
 - 1 -

Attack on Private Signature Keys
of the OpenPGP format, PGPTM programs and other applications

compatible with OpenPGP

22nd of March, 2001(†)

Vlastimil Klíma 1 and Tomáš Rosa 1,2

1 ICZ a.s., Prague, vlastimil.klima@i.cz

2 Dept. of Computers, FEE, CTU in Prague, tomas.rosa@i.cz

Abstract. The article describes an attack on OpenPGP format, which leads to disclosure of the private signature
keys of the DSA and RSA algorithms. The OpenPGP format is used in a number of applications including PGP,
GNU Privacy Guard and other programs specified on the list of products compatible with OpenPGP, which is
available at http://www.pgpi.org/products. Therefore all these applications must undergo the same revision as the
actual program PGPTM. The success of the attack was practically verified and demonstrated on the PGPTM(*)
program, version 7.0.3 with a combination of AES and DH/DSS algorithms. As the private signature key is the
basic information of the whole system which is kept secret, it is encrypted using the strong cipher. However, it
shows that this protection is illusory, as the attacker has neither to attack this cipher nor user´s secret passphrase.
A modification of the private key file in a certain manner and subsequent capturing of one signed message is
sufficient for successful attack. Insufficient protection of the integrity of the public as well as private parts of
signature keys in the OpenPGP format is analyzed in DSA and RSA algorithms and on the basis of this, a
procedure of attacks is shown on both private signature keys. The attacks apply to all lengths of parameters
(modules, keys) of RSA and DSA. In the end the cryptographic measures for correction of the OpenPGP format
as well as PGPTM format are proposed.

1 Introduction
The OpenPGP format is defined in the document [1] from the year of 1998. Its objective was
to publish all necessary information about the OpenPGP format so that various interoperable
applications could be created on its basis. It describes the massage formats (data structures)
and a manner of how they are to be created. In this contribution we point at a serious mistake
of OpenPGP format, which consists in insufficient security of integrity of both public and
private parts of signature keys of DSA and RSA algorithms. We show that this mistake may
be used to reveal the private signature key. In order to protect the private key, its value is
stored in the private keyring (file) secring.skr in the encrypted form. A strong symmetric
cipher is selected for this by the user (AES, CAST5, IDEA) with sufficiently long key, which
is derived from the secret access password (password, passphrase), known only by the user. In
the contribution we try to show that if the intruder has access to this file (or a record), it may
obtain the user´s private signature key under certain circumstances without the need to know
its passphrase or without having to attack on it. The attack consists in a special modification
of parameters of the signature algorithm and obtaining of a signature of any file (e-mail
message) by such a modified signature key. We show that the intruder is able to compute the
private signature key based on this procedure. As the corrupted record or file (secring.skr) can
be restored back to its original condition), this intrusion is very dangerous. Private keys
transferred in encrypted form on floppy disks or over the network are threatened the same
way. The attack was practically tested on the latest version of PGPTM 7.0.3 program with a
combination of AES and DH/DSS algorithms. Revealed private signature key of the DSA

(†) Minor revision at references has been done on 17th of June, 2002.
(*) PGP is registered trade mark of Network Associates, Inc. All other registered and not registered trade marks
listed in this document are owned by their appropriate owners.

 - 2 -

algorithm was the result of the attack. In the end we propose certain security and
cryptographic measures for correction of the OpenPGP format and changes in the PGPTM
program. All other applications which are compatible with OpenPGP format must undertake a
detailed revision. This applies for instance to the GNU Privacy Guard and other applications
specified on the list of applications compatible with OpenPGP, which is available at
http://www.pgpi.org/products.
The following text is organized as follows: first we remind of a definition of the signature
scheme of DSA and the storage format of the private keys according to OpenPGP [1] . Then
we describe an idea of the attack on the private signature DSA key and the specific procedure
of the attack as we performed it in the PGPTM program. Further we describe an idea of the
attack on the signature key RSA, stored according to the format OpenPGP. Then we specify
the basic temporary measures for protection of the private keys in the PGPTM program and
proposals for revision of the OpenPGP format. In appendices we present the technical details
of the attacks.

2 DSA Signature Algorithm
For the needs of this article we will recap the procedure of creation of the key pair and the
signature using 1024bit DSA algorithm (see for instance [2], page 452) and the signature
verification procedure and introduce the necessary variables.

2.1 Creation of the Key Pair
Let us refer to SHA-1 function as to h. Every user will generate the private and public key as
follows:

1. Select 160bit prime number q , 2159 < q < 2160.
2. Select 1024bit prime number p in such a way that q divides (p-1) and 21023 < p < 21024.
3. Select generator g of the cyclic subgroup of order q in Zp

* (that means element α ∈
Zp

* will be selected so that g = α(p-1)/q mod p and g ≠ 1, otherwise different α is
selected).

4. Select random number x in such a way, that 1 ≤ x ≤ q-1.
5. Compute y = gx mod p.
6. The public key is y, the public parameters are (p, q, g), the private key is x.

2.2 Creation of a Digital Signature
When creating the signature of the message m (or its hash value h(m)) the user uses its private
key x and public parameters according to the following procedure:

1. Select the random secret number k, 0 < k < q.
2. Calculate r = (gk mod p) mod q.
3. Calculate kInv = k-1 mod q.
4. Calculate s = [kInv * (h(m) + x*r)] mod q.
5. Digital signature of the message m is the pair (r, s).

Let us note that r, s, q are generally 160bit numbers, whereas p, g, y are 1024bit numbers.

2.3 Verification of the Digital Signature
Upon verification of the digital signature of the message m we use signer´s public key y and
public parameters (p, q, g) according to the following procedure.

1. Verify that 0 < r, s < q. In the opposite case the signature is invalid.
2. Calculate sInv = s-1 mod q and hash value h(m).

 - 3 -

3. Calculate u1 = sInv * h(m) mod q, u2 = sInv * r mod q.
4. Calculate v = (gu1 * yu2 mod p) mod q.
5. The signature is valid iff v = r.

3 Description of the Secret Key Packet Data Structure for
Storage of the Private Signature Key according to OpenPGP

Here we describe the data structure (Tag) "Secret Key Packet", in which the primary signature
key is stored (RSA, DSA). There are two versions of this format. Version 3 is valid for RSA
keys only, version 4 may include DSA and RSA keys. We will attack on the RSA signature
key using both format versions and on DSA signature key using version 4 of the format. The
version 4 of this format is used also by the program PGPTM 7.0.3, which prefers DSA to RSA.
In practice we will therefore meet in particular with the RSA keys in 3 format and with DSA
keys in the 4 format. Let us note that the versions 3 and 4 are different in a encryption method
of the private data and therefore also the attacks on both algorithms are different. In both
versions of the format, the structure of the Secret Key Packet contains in the beginning only
the data from the structure of the Public Key Packet, concerning the public key, and then the
data concerning the private key. Description and the content of the individual items are
illustrated in Table 1 for the DSA algorithm and Table 2 for the RSA algorithm. Regarding
the content of the table let us repeat that MPI format (multi-precision integer) contains prefix
and then the actual (big) integer number in the entry BIG ENDIAN. The prefix forms two
octets in BIG ENDIAN and indicates the number of valid bits of the subsequent number [1] .

1 octet indicating the version number
4 octets indicating time, when the key was created
1 octet indicating algorithm for creation of a digital signature. Then
the fields (numbers in MPI format) follow containing public
parameters and public key for 1024bit DSA algorithm:
prime number p (2 + 128 octets in figure 1)
prime number q (2 + 20 octets in figure 1)
number g (2 + 128 octets in figure 1)

Public
Key
Packet user`s public key y (2 + 128 octets in figure 1)
1 octet (string-to-key usage), indicating whether and how the private key is
encrypted. The value 0xFF is preferred indicating that the following three
optional items are completed.
[Optional] In case that string -to-key usage is 0xFF, there is 1 octet here,
identifying a symmetrical encryption algorithm for protection of the private key.
[Optional] If the string-to-key usage is 0xFF, there is a "string-to-key
specifier", which says, how the password of the user is processed for a
symmetrical key. The value 0x03 is preferred, indicating the so-called iterated
and salted string to key specifier. Typically the following data is stored here
with the following meaning:
1 octet: 0x03 (iterated and salted string-to-key identifier)
1 octet: identifier of the hash algorithm (for SHA-1 it is 0x02)
8 octets: salt (random data, which are hashed together with the user´s
passphrase and diversifies thus derived symmetrical key)
1 octet: the number of hashed octets of the data (the so-called "count").

Area of
publicly
available

data

 - 4 -

[Optional] If the private key is encrypted, initialization vector (IV) is stored
here. This is random data in the length of the block cipher (8 octets for 64bit
block ciphers, 16 octets for AES algorithm).

Algorithmically dependent numbers in the format MPI. For DSA only private
exponent x is here:
2 octets, prefix of the x number (in version 4 encrypted, in version 3 not
encrypted)
20 octets, x number (in version 3 and 4 encrypted)
2 octets, checksum, arithmetic sum of 22 previous octets as plaintext, modulo
65536 (in version 4 encrypted, in version 3 not encrypted).

Area of
Sensitive

Data

Table 1: Content of the Secret Key Packet structure for 1024bit algorithm DSA

Now let us stop at files of secring.skr type in programs of PGPTM, where the PGPTM program
saves the Secret Key Packet structure. This file stores apart from the Secret Key Packet field
usually several other records such as

• UserID Packet (contains an identifier of the user, i.e. its name and e-mail address),
• Signature Packet (contains time of signature, key expiration and so on),
• Secret Subkey Packet (contains similar data such as Secret Key Packet, but this time

about asymmetric key and algorithm for encryption of the data),
• another Signature Packet (contains the data such as for instance a time of signature of

this key by the signature key, amount/size of trust to it and so on).
These other records however do not contain any check of integrity of the Secret Key Packet
record. This provides for successful attack on the Secret Key Packet.
Now let us describe the attack separately on RSA and DSA separately.

4 Attack on DSA Signature Algorithm
Let us notice that the integrity of the "Public Key Packet" field is not visibly secured
anywhere in the format of OpenPGP, and as it became apparent by effecting a practical attack,
not even in PGPTM programs. Nevertheless, when creating the digital signature it is public
parameters of this field that are just utilized (in the event of PGPTM program, the Secret Key
Packet is stored specifically in secring.skr file). These parameters could be read from the
record of the public key (the file pubring.pkr), but it is logical that if the record of the private
key is open, they will be read from here. In the record of Secret Key Packet the value of the
private signature key is protected, but the mistake is that here the value of public parameters
or public key is not protected anyhow. Specifically in the event of DSA values p, q, g, y are at
issue, of which we will use only p, g for specific attack.
The main idea of the attack on DSA consists in the following steps. The attacker:

1. will prepare special numbers (constants) of PGPrime and PGGenerator
2. will obtain the structure of Secret Key Packet of the given user and replace p, g values

stored in the structure "Public Key Packet" inside Secret Key Packet by values p´=
PGPrime and g´= PGGenerator

3. will capture the first not enciphered message or the file which the user signed with
such false parameters and will keep its signature

4. on the basis of the obtained message and its signature it will calculate the private key
of the user (x value)

5. will return the p, g values to the original condition

 - 5 -

The procedure of the attack on the DSA algorithm will be now described in detail and
specifically as we carried it out utilizing the PGPTM 7.0.3. program. Examples and the
procedure are specified for 1024 bit DSA. In the text below, we will always mark the foisted
values and values computed on the basis of these false values with an apostrophe.

1.step
We selected prime number p´ (= PGPrime, constant) in such a way, that

1. p´ have 159 bits and the condition p´ < q be surely fulfilled.
2. upon entry of p´ in the format p´ = t*2s +1, 2s was as big a number as possible and t a

small prime number.
Specifically we selected s = 151 and t = 167, i.e. p´ has a binary format 10100111000....(150
zeros)....0001 and hexadecimally it is recorded as 0x5380 0000 0000 0000 0000 0000 0000
0000 0000 0001.
Then we selected the number g´ (=PGGenerator, constant) in such a way that

1. 1 < g´ < p´ - 1.
2. g´ was a generator of the multiplicative group Zp´

* .
Specifically we chose g´ = 0x31AC8529 1FF814E6 25E4B88C 8C5047A7 DB2F0E45 and
verified that (g´)(p´ - 1)/2 mod p´ ≠ 1 and (g´)(p´ - 1)/t mod p´ ≠ 1.

2.step
Now we have obtained the file secring.skr and in its record of Secret Key Packet we
exchanged the values (p,g) with values (p´, g´). Then we adjusted lengths of these numbers in
the MPI format and cut short the overall length of the Secret Key Packet (values in the
beginning of the record) in such a way, that it correspond to shorter false values p´ and g´.
The situation is illustrated in figure 1 and 2.

3.step
With such foisted values, we waited till the user signs any file known to us (message m) and
captured its signature - values (r´, s´). Now let us denote k a randomly chosen number,
unknown to us, which the user program chose upon this signature (see the description of DSA
above).

4.step
In this step, we calculated the value of the private key x of the given user on the basis of
values p´, g´, m, r´ and s´. From the definition of the signature value (r´, s´) it results that
(1) r´ = (g´)k mod p´ mod q, which gives with reference to the choice p´ < q
(1a) r´ = (g´)k mod p´

and
(2) s´ = {[k-1 mod q] * [h(m) + x*r´] } mod q, thus
(2a) x = { [s´* k - h(m)] * [(r´)-1 mod q] }mod q.
The key issue is now that we are able to calculate the unknown randomly chosen number
thanks to the choice of PGPrime and PGGenerator. The prime number p´= PGPrime was
selected in such a way, that the equation (1a), i.e. the task of the discrete logarithm in Zp´

* be
easy to solve. The specific procedure of calculation of the discrete logarithm in this special
group is specified separately in appendix 1. On the basis of this procedure we then calculated
value k from the equation (1a) and additionally computed value x from the equation (2a).

We checked the correctness of x according to the relationship y = gx mod p with original
values y, g, p. The x value is therefore calculated and its validity is verified against the value
of the public key.

 - 6 -

5.step
To the user, we returned its original file secring.skr.

4.1 Practical Implementation of the Attack
The attack was applied to the latest version of PGPTM program v. 7.0.3 for Windows
95/98/NT/2000. From the nature of the attack and the used data formats (Public Key Packet
versions 3 and 4, Secret Key Packet versions 3 and 4) it results that this attack should be
successful also on other platforms. The procedure of the attack was selected precisely
according to the aforesaid description. The adjustment of parameters was carried out in the
field Secret Key Packet in the secring.skr file, where the private signature key is stored as we
can see in figures 1 and 2. On the first figure, original values are indicated and the second one
shows false values.

9501D7043A8D29DF110400F2E02A396A14E137085DA859B3569AF4027EA379682F46780920B
72127C88787DDC1BFF9FDB59E564B741FD5FC98856679F1C041CB71895CB6975E7FE6E15A6D
4B70514560E11A25637F3FBA35E89E5F1FA272A2707F4865EA106EE402973D4969A276DA491
1005B968B81548621CEBBB5771A35C5A785F7F480E47277D2BAB500A0FF04303152BD2A9AD9
63E063A3FE34A8A5534F3F0400CD8580F20AA821A6D2FF5255DFD02E4F4C8D8DA3731517476
BEE096F7B104B01B6CE1C4DE586BAEA30D82B50DCB3F0D20B0F0D07D8384C09F12CBF079887
CEB696E822D753A48584F2BC573C84E8490AB310FDBCC40EAEBCD05973B3F2A1A479FFE0E4B
63026E066B6E936F1B2B7F1C91C65CBA0F27B4C0D22254BBC852DEDE10400AC756BB6EB8231
3A0FE91F47A36D1425D89FB124CD0ACBA082E8B2C2B048BE92C5CE7A5FAA5AF317DCC086150
B98AB504C0DA6BF1D87FAB73C8F8D0FC821BD8902CA6927338CF0D682E7C9E3E8D89A3D00D5
3224C301E6C932ADA7562FA15E9027E105F803043D4CBC08807A8FB71FEF9B27EE6A0722C4B
F601D032CC59F6FE4FF09030213CF38106B7BCA3F603F59437C3860B98DA3A1A3F02A4D2754
075B494CAC156E38E1282705FB0BBD68940A1653457E161AB00187B428566C617374696D696
C204B6C696D612C20445353203C762E6B6C696D6140646563726F732E637A3EB00303FFFF89
005A04101102001A05023A8D29DF050901E13380040B090807021901051B03000000000A091
09B89D5F084A0EAD7A35C009F5B643D5D2C37F4B2CFC9F399873B747CB3FBFE6800A0A8FE0A
2498E332586F6BED3BB88F278B0C5CF079B001679D014E043A8D2A78100400C904D0246F862
2352D6A60F67F1B4AAA4E94562BB00595A67DDB853AEF3F421CEE2D5FCD5AF18180872FE502
96009381590104609679274CC92770C6DEBCF391A39B92270D71E7C5EBEC66B3A3BF1BDF521
7E9F609F5D011B9D648A930998C61CD462F3BAAAFD916FDBFFFAA01FCBD2E42F1BC5C406BB0
763B3D48302408413900020203FE2B39B802893DE670D745D2AE4DF802BDA707E829B7B0FF7
438FFB88EAB76189AA90A143FB11C1DCC5149046C913AB114D9775563BA0103E65C951D6AC9
199D52818BD2B8A8BF07A6E9F8C242811FF9522EE168207F1EC5D49B441C63D473F7C83D89C
3B6F43A3D80B1B38F7195DE45A55807207159A70CA883493532CD4D8802FF09030221D3B8EC
1276C0D3601B745E982D01201DA87DB47FD3B9C8CDD8F6BC857F56B6F4370AB8A94C7A4E528
D209A80B365A416AF80E1198BAC1AE4175A0F90B0018789005204181102001205023A8D2A78
050901E13380051B0C000000000A09109B89D5F084A0EAD7CD04009F7056BA18F5907E36E4E
D9A79B4160AE8C6338D98009B043443B6665E860719768B49382DEC95FD7F96BBB00167

Figure 1: the file secring.skr hexadecimally, original values p,g are
indicated with their lengths and total length of the record

9500FF043A8D29DF11009F538000000000000000000000000000000000000100A0FF0430315
2BD2A9AD963E063A3FE34A8A5534F3F009E31AC85291FF814E625E4B88C8C5047A7DB2F0E45
0400AC756BB6EB82313A0FE91F47A36D1425D89FB124CD0ACBA082E8B2C2B048BE92C5CE7A5
FAA5AF317DCC086150B98AB504C0DA6BF1D87FAB73C8F8D0FC821BD8902CA6927338CF0D682
E7C9E3E8D89A3D00D53224C301E6C932ADA7562FA15E9027E105F803043D4CBC08807A8FB71
FEF9B27EE6A0722C4BF601D032CC59F6FE4FF09030213CF38106B7BCA3F603F59437C3860B9
8DA3A1A3F02A4D2754075B494CAC156E38E1282705FB0BBD68940A1653457E161AB00187B42
8566C617374696D696C204B6C696D612C20445353203C762E6B6C696D6140646563726F732E
637A3EB00303FFFF89005A04101102001A05023A8D29DF050901E13380040B0908070219010
51B03000000000A09109B89D5F084A0EAD7A35C009F5B643D5D2C37F4B2CFC9F399873B747C
B3FBFE6800A0A8FE0A2498E332586F6BED3BB88F278B0C5CF079B001679D014E043A8D2A781
00400C904D0246F8622352D6A60F67F1B4AAA4E94562BB00595A67DDB853AEF3F421CEE2D5F

 - 7 -

CD5AF18180872FE50296009381590104609679274CC92770C6DEBCF391A39B92270D71E7C5E
BEC66B3A3BF1BDF5217E9F609F5D011B9D648A930998C61CD462F3BAAAFD916FDBFFFAA01FC
BD2E42F1BC5C406BB0763B3D48302408413900020203FE2B39B802893DE670D745D2AE4DF80
2BDA707E829B7B0FF7438FFB88EAB76189AA90A143FB11C1DCC5149046C913AB114D9775563
BA0103E65C951D6AC9199D52818BD2B8A8BF07A6E9F8C242811FF9522EE168207F1EC5D49B4
41C63D473F7C83D89C3B6F43A3D80B1B38F7195DE45A55807207159A70CA883493532CD4D88
02FF09030221D3B8EC1276C0D3601B745E982D01201DA87DB47FD3B9C8CDD8F6BC857F56B6F
4370AB8A94C7A4E528D209A80B365A416AF80E1198BAC1AE4175A0F90B00187890052041811
02001205023A8D2A78050901E13380051B0C000000000A09109B89D5F084A0EAD7CD04009F7
056BA18F5907E36E4ED9A79B4160AE8C6338D98009B043443B6665E860719768B49382DEC95
FD7F96BBB00167

Figure 2: file secring.skr after intrusion, modified values p´,g´ are
indicated with their lengths and total length of the record

5 Attack on Signature Algorithm RSA in OpenPGP

5.1 Brief Description of RSA
Here we briefly recap the definition of RSA algorithm (see for instance [6]) and introduce
identification of the variables. Let us refer to RSA modulus as to n and let n = p*q, where p, q
are prime numbers. Let us denote public exponent e and private exponent d. Then let us
define pInv = p-1 mod q. We mark the pair (n,e) with public key. For the needs of OpenPGP
format private key is considered to be represented by the quadruple (d, p, q, pInv). Signature
of the m message is created as a value s = md mod n, while it is anticipated that the message m
has already been formatted in advance in a certain manner. The signature of s message is valid
if m = se mod n.

5.2 Description of Attack on the RSA Signature Key
We anticipate that the following thoughts are applied to the signature key of RSA algorithm
and OpenPGP format, not for PGPTM programs. PGPTM programs have in-built mechanisms
for integrity check of this key prior to its use for signature. In this case, we therefore attack
only on the OpenPGP format.
As with DSA, even here there is a private key stored in the Secret Key Packet structure. At
present, versions 3 and 4 of this format are used which differ in how the private data is
encrypted. Both versions of Secret Key Packet contain in the beginning the data on the public
key (in the Public Key Packet structure) and then the data of the private key follows. The
structure Public Key Packet has also two versions of the format (3 and 4), but these differ
only by one time piece of data. Therefore let us state only the content of the newer version 4
(see Table 2).

The Public Key Packet structure contains:

1. 1 octet version number
2. 4 octet number, indicating time, when the key was created
3. 1 octet identifying asymmetric algorithm (RSA here), belonging to this key
4. A sequence of MPI integers containing a public key. Here it is :
- n number (RSA modulus) in MPI format,
- e number (RSA public exponent) in MPI format.

After the Public Key Packet other data of Secret Key Packet follows, while the data of the
private key is already encrypted as Table 2 shows. In RSA the following data is concerned:

- private exponent d

 - 8 -

- prime number p
- prime number q (p < q)
- pInv (= p-1 mod q)
- two octets of checksum.

1 octet indicating the version number
4 octets indicating the time when the key was created
(in version 3 Public Key Packet 2 octets more
indicating the number of days of the key validity)
1 octet indicating RSA algorithm
n number (RSA modulus) in MPI format

Public
Key
Packet

e number (public RSA exponent) in MPI format
1 octet (string-to-key usage)
[Optional] If the string-to-key usage is 0xFF, there 1 octet here
identifying symmetric encryption algorithm for the private key
protection (see Table 1).
[Optional] If the string-to-key usage is 0xFF, there is "string-to-
key specifier" (see Table 1).
[Optional] If the private key is encrypted, initialization vector
(IV) is saved here. This is random data in the length of the block
of the used block cipher (8 octets for 64-bit block ciphers, 16
octets for AES algorithm).

Area of Publicly
Available Data

Algorithmically dependent numbers in MPI format. The content
for RSA (modulus 1024 bits):

version 3 version 4

2 octets, prefix of d number plaintext
128 octets, d number encrypted
2 octets, prefix of p number plaintext
64 octets, p number encrypted
2 octets, prefix of q number plaintext
64 octets, p number encrypted
2 octets, prefix of pInv number plaintext
64 octets, pInv number encrypted
2 octets (HSum , LSum) checksum, a sum of previous items (MPI
numbers) in open form (mod 65536)

openly

encrypted

Table 2: Content of the structure Secret Key Packet version 3 and 4 for RSA algorithm
(modulus 1024 bits)

Table 2 specifies how the private data encryption differs in versions 3 and 4 of Secret Key
Packet. Both formats will be observed separately. A common element of both formats is a
calculation of the checksum as a simple arithmetic sum of the individual bytes of the private
data modulo 65536: checksum = (d1 + d2 + ...+ dn) mod 65536. In both versions the user uses
for encryption the chosen symmetric block cipher in the so-called specific (PGPTM) mode
CFB.
Special feature of the version 3 of Secret key Packet format is that the prefixes of MPI
numbers forming the private key and the checksum are not enciphered. What is more in the
beginning of every MPI the condition of CFB is resynchronized in such a way, that the new
block starts only from the new MPI value.
In the Secret Key Packet format – version 4 all private MPI including prefixes, checksums are
encrypted without resynchronization.

 - 9 -

5.3 Attack on Version 3 of Secret Key Packet (RSA) Format
The attack which may be launched on version 3 of the format consists in the possibility of
changing the length of the individual MPIs, i.e. the MPI prefixes, as they are not encrypted
and neither is checksum. For instance it is possible to reduce the prefix of MPI number pInv
by one and to reduce also the checksum by one at the same time. The validity of the checksum
of the record Secret Key Packet (with new pInv´) will be kept (all octets are summed up
regardless of whether 1 or 8 bits are in them), but the value of the private information pInv is
changed, as this number is cut short by 1 bit. Likewise, the values of other private numbers d,
p, q can be changed. As soon as the attacker gets the message and its signature, which will be
created using a private key (d, p, q, pInv´), it will be capable of computing the whole RSA
private key. A detailed procedure is specified in Appendix 2. In this sense, the situation is
entirely analogical to the attack against DSA.

5.4 Attack on the Version 4 of Secret Key Packet (RSA) Format
Upon attack on the version 4 of the Secret Key Packet format it is not possible to utilize the
previous procedure directly as the prefixes as well as the checksum are encrypted, but they
may be modified. The modification consists in using the CFB properties in encryption the last
block of plaintext. For instance if we use a block cipher with the block length of 16 octets (i.e.
in the event of AES) and RSA 1024 bits modulus, the last incomplete block of the ciphertext
will contain eight last octets of the pInv number (let us denote them B1, B2,..., B8) and two
octets of the checksum (let us denote them HSum, LSum). This plaintext will be encrypted by a

plaintext
B1 B2 B3 B4 B5 B6 B7 B8 HSum LSum

CTn-1

E(CTn-1), tj.

CTn-1 encrypted by the
block cipher

Figure 1: Encryption of the last data block of the private key in the Secret Key Packet,
containing the private value pInv.

checksum pInv

encrypted
B1 B2 B3 B4 B5 B6 B7 B8 HSum LSum

 - 10 -

simple XOR operation with the key material (encrypted previous cipher block). If we carry
out the change of “XOR CONST” type in the last block of the ciphertext, it will appear
precisely as “XOR CONST” after decryption in the plain text. The objective is to carry out the
change in pInv (to be more accurate in the last eight octets of pInv number) and
simultaneously in checksum (in LSum octet) for pInv´ and checksum´ so that the check of
integrity agree after deciphering. The result will again be an intruded value pInv, while the
Secret Key Packet format will have the correct checksum. The use of this false pInv´ is the
same as in the previous case. We will obtain a signature of some message with this false key
and from here we will compute the value of the RSA private key. Now we will show how it is
possible to change the individual bits of B1 to B8 octets and LSum in such a way, so that the
check of integrity of the private key agree after their modification. The changes of the
individual bits of the specified octets will be carried out on ciphertext and as we have already
stated, with regards to the CFB mode, these changes will project in the same way into the
corresponding bits of octets of the plaintext. Now let us anticipate that in the open format of
some octet Bi from the set of {B1, B2,..., B8} some j-th bit is set (where j may be 0 to 7) in the
same way as j-th bit in LSum octet. Then it only suffices to change this j-th bit in the
enciphered octet Bi and simultaneously in the enciphered octet LSum and the check of integrity
will agree. If this bit were 1, Bi octet will change to Bi - 2**j octet and LSum octet will change
to LSum - 2**j. The new checksum will thus be valid. Likewise if j-th bit of Bi and LSum octets
were 0, the octet Bi will change to Bi + 2**j and LSum octet to LSum + 2**j octet. The new
checksum will again be valid.! As we do not know whether j-th bit of the selected octet Bi is
and/or isn´t the same as j-th bit LSum, we will try it. We can change a total of 64 bits and the
likelihood of us not succeeding is very low (2-64). Let us note that we will learn of the success
of the specified change only after the user tries to sign a message with this false key.
Nevertheless on average two attempts should suffice. Another method is to change the j-th bit
simultaneously always in two octets of any choice from the set {B1,B2,..., B8}, whereas LSum
will be left unchanged. This time we wait for a situation, when these bits are different in the
plaintext. Their current change will annul their influence in the checksum. Likewise we can
carry out variations with four or eight j-th bits. The result of this change is an intrusion of
pInv with the same consequences as in previous cases, i.e. finding out of the signing RSA
private key.

6 Attack on the Private Keys after their Export
Further it is necessary to note that apart from the private keyring secring.skr it is possible to
use the same method to attack also on the private key, which is exported to the file of the type
"ASCII Key File" and then transferred through the network or on a floppy disk. This file has
apart from the additional encoding the same content as the secring.skr file and therefore the
same attack can be applied to it as to the secring.skr file. This means that the transfer of the
private key through this file over the network or on a floppy disk is not safe.

7 Countermeasures

7.1 Basic Temporary Countermeasures
The main cause of the just presented attacks is insufficient control of integrity of the public as
well as private data in the file, containing the private key of the user. As a logical
countermeasure a necessity results from this condition to introduce a better control of integrity

 - 11 -

of the saved records. We emphasize that this control must secure also the integrity of the
public values, which must not be necessarily enciphered.
The requirement for introduction of a quality integrity check does not have to be easy to
implement in a short-time horizon. Until the adjustment of the OpenPGP [1] format occurs for
records of the private keys (Secret Key Packet), it is possible to use temporarily at least the
following control tests in the PGPTM programs and others which implement the OpenPGP
format. These are proposed in such a way, that the keys for DSA and RSA algorithms, which
fulfill the below-mentioned relations, defeat the attack described by us. It is presumed, that
this test will be carried out as an additional check of integrity after reading the respective
parameters from the file with the private key. For the operation of the actual signature only
such a key may be used the values of which pass this test. We stress out that the aforesaid test
is not to be a substitute for the missing check of integrity of the file with the private key but it
is to serve as a temporary measure which prevents the herein specified attack.

7.2 Temporary Test for DSA
We propose the following temporary test for DSA. The following relations should be
verified:

1. p, q, g, x, y > 0
2. p is odd, q is odd
3. 2159 < q < 2160
4. 1 < g < p
5. 1 < y < p
6. x < q
7. q | (p-1)
8. gq mod p = 1
9. gx mod p = y

Let us also note that whereas such type of tests as we already mentioned is trusted a lot, for
instance in RSA, in case of DSA we have to be careful. Unlike RSA there is only one value
here (private key x), unknown by the attacker. Other parameters are known by the attacker
and it may change them at its own discretion. This is a reason, why this test is considered only
a temporary solution, which must be replaced as soon as possible with another type of check
of integrity of the discussed records, as hereafter specified.

7.3 Temporary Test for RSA
We propose this temporary test for RSA. The following relations should be verified:

1. e*d mod (p - 1) = 1
2. e*d mod (q - 1) = 1
3. pInv * p (mod q) = 1
4. n (from the record of the public key) = p*q
5. e ∈ E, where E is a set of possible values planned for e, i.e. for PGPTM for instance

{17, 65537,...}

Let us note that in the program PGPTM the inspections 1 to 4 and other checks are
implemented. In OpenPGP format these controls are not however anticipated, which is a
cardinal mistake.

 - 12 -

7.4 Other Topics for OpenPGP format
Here we state some other topics which came to our mind after first familiarization with the
OpenPGP format (the record Secret Key Packet) and PGPTM program. These topics would
definitely contribute to increased safety of the format as well as PGPTM program. However, it
is necessary to perceive them as recommended ideas only. Before specific adjustments are
implemented, they should undergo at least a basic independent analysis. The analysis of the
whole OpenPGP format is however much more complex and reaches beyond the frame of this
paper. The proposed measures are:

1. Enciphering modus CFB should be replaced with CBC modus
- will make the described attack on the last block of enciphered private data

more difficult
2. Replace the checksum (sum of bytes mod 65536 with HMAC, based on SHA-1 or on

another safe hash function (for instance SHA-256, 384, 512 and so on)
- will make the attacks on protected data and simultaneously on the security

code more difficult
3. New checksum (HMAC):

a) save in the length of at least 160 bits,
 - will make the attacks using the birthday paradox more difficult,
b) compute it from all data of the record Secret Key Packet (not only from the private
but also from the public values),

- will make the integrity attacks on public as well as private parts of keys in
Secret Key Packet more difficult

c) derive the key used in HMAC from passphrase in another manner than the key for
symmetric cipher
 - will make the attack on HMAC more difficult
d) encipher the resulting HMAC together with the private data by a symmetric cipher
similarly as it is in case of checksum in Verion 4 of the Secret Key Packet format

- will make the integrity attacks on public as well as private parts of the key in
Secret Key Packet more difficult

4. Use the format of EMSA-PSS type specified in [6] for the RSA signature scheme
- will make a number of attacks including attack described in Appendix 2 more
difficult.

8 Impacts
The demonstrated types of attacks show a considerable impact to security of the programs
based on the format OpenPGP (e.g. PGPTM program itself). Anybody, who can change a file
with private key, can get the private key value in algorithms DSA and RSA based on a single
incorrect signature. And this change need not occur only in the workstation of attacked user at
all. Sensitive point of the system can be also seen in the files with exported private keys,
which are used by the user for a transfer of his private keys between various stations. The fact
that private key is stored in an encrypted form may provide the user with some feeling of
security, which is false, however. If attacker approaches to such flexible disk during its
transport, a security of user´s private key is endangered considerably.

Another scenario, which is very efficient in case of the attack described above, can be used in
situation, when the file with private key is stored on the shared device. In such a case, the
attacker can be e.g. server administrator, who foists a modified version of this file upon the
user for certain time period. Further on, he waits until the user uses it for signing (time period
can be determined by monitoring of user´s station network activity with relatively high

 - 13 -

accuracy), and finally he returns the original content of the file. He can identify the private
key value for the signature having been generated. When having sufficient control over the
entire system, the attacker can even cover the tracks of the attack, when he sends a message
with valid signature instead the original message furnished with false signature. This can be
done easily, because at this moment the attacker knows both the message itself and the proper
private key.

User of the programs based on OpenPGP has to face to a very difficult situation, when he
finds out that faulty signature value was generated. Definitely, he may wonder, whether he is
facing to an impact of intentional attack, or it is “only” some technical failure. Of course, it is
clear that proper care has to be paid to every file with false signature, as if it was a file
containing private key in open form! Subsequent treatment includes, first of all, irreversible
wiping of the file from the station or even the server in question.

9 Conclusion
The above mentioned attacks leading to revealing of the most sensitive system information
(RSA and DSA algorithms of signature private keys), show clearly the importance of
protection of private keys and public parameters of asymmetric algorithms in security
systems. Let us mention also the fact that it was right the research study aimed to general
problems and principles of protection, in the framework of which we saw “how the PGPTM
program makes it", without a primary intention to target to it.
Our analysis was based on general documentation of OpenPGP [1]. We have revealed serious
insufficiencies in it, which can lead to easy vulnerability of the applications based on it. As
a practical example, we can mention the PGPTM program, which shows resistance to attacks to
RSA thanks to sufficient protection beyond the scope of OpenPGP, but which is easily
vulnerable by the attack to DSA signature algorithm.

Note that although we limited our study to RSA and DSA algorithms in relation to OpenPGP,
similar vulnerabilities can be expected also in other asymmetric cryptosystems, including the
systems based on elliptic curves, if sufficient protection of private keys and public parameters
is not ensured. And the OpenPGP format as well as the PGPTM program are probably not the
only cases, when attacking a given system is enabled by improper protection of the respective
parameters. As a whole, this document calls for attention, which must be paid to designing of
application of the above mentioned values and storing them within a given system.

10 Acknowledgement
We would like to thank to Pavel Rydlo for technical co-operation in practical implementation
of the attack under description.

References
[1] RFC 2440: OpenPGP Message Format, J. Callas, Network Associates, L.

Donnerhacke, IN-Root-CA Individual Network e.V., H. Finney, Network Associates,
R. Thayer, EIS Corporation, November 1998.

[2] Menezes A.J., Oorschot P.C., Vanstone S.A.: Handbook of Applied Cryptography,
CRC Press, 1997.

 - 14 -

[3] Lenstra, A. K.: Memo on RSA signature generation in the presence of faults,
manuscript, Sept. 28, 1996. Available from the author.

[4] Rosa, T.: Future Cryptography: Standards Are Not Enough, sent to the conference
CATE 2001, 2001.

[5] Rosen, K. H., Michels, J. G., Gross, J. L., Grossman, J. W., Shier, D. R.: Handbook
of Discrete and Combinatorial Mathematics, CRC Press, 2000.

[6] PKCS#1 verze 2.1: RSA Cryptography Standard, RSA Laboratories, Draft 1,
September 17, 1999.

[7] M. Joye, A. K. Lenstra, and J.-J. Quisquater: Chinese remaindering cryptosystems in
the presence of faults. Journal of Cryptology, Volume 12, Number 4, pp. 241-245,
Autumn 1999.

[8] Boneh, D., DeMillo, R. A. and Lipton, R. J.: On the Importance of Checking
Cryptographic Protocols for Faults, in Proc. of EUROCRYPT ’97, pp. 37-51, 1997.

Appendices

Appendix 1: Determination of a private key value by changing the DSA
public parameters.

Assumption P1: Method of DSA signature calculation
Let us assume the DSA parameters (p, q, g, y, x), where p, q are prime numbers, g ∈ Zp

*,
ord(g) = q, y = gx mod p, 0 < x < q, x is signer´s private key. Signature for the message with
hashing code h can be calculated as follows:

1. select random k, 0 < k < q
2. calculate r = (gk mod p) mod q
3. calculate s = k-1(h + xr) mod q,where k*k-1 ≡ 1 (mod q)
4. the signature is the pair (r, s)

The attack described below assumes that the attacker changes the DSA parameters (p, q, g, y,
x) for (p’, q, g’, y, x), where p’ is 159 bit prime number, 2158 < p’ < 2159 and g’ is generator of
group Zp’

* so that he could for any r ∈ Zp’
* easily determine the value w, 0 � w < (p-1), for

which it holds that (g’)w ≡ r (mod p), i.e. w = log(g’)r. So he can solve a problem of discrete
logarithm in Zp’

* easily.

In the following two steps we demonstrate that the value of private key x can be easily
determined from the known hashing code h and signature (r, s,), which was acquired by
algorithm DSA with spurious parameters (p’, q, g’, y, x).

Step 1: determination of the set K
In this step we are working with the value r. It follows from equation (P1.2), that r = (g’)k
mod p’ mod q = (g’)k mod p’, because p’ < q.

According to the above given assumption, the attacker is capable to determine the value of w
= log(g’)r easily for any r. For the unknown value of k we have k = w + b(p’-1), where b � Z, b
� 0. The condition from (P1.1) must be added, assuming that 0 < k < q. As p’ is 159 bits and
q is160 bits, so we obtain a set of the values admissible for k, i.e. K = { w + b(p’-1): b(p’-1) <

 - 15 -

q-w, 0 ≤ b ≤ 3 }. This way we get a set of at most four possible ki values, and the value
k under search is surely among them.

Step 2: determination of the value x
Now, we will test ki ∈ K one after another and compute the values of xi, from (P1.3) as xi =
r-1 (ki*s – h) mod q, where r*r-1 ≡ 1 (mod q). Note that gcd(r,q) = 1, so the value r-1 exists
and is unique. This way we obtain a set of the values X = {xi: ki � K}, which must include the
private key value x being searched for.

All we have to do now is to choose the required value x from the set X. It can be done easily
with the help of relation y = (gxi mod p), where p and g are the original public parameters of
DSA and y is the public key. By testing four different values (as the maximum) of xi, we can
eliminate remaining uncertainty introduced by a low value of p’ and obtain the value x under
search. Note that the element g has the order q within the group Zp

*. As a result, we can say
that only one value of 0 < xi < q exists, for which it is true that y = (gxi mod p). That is why
the x value determined by this procedure is unique.

Note. The main principle of the entire attack is obvious from the above given description. It is
based on such modification of DSA public parameters, thanks to which very weak instances of
the problem of discrete logarithm occur in signature calculations. Instead of solving this
problem in multiplicative cyclic subgroup of the group Zp

* having the 160-bit order, this
problem can be solved sufficiently in the cyclic group Zp’

*, where p’ is a 159-bit prime number
with a suitably chosen structure.

The complexity of such instances of the discrete logarithm problem is considered as
absolutely insufficient from the cryptology point of view. Moreover, for practical
implementation of the above described attack, a generally applicable group Zp’

* has been
found. This group has a special structure, which enables very quick solution of the instances
generated in the above given problem, even on a PC of common office type - see the
description of algorithm A1 given below.

Algorithm A1: Calculation of a value of w = loggr for special type of Zp

*.
In the following part, we describe an efficient algorithm for calculation of a value of discrete
logarithm, which can be used for multiplicative group Zp

* that have a certain special structure
(here p equals to the spurious value of p’). It is assumed that a generally selected group with
this structure will be used for practical implementation of the above described type of attack
against DSA. A structure of the above mentioned group will be given in a form of the
following proposition:

Proposition P2. Let us have a multiplicative group Zp

*, where p is a prime number with a
structure of p = t*2s + 1, and t is a prime number. Further on, g is generator of Zp

*. The
following procedure shows a method of calculation of the w value, which is efficient for low t
(for practical implementation of the foregoing attack, the generally applicable group with the
parameters of t = 167, s = 151 was found).

Before we start describing single steps of the algorithm itself, we should mention some useful
formalisms to be used later on for explaining particular operations.

 - 16 -

Definition D1. [see 5, page 277] If p and k are positive integers and b is an integer relatively
prime to p, then b is kth power residue of p if the congruence xk ≡ b (mod p) has a solution.
(In case of k=2 we often use an expression of quadratic residue modulo p.)

Fact F1. [see 5, page. 279] Let p be a prime number, k an integer positive number, and b an
integer number fulfilling the condition of gcd(b, p) = 1. Then b is kth power residue modulo p,
iff b(p-1)/d ≡ 1 (mod p), where d = gcd(k, p-1).

Lemma L1. Let p be a prime number and g the generator of group Zp

*. Then the value of y, y
= gw mod p, is kth power residue modulo p, where k|(p-1), iff k|w.

Proof. If y is kth power residue modulo p, , then from the fact F1 we have y(p-1)/k � 1 (mod p).
From the assumption y = gw mod p, we get (gw) (p-1)/k � 1 (mod p). As g is the generator of
Zp

, is must be valid that w(p-1)/k � 0 (mod (p-1)). From this expression, we can directly
determine that k|w.

Verification of implication in the reverse order is easy. Let k|w, i.e. w=k*b, where b is
positive integer. Then it applies that y = gw mod p = (gb)k mod p and it results directly from
the definition D1 that y is kth power residue modulo p. °

Further on, we describe three steps of algorithm - one after another - in which a calculation of
the discrete logarithm w = log(g)r under search takes place. It is based on a modified version of
Pohling-Hellman algorithm (see [2]), which would be also very efficient in the given type of
multiplicative group. In our effort for the most specific structure of the group employed, we
derived the following procedure.

Step 1: determination of the value sw = w mod 2s
Let us assume that w = wn*2n-1 + wn-1*2n-2 + ...+ w1, where n is a number of bits of binary
expansion w and wi ∈ {0,1}, for 1 ≤ i ≤ n.

Let us concentrate our attention to determining of the bit w1. If this bit is zero, it is valid that
w = 2*b, for some integer b. For the value r = gw mod p, we can derive that r ≡ (gb)2 (mod p),
so that r is the quadratic remainder of modulo p. On the other hand, if the value of bit w1 is
one, then the value of w is odd, and r is not a quadratic residue modulo p according to the
lemma L1. Based on this analysis and the fact F1, we can define the following conditions for
w1:

• r(p-1)/2 ≡ 1 (mod p) ⇒ w1 = 0
• r(p-1)/2 � 1 (mod p) ⇒ w1 = 1

 - 17 -

Let us continue with determination of w2. First we adjust r for r2 = (r*g-w1) mod p based on
the known w1. By this adjustment we obtain the value r2 = gw’ mod p, where w’ = wn*2n-1 +
wn-1*2n-2 + ...+ w2*2. If it is true that w2 = 0, we obtain a equation for the value r2, saying
that r2 ≡ (gb)4 (mod p), where b is an integer. This means that the value r2 is a 4th power
residue modulo p in this case.

If it is true that w2 = 1, w’ is not divisible by four and the value r2 is not a 4th power residue
modulo p according to the lemma L1. By this, we can derive the following conditions for w2:

• r2
(p-1)/4 ≡ 1 (mod p) ⇒ w2 = 0

• r2
(p-1)/4 � 1 (mod p) ⇒ w2 = 1

To determine w2 we adjust r2 again for r3 as r3 = (r2*g-2*w2 mod p) and we continue in
determining the values of wi while it is true that 2i (p-1).

Fig. 3: Step 1 of algorithm A1.

As (p-1)/2s = t, where t is an odd prime number, we can determine the values of wi for 1 ≤ i ≤
s. By this, we obtain the binary notation of the value sw = ws2s-1 + ws-12s-2 + ...+ w1, where sw
= w mod 2s. It is the value, we wished to identify in this step. The entire procedure is
illustrated in Fig. 3.

Step 2: determination of the value tw = w mod t
It is easy to demonstrate that for the integer j fulfilling the condition of r(p-1)/t ≡ (g(p-1)/t)j (mod
p), it holds that tw ≡ j (mod t). When j ≤ t-1, it applies directly that tw = j. We can identify
the value tw in this step by testing the numbers of j, 0 ≤ j ≤ t-1, until we identify the j value
fulfilling the congruence r(p-1)/t ≡ (g(p-1)/t)j (mod p). Such j is also the value of tw under search.

Step 3: determination of the value w = loggr.
In the preceding steps, we have obtained a set of the following congruencies:

• w ≡ sw (mod 2s)
• w ≡ tw (mod t)

Procedure of calculation of sw = loggr mod 2s.

1. Let us assume that:
a. binary notation sw is sw = wsws-1...w1
b. Zp

*, where p is prime number, p = t*2s + 1

2. i = 1; f = gp-2 mod p; v = p-1
3. v = v/2; y = rv mod p
4. if (y = 1) then wi = 0 else wi = 1; r = r*f mod p
5. f = f2 mod p
6. i = i+1
7. if (i ≤ s) then goto 3
8. return sw = wsws-1...w1

 - 18 -

It is also true that gcd (t, 2s) = 1, and so, according to the Chinese Remainder Theorem
(CRT), an unique value 0 � w < t*2s exists, which fulfils both congruencies. As the value t*2s
is also the order of group Zp

* for p = t*2s+1, the value of w is also the discrete logarithm of
the value r under search. Direct procedure leading to determination of w follows:

1. calculate γ ≡ (2s)-1 (mod t), where this value exists and is unique, because gcd (t, 2s) =
1

2. calculate v = (tw - sw)*γ mod t
3. w = sw + v*2s

Proof (of correctness of foregoing procedure):
For factor 2s, it is obvious from the expression for w that w ≡ sw (mod 2s). For factor t, we
obtain that w ≡ sw + (tw - sw)(2s)-1*2s (mod t), and so w ≡ tw (mod t). Moreover, w = sw +
v*2s < 2s + (t-1)*2s = t*2s. By this we have verified that the above given procedure actually
corresponds to application of CRT in the above given set of congruencies. °

Results of the experiment
The procedure described in steps 1 through 3 was applied in various configurations of office
PCs. Table 3 shows average time of calculations for randomly chosen values of r. We can see
that the entire calculation takes some hundreds of milliseconds in general.

Configuration Time of calculation of a single discrete

logarithm given in milliseconds
Pentium III/ 500MHz
128 MB RAM
Windows NT 4.0 SP 6a

96

Celeron 400 MHz
128 MB RAM
Windows NT 4.0 SP 6a

113

Pentium II 400 MHz
128 MB RAM
Windows 2000 Advanced Server

116

Pentium II 300 MHz
128 MB RAM
Windows NT 4.0 SP 6a

150

Pentium 166 MHz
96 MB RAM
Windows NT 4.0 SP 6a

535

Pentium 75 MHz
46 MB RAM
Windows NT 4.0 SP 4

1020

Table 3: Times of calculation of the value w = loggr for special type of Zp
*.

Appendix 2: Attack to a private RSA key
In this appendix, we describe briefly how the value of a private RSA key can be obtained
from the value of a faulty signature, which was calculated using the affected private key. This
attack is based on an analysis of OpenPGP format. This attack could not be applied on the
tested PGPTM directly, because the PGPTM program performs additional check of the private
key integrity beyond the scope of OpenPGP definition. However, such attack is possible in

 - 19 -

case of applications implemented strictly according to OpenPGP, and it has the same effects
as the above presented attack to DSA.

By OpenPGP, the private RSA key consists of the following set of six values (n, p, q, pInv, e,
d), where p, q are prime numbers, n = p*q is public modulus, p*pInv � 1 (mod q), e is public
exponent and d is private exponent, i.e. e*d � 1 (mod lcm(q-1,p-1)). Based on this structure,
one can assume that the RSA signature transformation is calculated for the specific value of
formatted message m by the following procedure:

1. s1 = md mod p
2. s2 = md mod q
3. h = pInv*(s2 - s1) mod q
4. s = s1 + p*h
5. s is the result of signature transformation; it can be derived that for the value

s calculated by this procedure, it applies that s = md mod n

This procedure corresponds to application of the Chinese Remainder Theorem on the signing
transformation, and it makes it possible to calculate this transformation efficiently. As it was
shown in [3] and later published in [7], application of this technique is quite susceptible to
attacking, making use of the error in calculation of signature. Note that the first public
discussion of fault attacks on RSA was probably in the article [8]. However we use a special
variant of these attacks here, which is based on the thought presented for the first time in [3].
And these errors can be implemented not only by affecting of the attacked device during
calculation of signature, but also e.g. by affecting of certain values forming private key. This
topic is described in detail in [4]. Here we draw our attention to one specific type of attack,
which should be considered in OpenPGP.

Let us assume that the attacker affects the parameters RSA (n, p, q, pInv, e, d) by substituting
pInv with pInv’∈ Z, pInv’ � pInv (mod q). Let us mention that random change of pInv will
fulfill this condition with high probability. Other parameters are left without changes.

Now, let us have a pair of values (m, s’), where the value s’ was obtained as a result of above
described signature transformation, in which the affected value pInv´ was used..
It is valid that

1. s1 = md mod p
2. s2 = md mod q
3. h´ = pInv´*(s2 - s1) mod q
4. s´ = s1 + p*h´
5. s´ is the result of signing transformation

Regarding the factor p for this value as it results from the equation given in point 4 it is true
that s’ ≡ md (mode p). However, it is very likely (probability close to 1 - q-1) that for factor q
s’� md (mod q) is true. A pair of numbers (m, y), where y = (s’)e mod n, then fulfils the
following conditions: m � y (mod p), m � y (mod q). It results from it that p|(m-y), but q does
not divide (m-y) at the same time. That is why it is valid for the factor p that p = gcd((m-y),
n).

By the above given procedure we have obtained the value of factor p from a single faulty
signature, and the remaining secret values of private key can be determined from it easily.

 - 20 -

Let us mention that the above given procedure is based on a condition that the attacker knows
the value of formatted message m, which directly enters the RSA signature transformation.
And this condition need not be fulfilled for all types of formats, but the format RFC 2313
(alias PKCS#1, version 1.5) is recommended in OpenPGP, where this condition is met.

Similarly as in case of attack to DSA we recommend to introduce more powerful check of
data integrity in the private key files into the format OpenPGP. No correction is necessary
directly in the program PGPTM 7.0.3, as subsequent checks of algebraic relations between the
values of private key are employed, which defeat the attempts for attack of this type.

