct player pi with zi 6= xi, it holds
that zi =⊥, and hence that |T v∗ | ≤ |Sv∗ |. Therefore, |T v∗ | ≥ n − t+ − t implies for every correct
player pj that |Sv

j | ≥ |Sv∗ | ≥ |T v∗ | ≥ n − t+ − t. Additionally, the bound t + 2t+ < n implies that
|S1−v

j | ≤ n−|Sv
j | ≤ t++t < n−t+, and hence, considering Step 3, that no correct player pj distributed

value zj = 1 − v during Step 4, i.e., T 1−v∗ = ∅. Thus, we get that every correct player pj computes
sets T v

j and T 1−v
j such that |T 1−v

j | ≤ |F | ≤ t and |T v
j | ≥ |T v∗ | ≥ n − t+ − t > t+ ≥ t ≥ |T 1−v

j |, and
computes yj = yi.
Suppose now, that f ≤ t+ players are corrupted and that some correct player pi computes gi = 2.
Hence, |T v

i | ≥ n − t, and since |F | ≤ t+, it follows that |T v∗ | ≥ n − t − t+. As above, for the case that
f ≤ t, this implies that T 1−v∗ = ∅ (Step 3), and thus every correct player pj computes sets T v

j and
T 1−v

j such that |T 1−v
j | ≤ |F | ≤ t+ and |T v

j | ≥ n − t+ − t > |T 1−v
j |, and computes yj = yi.

Protocol 2 ExtConsBC+p1 (P, x1, t, t
+)

1. yi := xi; hi := 0;
2. for k := 1 to t + 1 do
3. if i = k then SendToAll(y i) fi; P : Receive(yk

i );
4. if hi = 0 then yi := yk

i fi;
5. (yi, hi) := TLGradedConsensus(P, yi, t, t

+);
6. od;
7. if hi = 2 then gi := 1 else gi := 0 fi;
8. return (yi, gi);

Lemma 3.2. Consider Protocol 2 in Model Maut, and assume that t + 2t+ < n and t+ ≥ t. Then,
for any k = 2, . . . , t + 1, the following holds:
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1. If at most f ≤ t+ players are corrupted and all correct players pi start Loop k in Step 2 with the
same value yi = v then every correct player pi holds values yi = v and hi ≥ 1 at the end of the
same loop. Additionally, if only f ≤ t players are corrupted then hi = 2 at the end of the loop.

2. If at most f ≤ t players are corrupted and player pk is correct then, at the end of the loop, every
correct player pi holds the same value yi = yk and grade hi = 2.

Proof.

1. Suppose that f ≤ t+ and that every correct player pi holds value yi = v at the beginning of the
loop. Then, by the persistency property of TLGC, they all compute yi = v and hi ≥ 1 in Step 5,
and if f ≤ t then even hi = 2 holds.

2. Suppose that f ≤ t and that pk is correct and thus distributes the same value yk ∈ {0, 1} to
all players in Step 3. If every correct player pi holds grade value hi = 0 then they all enter
Protocol TLGradedConsensus with yi = yk, and by its persistency property, compute outputs
yi = yk and hi = 2. Especially, this holds for k = 1 since the players start with grade hi = 0. On
the other hand, if any correct player pi holds hi ≥ 0 then, by the consistency property of TLGC
which has been priorly invoked, every correct player pi already holds the same value yi = yk

before Step 3, and nothing changes until the end of the loop.

Theorem 1. In Model Maut, Protocol 2 achieves efficient, perfectly secure broadcast with extended
validity and consistency detection with sender p1 if t + 2t+ < n and t+ ≥ t. The round and bit
complexities are R = 3t + 3 and B = O(n3).

Proof.
Validity: Suppose that the sender p1 is correct and that at most f ≤ t+ players are corrupted. Then,
by Lemma 3.2, after Step 5 of the first loop (k = 1), every correct player pi holds values yi = x1 and
hi ≥ 1. Since hi ≥ 1 and by the persistency property of Protocol TLGradedConsensus, no further loop
(k > 1) can influence the values yi and hi, and every correct player pi holds value yi = x1 at the end
of the protocol.

Consistency: If f ≤ t players are corrupted then there is a player pc ∈ {p1, . . . , pt+1} that is correct.
By Lemma 3.2 (2), at the end of loop k = c, every correct player pi holds the same value yi = yc

and grade h1 = 2. By Lemma 3.2 (1), these values stay persistent until the end of the protocol, and
consistency follows.

Consistency Detection: Suppose that at most f ≤ t+ players are corrupted and that some correct
player pi computes gi = 1 at the end of the protocol. This implies that hi = 2 after the last invocation
of Protocol TLGradedConsensus, and by the consistency property of TLGC, that every correct player
pj computed yj = yi during this invocation and thus exited the protocol with yj = yi.

The stated complexities can be easily verified by code inspection.

Note that there is a protocol for broadcast with extended validity without consistency detection that
requires the same bit complexity but 2 less rounds of communication.

4 Broadcast with Extended Consistency

We directly present a construction for broadcast with extended consistency and validity detection
which is strictly stronger than ordinary broadcast with extended consistency.
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In contrast to the inherently non-common consistency detection in ECBC+, here it is possible that
the players achieve common knowledge about whether or not validity has been achieved.

Definition 8 (Broadcast with Extended Consistency and Validity Detection): Let P be a
set of n players and let D be a finite domain. A protocol Π among P where player ps ∈ P (called the
sender) holds an input value xs ∈ D and every player pi ∈ P finally decides on an output value yi ∈ D
and a grade value gi ∈ {0, 1} achieves broadcast with extended consistency and validity detection
(EVBC+, for short) with respect to P , ps, D, and thresholds t and t+ if it satisfies the following
conditions:

Consistency: If at most f ≤ t+ players are corrupted then every correct player pi decides on the
same pair of output (y, g), yi = y and gi = g.

Validity: If the sender ps is correct and at most f ≤ t players are corrupted then all correct
players pi decide on the sender’s input value, yi = xs, and grade gi = 1.

Validity Detection: If the sender ps is correct, at most f ≤ t+ players are corrupted, and any
correct player pi computes gi = 1 then every correct player pj computes yj = xs. �

For didactic reasons, we first sketch a simple protocol for a model with authenticated channels that
only guarantees computational security. The protocol for the standard model with secure channels
providing unconditional security is stated more explicitly,
Since, for the special case that t = 0, efficient and optimally resilient protocols were already given
in [FGH+02], we focus on protocols for t > 0.

4.1 A Simple Protocol for Computational Security

Protocol 3 ExtValBC+p1 (P, x1, t, t
+)

1. Generate a secret-key/public-key pair (SKi, PKi) according to the key generation algorithm
of a digital signature system. For every player pj ∈ P as a sender, invoke Protocol 2:
ExtConsBC+

pj (P, PKj , t, t
+) where pj inputs his public key PKj . Store all received public keys

PK1
i , . . . , PKn

i and grades g1
i , . . . , gn

i from these n invocations.
2. Gi :=

∧n
k=1 gk

i .
3. SendToAll(Gi); Receive(G1

i , . . . , G
n
i );

For every player pj ∈ P as a sender, an instance of Dolev-Strong broadcast is invoked where pj

inputs Gj . Store all received values as Γ1
i , . . . , Γ

n
i .

5. if |{j | Gj
i = 1}| > t+ ∧ |{j | Γj

i = 1}| ≥ n − t then gi := 1 else gi := 0 fi;
6. If gi = 1 then an instance of Dolev-Strong broadcast is invoked where p1 inputs x1, and its output

yi is returned; else yi := 0 is computed.

Theorem 2. In Model Maut, Protocol 3 achieves broadcast with extended consistency and validity
detection with sender p1 if t + 2t+ < n and t+ ≥ t as secure as the underlying signature scheme.
Its round complexity is R = 3t + t+ +4 and its bit complexity is polynomial in n, k, and log |D| where
D is the domain of the value to be distributed and k is the maximal length of a signature.

Proof.
Consistency: Suppose that f ≤ t+ players are corrupted. If every correct player pi rejects by
computing gi = 0 then consistency is satisfied since they all compute yi = 0.
Thus, suppose that some correct player pi accepts by computing gi = 1. Then |{j | Gj

i = 1}| > t+,
implying that at least one correct player pk sent Gk = 1. Hence, by the definition of ECBC+,
all invocations of Protocol 2 achieved validity and consistency (i.e., broadcast when neglecting the
grade outputs) implying that all correct players hold each other’s authentic public keys. Hence, the
invocations of Dolev-Strong broadcast in Step 3 all achieve broadcast and all correct players pj compute
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the same set of values Γ1
j , . . . ,Γ

n
j . Furthermore, since gi = 1, for every correct player p` it holds that

|{j | Γj
`}| ≥ n − t and thus that |{j | Gj

` = 1}| ≥ n − t − t+ > t+, and all players p` compute g` = 1.
Finally, all correct players invoke Dolev-Strong broadcast which now is indeed guaranteed to achieve
broadcast, and consistency follows.

Validity: Suppose that f ≤ t players are corrupted and that the sender p1 is correct. Hence, by the
definition of ECBC+, all invocations of Protocol 2 achieve validity and consistency (i.e., broadcast
when neglecting the grade outputs) and that every correct player pi computes gi = 1. Thus, all
correct players pi compute Gi = 1, all invocations of Dolev-Strong broadcast achieve broadcast, and,
in Step 3, the players pi in turn compute values Gj

i and Γj
i such that |{j | Gj

i = 1}| ≥ n − t > t+ and
|{j | Γj

i = 1}| ≥ n − t. Finally, all correct players pi compute gi = 1 and compute yi = x1 in Step 6.

Validity Detection: Suppose that f ≤ t+. We already showed when proving consistency, that if one
correct player pi computes gi = 1, then all correct players hold each other’s authentic public keys and
all players invoke the Dolev-Strong broadcast protocol. Hence, if the sender ps is honest the players
will indeed compute his input value xs, according to the properties of Dolev-Strong broadcast.

By inspection of Protocol 2, Step 1 requires 3(t+1) rounds. Dolev-Strong broadcast (which is executed
in parallel to the multi-send of Step 3, and once again in Step 6) requires another t+ + 1 rounds, and
hence the stated round complexity follows. Futhermore, the bit complexities of Protocol 2 and Dolev-
Strong broadcast are clearly polynomial in n, k, and log |D|.

4.2 Unconditional Security

We demonstrate the achievability with respect to unconditional security by modifying the Pfitzmann-
Waidner precomputation protocol to tolerate t < n. However, more efficient solutions can be achieved
by modifying the precomputation protocol in [BPW91] to tolerate t < n/2. This is possible since
t + 2t+ < n and t ≤ t+. However, the Pfitzmann-Waidner protocol is more generic in that it allows
for any later broadcast protocol using authentication.

Protocol 4 ExtValBC+p1 (P, x1, t, t
+)

1. Execute precomputation the Pfitzmann-Waidner protocol for b+1 future broadcasts wherein each
invocation of broadcast is replaced by an invocation of ECBC+ Protocol 2 with the same sender:
ExtConsBC+

pk
(P, ·, t, t+). Of these instances, one is computed with respect to the intended sender

s ∈ {1, . . . , n} of the future broadcast. Of the other n instances, one is computed with respect to
each player pj ∈ P .

2. Gi :=
∧`

k=1 gk
i where the gk

i are all grades received during an invocation of ECBC+ during Step 1.
Synchronize: Wait and start executing the next step at round b n2(9t+10)

2 c + 1.
3. SendToAll(Gi); Receive(G1

i , . . . , G
n
i );

For every player pj ∈ P as a sender, an instance of Dolev-Strong broadcast is invoked (using
pseudo-signatures) where pj inputs Gj . Store all received values as Γ1

i , . . . , Γ
n
i .

5. if |{j | Gj
i = 1}| > t+ ∧ |{j | Γj

i = 1}| ≥ n − t then gi := 1 else gi := 0 fi;
6. If gi = 1 then an instance of Dolev-Strong broadcast is invoked where p1 inputs x1, and its output

yi is returned; else yi := 0 is computed.

Theorem 3. In Model Msec, for any security parameter k > 0, Protocol 4 achieves unconditionally
secure broadcast with extended consistency and validity detection (detectable broadcast) with sender p1
if t + 2t+ < n and t+ ≥ t. Thereby the error probability is ε < 2−k.
Its round complexity is bn2(9t+10)

2 c + 2t+ + 2 and its bit complexity is polynomial in n, k, and log |D|
where D is the domain of the value to be distributed.
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Proof. Consistency, validity, and validity detection follow along the lines of the proof of Theorem 2.

As follows from the analysis in [PW96] and code inspection of Protocol 2, replacing each invocation
of broadcast in the Pfitzmann-Waidner precomputation protocol by an invocation of ECBC+ leads to
a round complexity of Steps 1 and 2 of at most bn2(9t+10)

2 c until all players have finished – note that
beyond f ≥ t, no fault-localization is required but only fault-detection. Steps 3 and 6 each require
another t+ + 1 rounds, and hence the stated round complexity follows. Futhermore, the Protocols 2
and Dolev-Strong broadcast are all polynomial in n, k, and log |D|.

5 Impossibility Result

Whereas the case t = 0 is obviously are optimal for both, broadcast with extended validity and
broadcast with extended consistency, it still needs to be proven that the bound t+2t+ < n is optimal.
Note that this impossibility result even holds for the ordinary variants without consistency detection,
or validity detection, respectively. The proof proceeds along the lines of the impossibility proof in
[FLM86] that broadcast is impossible if t ≥ n/3.

Theorem 4. In Models Maut and Msec, neither broadcast with extended validity nor broadcast with
extended consistency is achievable among a set of n players P if t > 0 and t + 2t+ ≥ n. For every
protocol there exists a value x0 ∈ {0, 1} such that, when the sender holds input x0, the adversary can
make the protocol fail

• with a probability of at least 1
6 if he is computationally bounded, and

• with a probability of at least 1
3 if he is computationally unbounded.

The proof of this theorem was moved to the appendix.

6 Conclusions

We have introduced a generalization of broadcast, where either validity (resp. consistency) can be
achieved even when more than a third of the players are corrupted, at the costs that consistency
(resp. validity) can be guaranteed only when less than a third of the players is corrupted. Such
protocols achieve broadcast in the classical sense when up to t players are corrupted, and some reduced
notion of broadcast when up to t+ ≥ t players are corrupted, where t+ can be strictly greater than the
number of corruptions tolerable in classical broadcast protocols. The presented protocols are efficient.
This extended notion of broadcast has implications in practice, both when broadcast is used as a
stand-alone protocol, as well as when it is used as a sub-protocol of some other distributed protocol.
For example, it is known that unconditionally-secure multi-party computation robust against t < n/2
corruptions is achievable if during a precomputation phase broadcast channels are available. Using
broadcast with extended consistency and validity detection, in a model with secure channels but
without broadcast, one can fix two parameters t and t+ with t + 2t+ < n and start to repeat a
precomputation. As soon as the precomputation succeeds (which is guaranteed when at most t players
are corrupted) then broadcast will be available unconditionally secure against any number of players,
and hence also multi-party computation secure against faulty minorities. In case the protocol does not
succeed, all players commonly abort even before having entered any private input to the computation.
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Figure 1: Rearrangement of processors in the proof of Theorem 4

Proof. Assume Ψ to be a protocol among n players, P = {p0, . . . , pn−1}, that achieves broadcast with
either extended validity or extended consistency for t > 0 and t + 2t+ ≥ n; and assume p0 to be the
sender with input x0.
Let tc ∈ {t, t+} denote the threshold such that the consistency condition of broadcast is always
satisfied when f ≤ tc players are corrupted, and tv ∈ {t, t+} denote the threshold such that the
validity condition of broadcast is always satisfied when f ≤ tv players are corrupted. In particular
tv = t+ and tc = t for broadcast with extended validity; and tc = t+ and tv = t for broadcast with
extended consistency.
Let Π = {π0, . . . , πn−1} be the set of the players’ corresponding processors with their local programs.
As follows from the impossibility of standard broadcast, the assumed achievability implies that t < n/3,
and thus, that t+ ≥ n/3. Hence, it is possible to partition the processors into three non-empty sets,
Π0∪̇Π1∪̇Π2 = Π, such that 1 ≤ |Π0| ≤ tc, 1 ≤ |Π1| ≤ tv, and hence 1 ≤ |Π2| ≤ t+. Note that, hence,
|Π0 ∪ Π1| ≥ n − t+, |Π1 ∪ Π2| ≥ n − tc, and |Π2 ∪ Π0| ≥ n − tv.
Furthermore, for each i ∈ {0, . . . , n − 1}, let πi+n be an identical copy of processor πi. For every πi

(0 ≤ i ≤ 2n − 1) let the type of processor πi be defined as the number i mod n. Finally, for each
k ∈ {0, 1, 2}, let Πk+3 = {πi+n | πi ∈ Πk} form identical copies of the sets Πk.
Instead of connecting the original processors as required for the broadcast setting, we build a network
involving all 2n processors (i.e., the original ones together with their copies) by arranging the six
processor sets Πk in a circle. In particular, for all sets Πk (0 ≤ k ≤ 5), every processor πi ∈ Πk

is connected (exactly) by one channel with all processors in Πk \{πi}, Π(k−1) mod 6, and Π(k+1) mod 6.
Hence, each processor πi in the new system is symmetrically connected with exactly one processor of
each type (different from his own one) as in the original system. We say that Πk and Π` are adjacent
processor sets if and only if ` ≡ k ± 1 (mod 6).
Now, along the lines of [FLM86], for every set Πk ∪ Π(k+1) mod 6 (0 ≤ k ≤ 5) in the new system and
without the presence of an adversary, their common view is indistinguishable from their view as the set
of processors Πk mod 3 ∪ Π(k+1) mod 3 in the original system with respect to an adversary who corrupts
all (up to either t or t+) processors of the remaining processor set Π(k+2) mod 3 in an admissible way.
Let now π0 and πn be initialized with different inputs. We now argue that, for each run of the
new system, there are at least two pairs Πk ∪ Π(k+1) mod 6 (0 ≤ k ≤ 5) such that the conditions of
two-threshold broadcast are not satisfied for them:
By the validity property with respect to tv, the at least n − tv players pi in Π5 ∪ Π0 must compute
yi = x0 whereas the at least n − tv players pi in Π2 ∪ Π3 must compute yi = xn = 1 − x0.
By the consistency property, the at least n − tc players pi in Π1 ∪ Π2 must compute the same output
yi among themselves, and also the at least n − tv players in Π4 and Π5.
Finally, by either the consistency or validity property with respect to t+, the at least n − t+ players
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pi in Π0 ∪ Π1 must compute the same output yi among themselves (since sender p0 ∈ Π0), and also
the at least n − t+ players pi in Π3 and Π4.
Hence, for any possible run of the new system on inputs x0 and xn = 1−x0 it holds that, chosen a pair
(Πk,Π(k+1) mod 6) of adjacent processor sets uniformly at random, the probability that the conditions
for broadcast are violated for this pair is at least 1

3 .
In particular, there is a pair (Πk,Π(k+1) mod 6) in the new system such that, over all possible runs
on inputs x0 = 0 and xn = 1 the probability that the conditions of broadcast are violated for
(Πk,Π(k+1) mod 6) is at least 1

3 .
If the adversary is unbounded, given any protocol Ψ, he can compute such a pair (Πk,Π(k+1) mod 6)
and act accordingly by corrupting the processors in Π(k+2) mod 3 in the original system, hence forcing
the protocol to fail on input

x0 =
{

0 , if 0 ∈ {k, k + 1} , and
1 , else ,

with a probability of at least 1
3 .

If the adversary is computationally bounded then he can still make the protocol fail with a probability
of at least 1

6 .
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