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Abstract

Steganography is the science of hiding the very presence of a secret message within a public com-
munication channel. In Crypto 2002, Hopper, Langford, and von Ahn proposed the first complexity-
theoretic definition and constructions of stegosystems. They later pointed out a flaw in their basic con-
struction. Their proposed fix for thisflaw dramatically reduces the efficiency of the construction, because
it requires the use of strong error-correcting codes.

Our first contribution isto demonstrate that the construction that was thought flawed is actually often
not. By carefully analyzing the severity of theflaw in their original construction, we show that it issafeto
use under proper conditions—thus eliminating the need for expensive error-correction. Moreover, when
such conditions do not hold, we provide an alternative fix for the flaw, which is often more efficient.

In addition, we demonstrate that for memoryless channels, the construction can be used to send
multiple bits statelessly (maintaining synchronized state between the sender and the recipient, as was
proposed for the original construction, is particularly problematic in steganography). We provide tight
bounds on the security of such an approach.

1 Introduction

1.1 Background

Steganography’s goal is to concea the presence of a secret message within an innocuous-looking com-
munication. In other words, steganography consists of hiding a secret hiddentext message within a public
covertext to obtain a stegotext in such away that any observer (except, of course, the intended recipient) is
unable to distinguish between a covertext with a hiddentext and one without. In CRYPTO 2002, Hopper,
Langford and von Ahn [7] offer the first rigorous compl exity-theoretic formulation of steganography. They
formally define steganographic secrecy of a stegosystem as the inability of a polynomial-time adversary to
distinguish between observed distributions of unaltered covertexts and stegotexts. This brings steganogra-
phy into the realm of cryptography, unlike many previous works, which tended to be information-theoretic
in perspective (see, e.g., [2] and other referencesin [7]).

The model assumes that the two communicating parties have some underlying distribution D of cover-
texts that the adversary expects to see. All parties are allowed to draw from D; the game for the sender
is to alter D imperceptibly for the adversary, while transmitting a meaningful hiddentext message to the
recipient. Conversely, the game for the adversary is to distinguish the distribution of transmitted messages
from D.

*The work of both authors was partly funded by the National Science Foundation under Grant No. CCR-0311485. The second
author’swork was also partly funded by a National Physical Science Consortium Fellowship and stipend support from the National
Security Agency.



The Flawed Construction. In addition to providing a model, the authors of [7] also present a number of
constructions satisfying the definition. The most elementary of them, on which othersrely heavily, is called
“Construction 1" in [7]. Subsequently, a subtle security flaw was observed. Though the exact effect of the
flaw was not analyzed, the flaw was corrected by the authorsin [6]. To distinguish between the original and
the corrected versions of this construction, we call them S1 g iginal @d S1corrected, FeSpeCtively.

The Expensive Fix.  Sloriginal 1S an €efficient construction: it can transmit one bit of hiddentext for each
covertext message, and the decoding and encoding algorithms are very fast (involving just afew applications
of a pseudorandom function). Unfortunately, the correction of [6] has a detrimental effect on this efficiency.
Slcorrected FEQUIires between 5 and 6 covertext messages (for most distributions D of interest) to transmit
one hiddentext bit, and encoding and decoding involves using expensive error-correcting codes.

The reason for such high cost is the high probability of incorrectly decoding an encoded bit. To provide
reliability, therefore, S1correctea Nasto first encode the hiddentext in an error-correcting code and then stego-
encode the resulting codewords!. The high rate of error in stego-encoding (between 1/4 and 3/8, depending
on D) provides an easy upper bound on the rate of the error-correcting code used, and thus a lower bound
on the stretch factor, which mustbe 1/(1 — H2(1/4)) =~ 5.

The Stateful Multibit Extension.  Both S1;iginal ad S1eorrected €NCODE Messages one bit at atime. Note
that S1 orrected, due to the stretch of the error-correcting codes, must necessarily allow transmissions of
hiddentexts longer than one bit.

Encoding of multibit messages is accomplished by having the sender and the recipient maintain a syn-
chronized counter in order to refresh, for each bit, the pseudorandom function key used in the construction.
The need for synchrony presents a particular problem in steganography. Unlike in counter-mode symmet-
ric encryption where the counter value can be sent along with the ciphertext in the clear, here this is not
possible. Indeed, the counter itself would also have to be steganographically encoded to avoid detection,
which brings us back to the original problem of steganographically encoding multibit messages. Thus, strict
synchrony between the sender and the recipient is required, and if asingle stegotext is dropped, the recipient
will fail to decode everything that follows (moreover, standard error-correcting techniques cannot help with
this problem).

1.2 Our Contributions

The Fix Is Often Not Needed. Our main result, Theorem 1, demonstrates that the impact of S1iginal’S
flaw on its security isirrelevant provided D has sufficiently high min-entropy. Specifically, we show that
the adversary’s advantage in distinguishing transmitted messages from D is at most 2p (plus a negligible
amount 2np), where p isthe probability of the most likely element in D. Thus, if D has no elements of high
probability (in other words, has high min-entropy), the adversary will be unable to break S1 o iginal. We also
show that the bound of 2p istight within asmall constant factor.

Taken together these bounds demonstrate that the expensive fix of S1¢orrectea 1S 0ften unnecessary. Thus,
our main contribution is to demonstrate that a more efficient construction, once thought flawed, is actually
secure under the proper conditions.

1The authors of [6] are content with a stego-system with reliability 2/3, i.e., one in which each individual bit can beincorrectly
decoded with probability 1/3, and thus require only weak error-correcting codes. However, it is clear that for a stegosystem to be
useful, one would require much higher reliability. Therefore, in order to make accurate performance comparisons, we will require
all stegosystems to be reliable with probability closeto 1.



Cheaper Fix When Needed. Our second contribution isto describe an aternativefix for the flaw when the
min-entropy of D isnot sufficiently high. We propose ageneralization of S1,yiginal that simply uses D™ (for
asmall n) instead of D. We call this construction MESS for “Minimum-Entropy-Sensitive Stegosystem”
(inparticular, for n = 1, S1ypigina and MESS are the same).

While the technique MESS uses for improving min-entropy is far from novel, proving that the dis-
tinguishing advantage of the adversary in this case remains a negligible function of the relevant security
parameters is a technical challenge. Because the negligible quantity np is distribution-dependent and the
distribution changesin MESS asn grows, one cannot simply invoke the result of our main theorem directly.
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Figure 1. Stegosystems with Highest Data Rate for 2% Security Level

For comparison purposes we carefully analyze the gains in efficiency that result from using S1 griginal
or its generalization MESS instead of S1.orrecteq- IN particular, for a security level of 2%, using MESS
results in shorter stegotexts as long as min-entropy of D isat least (s + 2)/5. For example, for acommon
security level of 2789, MESS has a shorter stegotext whenever min-entropy of D isat least 17. The gains
in efficiency of encoding and decoding are even more dramatic. Thisisbecause S1 co.rected NEEAS EXpPENSiVE
error-correcting codes, while MESS consists simply of repeated sampling from D. Thus, MESS may be
beneficial at lower min-entropies as well: even though the data rate will be lower, the computations will be
faster.

The Stateless Multibit Extension. Our third significant contribution is to prove that for memoryless
covertext distributions D, the scheme S1;igina1 and its generalization MESS can securely transmit multibit
hiddentext messages using bit-by-bit steganographic encoding without additional state. In particular, no
synchronization between the sender and the recipient is required; therefore, if aportion of the stegotext gets
lost in transit, the rest of the message can be correctly recovered.

Specifically, by anon-trivial extension of the techniques used to bound the flaw of S1 ,;igin.1 @nd to prove
the security of MESS, we demonstrate that for a hiddentext message of length [, the distingui shing advantage
of the adversary is no more than 61%p (plus 4inp, an amount that remains negligible for reasonable values
of 7). Thisbound is aso tight within a small constant factor.

Prior to our work, no analysis of such stateless multibit extension was available in the literature. How-
ever, Hopper [5] stated that the advantage of the multi-bit construction was loosely quadratic. (Our bound
was derived in an attempt to disprove his statement.)

We stress that our result is only for distributions D that are memoryless, i.e., where each covertext
message is independent of the history. Proving multibit security of these constructions in the more genera
case remains an open problem, as far as we know.



2 Background: Work of Hopper, Langford, and von Ahn

2.1 Definitions

We reiterate the main definitions and notational conventionsfrom [7] which we utilize herein. Many of these
are taken nearly verbatim from the original work.

Defineachannel C to be adistribution of bit sequencestime stamped with monotonically non-decreasing
values. The conditional distribution C,, describes the channel distribution conditioned on channel history h
of previously drawn bits. All messages are assumed to be of fixed length B bits. Furthermore, assume
there exists an oracle M which on input h efficiently samples the distribution C}?. That is M samples C,
in B-bit blocks with the first bit of the block dependent on the history h and each successive bit in the
block dependent on the concatenation of 4 and all previous bitsin the block. Where the specific history A is
irrelevant wewill use M for M (h). Wealso find it convenient to abbreviate the covertext distribution C 2 by
D except for situations where the original provides additional clarity. Additionally, we will abuse notation
anduse D = Cf’ in place of M, particularly when denoting oracle accessto D and when the avail ability or
action of the sampler isnot of primary interest?.

Definition 1. A stegosystem or steganographic protocol is a pair of probabilistic polynomial time algo-
rithms .S = (SE, SD) such that, for asecurity parameter «,

1. SE takesasinput arandomly chosenkey K € {0,1}"*, astringm € {0,1}* (called the hiddentext),
a message history h, and a channel sampling oracle M (h); SE™ (K, m,h) returns a sequence of
blocks. c1]|ez2]| - - - ||e; (called the stegotext) each of which is an element of the support of the channel
being sampled by the oracle M

2. SD takesasinput akey K, a sequence of blocks ¢i]|cz| . . . ||c;, @ message history h, and a channel
sampling oracle M (h); SDM (K, c, h) returns a hiddentext m.

3. SEM and SDM satisfy Vm : Pr[SDM (K, SEM (K, m, h),h) = m] > %, where the randomization
isover any cointossesof SEM  SDM and M.

Stegosystem Reliability. We believe it useful for later discussions to elaborate on the final point in the
definition of a stegosystem S. The reliability of a stegosystem S with security parameter « for a channel C
(for messages of fixed length B) is defined as

o . M M _
RelS(n),C - mer?()l,rll}B{Ke]{)OI:l}”[SD (Kv SE (Kama h’)7 h) - m]} :

While the above definition from [7] considers reliability of 2/3 sufficient, we will generally consider more
reliable stegosystems, since they will likely be of greater practical use.

The Adversary. In this work only passive (i.e., hon-malicious) adversaries mounting chosen hiddentext
attacks on .S are considered. The capabilities of such an adversary are described next.

Definition 2. A probabilistic polynomial time adversary W isa (t, ¢,) passive adversary for stegosystem
Swithkey K, if

1. W runsintimet.

2Technically M is made necessary by the fact that we do not assume either complete knowledge of nor direct access to C2.
Therefore, even though we use D in place of M, throughout, we assume parties accessing D know at most the min-entropy of D.
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2. W can make an arbitrary number of draws from C'Z viathe sampling oracle M (-).

3. W can make at most ¢ queries of combined length [ bits to an oracle which is either SE(K, -, -) or
O(-,-), where O issuch that O(m, h) + C’\lSE(K,m,h)I_

4. W outputs a bit indicating whether it was interacting with S E or with O.

W, sometimes referred to as the “warden”3, is nothing more than a distinguisher in the usual sense. It
attempts to differentiate between channel messages which have been atered by SE and those which have
simply been drawn from C}f as usual and sent without modification.

Stegosystem Advantage and Insecurity. The advantage of a passive adversary W against stegosystem .S
with security parameter « for agiven channel C' (having messages of fixed length B bits) is defined as

T

A.d SS — P M,SE(K,-,-) — 1 _ P MvO('v') — 1
vs.c(W) K<—{o,1}~;rr<—{o,1}*[W ] r<—{of1}*[W" ]

where the SS superscript means * Steganographic Secrecy”.
For ¢, ¢, 1 given, the insecurity of stegosystem .S with respect to channel C' isdefined as

SS SS
InsecS(n),C (t, q, l) - Wenvl\)a(‘ifq,l){Ade(H)’c(W)}’

where W(t, ¢, 1) denotes the set of all adversaries which make at most ¢ queries of total length at most [ bits
and runin time at most ¢.

Definition 3 (Steganographic Secrecy). A stegosystem S = (SE,SD) is (t,q,l,¢) steganograph-
ically secret against chosen hiddentext attacks on channel distribution C, (t,q,l,€)-SS-CHA-C, if
InSec‘SS%K%c(t,q, ) <e.

With respect to the specific constructions discussed herein we need some additional notation which also
mirrorsthat in [7]. Let U (k) denote the uniform distribution on the set of k-bit strings, and U (B, 1) denote
the uniform distribution on predicates on B-bit strings. Let Fi, for K € {0, 1}*, denote a specific member
of the family of pseudorandom predicates F : {0,1}" x {0,1}* — {0,1} with key K (pseudorandom
predicates and functions were first defined by [3]).

PRF Advantage and Insecurity. For a probabilistic adversary A, the PRF-advantage of A over F is
defined as

AdviTE(4) = Pr [AFK() = 1] — Pr [AY

K<+U(r),r<{0,1}* g<U(L),r+{0,1}*

Il
=

For ¢, g given, the insecurity of the pseudorandom function family F is defined as

InSech({,f) (t,q) = max Adv?({:) (A),

AcA(t,q)

where A(t, ¢) denotes the set of all adversaries which make at most ¢ queriesrunintimet.

*Theidea of the adversary as awarden and the use of ¥ to designateit is a consequence of original problem formulationin[9].



Minimum Entropy. Lastly, define H (D), the minimum entropy of probability distribution D, as

zeD

H(D) = max {— log, %r[x]} .

2.2 Flawed Construction 1

We now give the flawed version of Construction 1 from [7] to concretely ground later discussions of its
problem and to make this work more self contained. Also, as our analysis will demonstrate, in many cases
Construction 1 can be used without any modification, and even when modification is necessary, it will be
very minimal.

Construction 1, henceforth referred to as S1,,igina1 for brevity, appearsin Section 3.2 of [7]. We present
it for one-bit messages; as aready mentioned, [7] extend it to multibit messages simply by using a synchro-
nized counter. We will address multibit messagesin Section 5.

Sloriginal relies on arejection sampler sub-procedure RS, which appears in Section 2.3 of [7]. This
rejection sampler, and consequently S1riginal, requires sampling access to the covertext distribution D. We
denote this by oracle accessto M, asampling oraclefor D (C }?) or, when abusing notation, by oracle access
to D itself. RS also requires access to a predicate F' whose domain is the support of D. More formally,
F :{0,1}% — {0,1}. RS oninput atarget bit y and maximum number of allowed iterations count draws
messages x from D until oneisfound that evaluatesto the target bit y under F' or the maximum number of
allowed iterationsis reached. In the latter case it outputs the last message drawn. count can and should be
thought of asRS’s security parameter. It will become clear later that count directly influencesthe reliability
of S1qriginal. The specification of RS follows.

Procedure RSM:¥'(y, count):
1=0
repeat:
r+— M;i+i+1
until F(x) =y or count =1
Output: x

The stego encoding agorithm S E for S1,,i4ina1 takesakey K for a pseudorandom function F', additional
security parameter k, hiddentext bit m, and channel history A asinput®. It runs RS with input m and | K|
and returns the output of RS. The stego decoding or extraction agorithm SD for S1;iginal takesthe key K
and a stegotext = and outputs the image of = under F' as the hiddentext m.

Procedure Sloriginal- SE(K, k, m, h): Procedure Sloriginal- SD (K, x):
z — RSMWEES) (1 k) m <« F(K,x)
h < h||lx

Output: z Output: m

From here on we will cease to explicit mention the sampling oracle M and message history h when
discussing RS, SE, and SD.
2.3 How and Why S1,igina Fails

Corollary 1in [7] falsely statesthat S1;igina1 1S Steganographically secure on all channels C with minimum
entropy H(D = Cf) > 2 against wardens W that ask only a single 1-bit query. The corollary isfalseasa

4In[7], k = |K| =  isasingle security parameter. Here we separate them for precision of discourse.
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consequence of a subtle but serious flaw in the proof of Theorem 1 which incorrectly bounds the insecurity
of Sloriginal DY the insecurity of the pseudorandom function family F. The authors became aware of this
issue and published [6] which contains an acknowledgment of this flaw and S1 .orrected, @ COrrected version
of S1griginal, Which will be discussed |ater.

The flaw in the proof of their Theorem 1 follows from the false implicit claim that the output of the
rejection sampler using a randomly chosen predicate is identical to the covertext distribution D = CZ, the
input distribution for RS. Thisis stated more precisely and discussed in greater detail below.

False Claim 1. For any covertext distribution D with minimum entropy H (D) > 2, fixed bit b, randomly
chosen predicate g from U (B, 1), and k € N, the distribution of messages z € D output by RSP9(b, k) is
identical to the distribution of messages drawn from D directly (where the probabilities are taken over the
random choice of g).

The flawed proof of the theorem tries to show, using a very straight forward two step reduction, that
stegosystem S1igina1 adversary W has advantage equal to an adversary A’s advantage against the pseu-
dorandom function F. In the first step, the proof shows RSP-Fx ~ RS9, and then in the second step
infers RSP9 = D using false Claim 1, and thus concludes the advantages are equal from their respective
definitions. The theorem then follows directly from the respective insecurity definitions.

At first glance, false Claim 1, and consequently the flawed proof of Theorem 1, seems quite reasonable.
Indeed, asthe authors state, for agiven bit b and randomly chosen g, it follows from the independence of D
and g that Prp[z|g(z) = b: g < U(B,1)] = Prp[z]. However, since RS9 repeatedly draws blocks from
D and returns the first to satisfy g(x) = b without choosing a new g before each draw, the independence
breaks down.

2.4 Revised Construction 1

Hopper, Langford, and von Ahn corrected the flaw of S1,,i4ina1, described in Section 2.3 of thiswork, shortly
after itspublication in [7]. They gave S1orrected, @ revised version that we describe below, in [6], but did so
without any analysis of the severity of the flaw. Our main result, presented in Section 3, shows that the flaw
can be precisely quantified. Our second result, presented in Section 4, shows that it can, in fact, be made
negligible for any distribution D.

There are two main differences between S1corrected @Nd Sloriginal. First, although S1gorrectea USES the
same rejection sampler RS as S1yiginal did, it forces RS to give up after only & = 2 attempts. In this case
the output distribution of RS can be shown, asin [6] or using our Lemma 1, to be identical to the covertext
distribution D. Unfortunately, as the authors point out, limiting RS to 2 attempts increases the probability
A that an encoding error isintroduced by RSP-x (b,2) to A = % — % (plus the PRF insecurity), where p
is the highest probability in D. So, depending on the covertext distribution D, 1/4 < A < 3/8, where the
upper bound of 3/8 comes from the assumption that 4 (D) > 1. Essentially, the encoding error increases
because thereis a good chance the rejection sampler will not find acovertext z € D suchthat Fx(x) = bin
just two tries. This motivates the second main difference: the use of an error-correcting code by S1 corrected-
In order to achieve reliable (i.e. Rel ~ 1) hiddentext transmission, prior to stego-encoding S1 .orrected
must first encode the hiddentext input using an error correcting code that corrects A fraction of errors.
The stego-decoder S1.omected-S D, inturn, asits final step reconstructs the transmitted hiddentext from the
error-encoding codewords it recovered.



3 Main Result: Bounding the Flaw

Despite the seemingly bad news that the rejections sampler perceptibly aters non-uniform covertext source
distributions D, we bound the magnitude of the distortion by giving an upper bound on the statistical differ-
ence between D and RS9, We then give alower bound demonstrating that the upper bound is tight up to
asmall constant factor.

3.1 Upper Bound

Before presenting the formal theorem statement, we introduce some additional notation. For a function
g : D — {0, 1}, define o, to be the weight of g where

g = Z PDr[x'] ,
z'eD:g(z')=1

and 3, the weight of the complement as 3, = 1 — a,. Similarly, for a subset S C D, define ag =
Zx’ES PI"D[:I:’] and Bs = 1 — ag. Lastly, define

”(Dv’“)ZWZa’E and C(Dak)zﬁzagzn(D,k)-l-ﬁ.
SCD SCD

Note that, for afixed D, (D, k) isanegligible function of & (provided D has no zero-probability elements),
becauseas < 1for S C D.

Theorem 1. Let D be any discrete probability distribution, £ € N and a bit b € {0,1}. Let p be the
probability of the most likely event in D. Then for a randomly chosen predicate g : D — {0, 1}, the
statistical difference between D and RS9 (b, k) isat most 2p plusa negligiblefunctionin k. More precisely,

2.

VeeD

Pr[z]— P RSP9(b, k < 2p+2n(D. k).
Dr[w] geU(Bfl),D[ (b,k) — ]| < 2p+2n(D, k)

The remainder of this section is devoted to formulating and proving a number of intermediate results
that will yield the proof of Theorem 1.

On the way to proving Theorem 1, the first step is to quantify the output distribution of the rejection
sampler. First we consider the limiting case when the maximum number of allowed channel draws made by
RS, the parameter £ inthe above, isallowed to go toinfinity. Notethat in S1yiginal, the security parameter k,
which islength of the pseudorandom function key K, isalso used as the cutoff parameter for RS. However,
from here on & will only denote the maximum number of attempts made by RS, and « will denote the
security parameter for S1,,igina1 and the length of the pseudorandom function key K. The following lemma
provides an expression for the probability distribution of RS in the infinite case. Lemma 2 then uses this
expression to give aversion of Theorem 1 in the case of an infinite k.

Lemmal. For z an element from the support of D and a bit b € {0,1}, let us define RS”9(b, 00) =
limy 00 RSP9(b, k) and Prycys(p1),p[RSP9 (b, 00) — 2] = limpo0 Prycp(p,1),n[RSPI(b, k) — z].
Then,

Pr [RSD’Q(b,oo)—HU]:P;DD[:C] i+ Y 2
geU(BD,D 9eU (B, 1yig()=1 ¢

where the probability is taken over the choice of g.




Proof. The proof of this Lemmais contained in Appendix A. O
Now we give the infinite analog of Theorem 1 which we use later in its proof.

Lemma 2. Let D be any discrete probability distribution and b € {0, 1} a bit. Let p be the probability of
the most likely event in D. Then for a randomly chosen predicateg : D — {0, 1}, the statistical difference
between D and RS9 (b, 00) is at most 2p. More precisely,

P — P RSD,g b <oy
sze:D 51 gevlin,p (b;00) = a]| < 2p

The proof employs the following proposition which is a consequence of the relationship between the har-
monic and arithmetic means.

Proposition 1. For a set of n non-zero real numbersay, as,. .., an,

LR S

ai an_(a1‘|‘"‘+an)'
Proof. Theproposition can be verified by recalling that the harmonic mean of aset of n valuesa 1, as, . . ., an,
isdefined asn/(1/a1 + - - - + 1/ay), whereas the usual arithmetic mean is defined as (a1 + - - - + an)/n.
A well known property of the harmonic mean isthat it is less than or equal to the arithmetic mean for the
same set of numbers with equality only when all a; are equal [1, p. 471]. Therefore, inverting both sides of
this relation and multiplying by n, gives the above proposition. O

Proof of Lemma 2. First we remind the reader of the property of the statistical difference that for any distri-
butions D1 and D»,

A S

2

VeeDi,D2

=2 2 Bl -pila)
x€D1,D2:Prp, [z]>Prp, []
For the remainder of the proof, where not indicated probabilitiesare with respect to D. Also, definet = |D|.
For each function g, let us consider the subset S of D which is the pre-image of 1 under g, that is
S = {z € D : g(z) = 1}. Since there are 2!~! subsets S containing any given element x, rewriting
Lemmalintermsof S rather than g and applying the inequality of Proposition 1 to the result gives,

Pr[z] 1
D,g — E
geUEBfl),D[RS (b,00) = ] 2t (1 + )

SCD:zeS as

22(t=1) Pr[g]
2t > ag
SCD:zeS
212 Pr|x]

2. Pria]
SCD:xeSvVzeS

21=2 Pr[x]
2t=1Pr[x] + 2t-2 > Pr[z/]

' #x
Pr[z] _ Prfz]

2Pr[z] + 1 —Pr[z] 1+ Pr[z]’

A\




Thus,

Priz] (Pr[z])? 2
Prjz] - P Dg < Prfz] - = < (P :
Dr[x] geU(Br,l),D[RS (b,00) +a] < Prz] 1+Prjz] 1+Pr[z] — (Prlz])
Finally, combining these two pieces,
Z Prjz] — Pr [RSP9(b,00) — 2]
- D geU(B,1),D
= 2 Prjz] — P D.g
> r[z] geU(Bfl),D[RS (b, 00) — ]
{z:Pr[z]>Pryer(,1),p[RSP9 (b,00)—a]}
< 2 > (Prle])* <2 ) (Prle])* <2p ) Prlz] = 2p,
{x:Pr[m]ZPrgev(B’l),D[RSD’Q(b,oo)%ac]} VzeD VzeD
where p is the probability of the most probable element in D. O

Lastly, we consider the statistical difference between the probability distributions of thefinite and infinite
rejection samplers.

Lemma3. For afixedk € N,

Pr  [RSP9(b — Pr [RSP9(b,k < 2n(D, k
WEE:D geU(BI:I),D[ (b, 00) — 7] QEU(Br’l)’D[ (b, k) = ]| < 2n(D, k)
Proof. The proof of thisLemmais contained in Appendix B. O

At this point we have assembled the necessary tools to prove our bound on the statistical difference between
an arbitrary message distribution D and RS?»9(b, k) for arandom function g.

Proof of Theorem 1. The proof followsby first inserting positive and negative Pr s .1y, p [RSP9(b, 00) —
z] inside the absol ute value signs, applying the triangle inequality, and then using Lemmas 2 and 3. O

3.2 Lower Bound

Theorem 2. For any p, there exists a probability distribution D with highest-probability element p such
that, for any & > 2, abitb € {0,1} and for a randomly chosen predicate g : D — {0, 1}, the statistical
difference between D and RSP+9(b, k) is at least p/16. More precisely,

Pr[z]— P RSP9(b, k) — z]| > p/8.
20 [l B, R8T 0R) 2l 20/
Proof. For lack of space, we only sketch the proof of thistheorem. Simply let D consist of 1/(2p) elements
of probability p each, and 1/(2q) elements of probability ¢, where ¢ is very small. Then one can show that
the likelihood that RS9 will pick ap-probability element isp/16 lessthan 1/2. O

4 Generalizing Slyiginal

We have shown that for D with sufficiently high min-entropy, S1qyiginal (i-€., Construction 1 of [7]) needs
no modification. On the other hand, since p isfixed for any given D, the error of S1,,igina1 iSOt anegligible
function. Thus, when D lacks sufficiently high min-entropy, S1yiginal in its current form isinsecure. This
brings us to our second contribution: a modified version of S1,igina1 that is secure for all D. We call it
MESS for “Minimum-Entropy-Sensitive Stegosystem.”
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4.1 Our Construction

The problem with S1,riginal IS that it is stuck with whatever min-entropy D provides. To fix this, we pro-
pose RS-HE, a modified version of RS, that uses the well known technique of repeated sampling on D to
effectively increases the minimum entropy. Specifically, instead of using one covertext message x € D per
hiddentext bit, RS-HE usesn covertextsx; € D. The concatenation of al of these z; isthen evaluated under
the predicate F' (with a suitably expanded domain). The exact value of n depends on H(D) and is fixed
for agiven D. Our proposed stegosystem MESS is the same as S1igina1 €Xcept for afew minor syntactic
changes necessary to accommodate its use of RS-HE instead of RS.

Thus, MESS has three security parameters: k = | K|, k and n, which are, respectively, the length of the
pseudorandom predicate key, the number of attempts made by RS-HE, and the number of draws from D
that are concatenated and given to the pseudorandom predicate. Let MESS(k, k, n) denote our new system
instantiated with these parameters. For aformal description of MESS see Appendix C.

4.2 Proof of Correctness

The proof of Slriginal given in [7] only attempted to show security with respect to adversaries making a
single 1-hit query. In this section, we will initially do the same, because multi-bit security follows from
1-bit security by use of a synchronized counter asin [7]. Later we will show that for the special case of
memoryless channels, our techniques can be adapted to prove stateless multibit security.

The proof that MESS is 1-bit steganographically secure follows (although not immediately) from Theo-
rem 1 with D in place of D. Clearly thefirst term becomes at most p™ and can be made negligible by tak-
ing n sufficiently large. The only complication is that the second term, (D™, k) = 2-1°™| S pim o
now depends on both n and k. We need to show that it can be made negligible even asn grows.

Theorem 3. Let D be a covertext message distribution conditioned on message history h, and let p be the
probability of the most likely element of D (p = 2 #(P)). Thenfor any 0 < § < 1/2,

n 1 k —|-1 |242
InsecR/ISESS(n,k,n),D(t’ 1,1) <2 (p + (5 + 5) +e g2 ) + InSec?ZjS (t+ O(k), k).

Proof. As already stated, the hard part is to bound n(D(”), k). We actualy bound a closely related value
¢(D™ k). This relies on two lemmas: Lemma 4 bounds ¢(D, k), for any distribution D, by ¢(Up, k),
where Up is the uniform distribution with essentially the same min-entropy as D. Lemma 5 bounds ¢ of
this uniform distribution.

The detailed proof of this theorem (including the lemmas) is contained in Appendix D. O

4.3 Réiability

We provided an explicit bound on the insecurity InSec of our stegosystem MESS in the previous section.
However, there is another important stegosystem property: reliability Rel, that is, the probability that the
reci pient decodes the encoded message correctly. While Definition 1 requiresonly Rel > 2/3, inreality the
communicating partieswill most likely desire Rel ~ 1. We bound the reliability of MESS in the following
theorem.

Theorem 4. Let D be a covertext message distribution conditioned on message history  with H(D) > 1
and let p be the probability of the most likely element of D (p = 2~#(P)). Then for any 0 < § < 2,

1

k
Rel\ESS . jom) = 1~ ((% + 6> + etp—"JQ‘Sz) — InSechRE (O(nk), k) .
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Proof. The proof of this Theorem is contained in Appendix E. O

4.4 MESS Parameter Choices and Efficiency

Given covertext distribution D with min-entropy H (D), for MESS to operate with 2~ security and a
corresponding reliability of at least 1 — 2~ (for s > 13), it sufficestotaken = [(s+2)/H(D)], k = s+6,
and r such that for the chosen PRF family F, InSec{)(O(nk), k) < 27°73 (the derivation of these
parameter values can be found in Appendix F). The stegotext isjust n covertextslong.

In Appendix G, we show that to achieve reasonable reliability, S1correcteda N€EAS to send more than 5
covertexts for each hiddentext bit (more for distributions with really low min-entropy). Thus, if H(D) >
(s +2)/5, MESS sends fewer covertexts than S1coprected, and if H(D) > (s + 2), MESS sends only a
single covertext, effectively reducing to S1igina1. Moreover, MESS requires no computationally expensive
error-correction.

5 Stateless Multibit Extension of MESS

Having addressed the security flaw of S1,igina1 for 1-bit hiddentexts by demonstrating the security of the
more general construction MESS in the 1-bit case, we now consider secure transmission of multibit hidden-
text messages. As previously mentioned, a secure stateful multibit version of MESS can be obtained, aswas
donein [7]. Namely, the sender and recipient maintain a synchronized counter ¢ and do straightforward bit-
by-bit stego-encoding with MESS by providing ¢ as an additional input to the PRF. The counter essentialy
serves to refresh the pseudorandom function key, thereby making each successive hiddentext bit as secure
as thefirst. However, as we will show next, if the covertext message distribution D is memoryless, we can
achieve secure statel ess multibit steganographi c encodings by directly doing bit-by-bit stego-encoding using
MESS, thus eliminating the need for a synchronized counter.

Theorem 5. Let D be a memoryless covertext message distribution, and let p be the probability of the most
likely element of D (p = 2~ (D)), Then for atotal of I > 1 hiddentext bits transmitted (chosen by the
adaptive warden)

n 1 k _|-L 242
InSeciiEss o p (11 1) < 610" +1 <<§ - 5) +e bl ) +InSech{f (t + O(lk), Ik) .

Proof. The proof makes use of two key lemmas for memorylessdistributions D. Thefirst, Lemma7, shows
that the advantage of any adversary adaptively asking for the stego-encoding of atotal of / bits of hiddentext
can be bounded by the advantage of a non-adaptive adversary that asks 21-bit hiddentext queries of the form
10", The second, Lemma 8, shows that a string x = x129 ... x9 that contains no repeated elementsis no
less likely to occur as a stego encoding of 140! than as arandom draw from D2 (provided sampler RS?9 is
allowed to make as many draws as needed, i.e. kK = 00). Therest follows from (1) using Lemma 8 to argue
that the statistical differenceis no more than three timesthe probability of the existence of a collision among
21 elements chosen from D; (2) bounding the probability of such a collision and (3) dealing with finite &.

A more detailed proof of this Theorem (including the lemmas) is contained in Appendix H. O

This bound is also nearly optimal: we show that the adversary who asks [/2 1-queries followed by /2
O-queries can distinguish with probability roughly 12p™ /4.

Theorem 6. For any p, there existsa probability distribution D with highest-probability element p such that,
for arandomly chosen predicateg : D — {0, 1}, the statistical difference between D' and RS9(1/20"/2, c0)
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is greater than one half the probability of obtaining a collision among [ draws from D.

2 2\ 2
S PE (PPN
— 4 4
Proof. The proof of this Theorem is contained in Appendix I. 1t is obtained by comparing the probability of

acollision between an answer to a 1-query and an answer to a 0-query, which is 0 for RS9 and non-zero
for D'. O

> Pr  [RSP9(m, k) — z] — Pr[z]
ot leeu(B),D Dt
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A Proof of Lemmal

Proof. We will prove the case of b = 1 and argue by symmetry that this also suffices to prove the case of
b = 0. To compute the probability that RSP*9(1, k) outputs z, simply find the expected value over the 2/
possible random functions g : D — {0, 1}, asfollows,

1 k—1 i B
gEU(}g:I),D[RSDvQ(Lk)—)x] = 2]3( > I;r[:v]Zﬁg—i— > Prlx] 5 1>

g:g(z)=1 1=0 g:9(z)=0

_ Prpla] 1_55 k—1
~ 2D (Z 1_ﬁg+g:g%_0ﬂg ) @

g:9(z)=1
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Taking the limit as £ — oo, that is as the rejection sampler makes greater and greater numbers of draws
from D before “giving up”, we have

lim Pr [RsD,g(l,k) ] = Prp[z] <1+ Z 1 )

D| —
k—o0 geU(B,1),D 2 @)1 1 -3,

g:9(z)=1 %9

It remains to prove the case for b = 0. However, by symmetry, for each specific function g which maps
an element x to O, there exists a unique § such that Vo € D, g(xz) = 1 — g(x). Consequently, for each
function g we have,

Pr[RS?9(0, k) — z] = Pr[RSP9(1, k) — z].

Generalizing this over al possible choicesfor the function g gives

Pr [RSP9(0,k) - z]= Pr [RSPY(1,k) — «]
geU(le)vD gGU(B,l),D
so our consideration of RSP+9(1, k) is sufficient and the proof is complete. O

Remark 1. It can be seenfrom (1) and some algebra, that when & = 2, infact, PrgeU(B,l)yD[RSD’g(b, k) —
xz] = Prplz] as stated in [6]. Indeed, the proposed fix in [6] isto set & = 2 and accept the fact that this
causes a high probability (between 1/4 and 3/8) of decoding incorrectly, and thereby reduced reliability.

B Proof of Lemma3

Proof. Using (1) from the proof of Lemma 1 it follows that

> Pr  [RSP9(b,00) - 2] — Pr  [RSP9(b k) — ] )
veep 19€U(B,1),D geu(B,1),D
B Pr[z] 1 B —1 k-1
-y, » Loy Bl v o ®
VzeD SCD:zeS SCD:zeS SCD:x¢S
Pr(z] 1— 3¢ k—1
DI LD Dol Dl DI (4
VeeD SCD: xeS SCD:zeS SCD:zeS
Pr[z] ﬁs—as
= > oD > ©)
vzeD SCD:zeS
Q‘D‘ aS
z€D:|-|>0 SCD:zeS
< 1 i ]
< oot 2 Pilel Do as (7)
YzeD SCD:zeS
_ 3 Bs 3" Prfs] (®)
= g1 s r|x
SCD:S#)  ° VzeS



1 k 1 k
= ot 2 B8 =g D ob ©)
S#0D

SCD
< 2(D,k). (10)

Line (4) follows from the definitions of « and 5 and the symmetry of the set of all functions. To obtain
Line (5), combine the sums and remove the term 1 by restricting S to be a proper subset of D. Line (6)
follows from the same property of statistical difference used in the proof of Lemma 2. Line (8) follows by
expanding the sums, gathering common terms with respect to a specific subset S and rewriting the sums
with the appropriate modifications to their bounds (the empty set is excluded because every subset S must
have at least one element). Canceling the a g denominator and noting that 5p = ay = 0 gives us the last
line and compl etes the proof. O

C Formal Description of MESS

C.1 TheMemoryless Channel Case

For now, assume that the channel is memoryless: D is independent of the previous message history h.
In other words, successive covertext messages are independent of one another. Consequently ~ can be
completely ignored and is suppressed.

Let n be an additional security parameter for MESS and RS-HE. It specifies the number elements of D
(covertexts) over which a single hiddentext bit will be encoded. Recall that S1 4yigina1 and RS had security
parameters x = | K| and k, the length of the pseudorandom predicate key and the number of attempts made
by RS respectively. Asbefore, in general, RS-HE uses a predicate F', but the domain is expanded, i.e. now
F : D™ — {0,1}. When running as a subroutine of MESS, RS-HE has oracle access to F', a specific
pseudorandom predicate family member with key K € {0,1}"* .

The modified version of RS-HE is:

Procedure RS-HEDF (y, count, n):
1=0
repeat:
forj = 1ton:
Tj < D
2 (@ 22 - | 2)
11+ 1
until F(z) = y or count =1
Output: =

The only differences between the stego-encoding algorithms for MESS and S1 ,,igina1 isthat MESS.SE
has additional input n that it uses when it calls RS-HE, and its stegotext output is n times longer. The
stego-decoding agorithm MESS.S D is unchanged from S1,,igina1.S D €xcept that its stegotext input is n
times longer. It should be emphasized that with respect to the “flawed” S1 qyigina1 given in Section 2.2, the
only differencesin MESS (aside from those between RS-HE and RS) are the additional security parameter
n input to both SE and S D, the expansion of the domain of F'x, and the n timeslonger stegotext output by
SE andinputto SD.

C.2 TheGenera Case

To generalize our modifications, we drop the memoryless channel assumption. Suppose instead that the
distribution of covertexts does depend on the history h of previousdly sent messages. In other words, D truly
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is conditioned by h. The distribution resulting from sending » messagesis more complex than D™. Let D(™)
denote this distribution. With respect to the original channel notation, D ™) = c1# (recall that C2Z denotes
aconditional distribution of messages of fixed length n.B bits conditioned on history ). The general version
of RS-HE thenis:

Procedure RS-HEM ¥ (y, count, n):
1 =20
repeat:
forj = 1ton:
Tj < M(h)
h+h || Zj
2 (@ 22 - | 2)
14 1+1
until F(z) =y or count =1
Output: =

The resulting MESS.SE and MESS.SD are the same as described for D™ in Section C.1 with the
stipulation that now F : D™ — {0,1}.

Remark 2. The inner “for” loop of RS-HE can be thought of as an oracle M (")—an efficient sampling
oracle for D(™), Observe that such a sampling oracle can always be built given n and access to the original
oracle M. Thus, the analysisof RS givenin Theorem 1 applies here aswell, except that D must be replaced
with D(™),

D Proof of Theorem 3

Before proving Theorem 3 we deal with the issue of bounding (D (™), k) in two steps. It is easier to bound
aclosely related value

1
(D™, k) = —pay 2 ek =n(D™.k)+

SCD(n) 2|D(n)| ’

which differs from 7 only by the inclusion of the full subset § = D) in the sum. As we will see in
Lemma 6 (in Appendix F), ¢ is exactly the failure probability of the rejection sampler RS-HE?9.

Lemma 4 bounds {(D, k), for any distribution D, by {(Up, k), where Up, is the uniform distribution
with essentially the same min-entropy as D. Lemma 5 bounds ¢ of this uniform distribution.

Lemma4. Among all distributions of a given min-entropy, ¢ is the largest for the uniform distribution.
More precisely, for a distribution D with minimum entropy H (D), define Up = U (|2#(P) ), that isUp is
a uniform distribution with [ 24(P) | elements. Thenfor all k € N, ¢(D, k) < ¢((Up, k)

The following two claims will help with the proof of Lemma4.

Claim 1. If D has an element with zero probability and D' differs from D only by the removal of this zero
probability element, then ((D', k) = (D, k).

Proof. Thisis easily verified using the definition of {: the number of termsin the sum is cut in half (with
every pair of terms of equa weight becoming one), but the coefficient in front of the sum is multiplied by
two. O
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Claim 2. Let a,b be elements of D with probabilities p, and p, such that p, > p,. Define D" to be the
distribution with the same probabilitiesas D except with p, 4+~ and p, —~y in place of p, and p,, respectively
(0 <y <py). Then((D", k) = (D, k).

Proof. For v = py, asimple proof is obtained by using the definition of ( to rewrite the two expressions as
sums. Then using binomial series and regrouping the terms the claim follows directly. For the general case
one can treat (D", k) as acontinuous real-valued function of . Then

1
D" (k) =g D (as+pat7)" + (as+po—7)"+ab + (a5 +pa+pp)*
SCD:a,b¢¢S

Taking the derivative with respect to v we abtain

k B _
oor 2. (as+pat )T —(as+p -7 >0,
SCD:a,b¢S

because p, > py > 7. Hence {(D", k) isanondecreasing function of  on theinterval 0 < v < py. O

Proof of Lemma 4. We can transform D into Up by adding the mass to the highest-probability elements
until their probability reaches 1/|27(P) |, while smultaneously removing the same mass from lowest-
probability elements until their probability reaches 0. By Claim 2, ¢ of the resulting distribution will not
decrease. Then we remove all zero-probability elements to obtain Up (this, by Claim 1, will not change

Q). O

Lemma5. For U(t), auniformdistribution on ¢ elements, {(U (¢), k) can be made negligiblefor both ¢ and
k sufficiently large. Specifically for 0 < 6 < £, ¢(U(¢),k) < (3 + (5)'C + e 2t0%,

Proof. Consider ¢ as asubset of aunion of two “bad” events: (1) that fewer than 1/2 + ¢ elements of U (¢)
map to 1 under g or (2) that morethan 1/2 + ¢ elements of U (¢) map to 1 under g, but not one of those gets
selected after k tries. More precisaly, rewriting the definition of ¢,

k
s
2lt|

k) = Y

VSCU(t)

S:ag<(1/244 S:ag>(1/2448

1 k )
< (§+5> + e 207

The exponential term follows from the application of Hoeffding’s Inequality® [4] to Pry[as > (1/2+6)] =
Pryltag > t(1/2+46)]. ItisaChernoff like bound which states that for ¢ independent 0/1 random variables
X; each with probability p, the random variable S = Zﬁzl X; obeys,

= {Pr[as <1240 > a’g} + {Pr[as >(1/2+40)] > a’g}
) )

Pr[S > pt + 6t] < e 21"

O

>The use of such a bound makes sense since for S C U(t), tas = |S|, that is the number of heads/ones observed for on ¢
independent fair coin tosses.
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Proof of Theorem 3. We first consider the case of MESS for a truly random predicate F' and then add the
necessary correction for apseudorandom F'. The security of MESS is compl etely determined by the security
of RS-HE and the pseudorandom random predicate F' which it accesses.

Recall that D(™) is the covertext distribution consisting of n subsequent draws from the given covertext
distribution D via its sampling oracle M (h) with message history input h. Let M (™) (h) be an efficient
sampling oracle for D(™). As we pointed out in the remark at the end of Section C.2, such an M (™ can
be easily constructed from M and, in fact, RS-HEM()-F (b, k) is equivalent to RSM )-F (b, k) for the same
predicate F'. Thus applying Theorem 1 gives,

>

rjz]— Pr [RSHEMOF (b k) — 2]
D®) FeU(nB,1),M

VeeD(n)
= Y |Prle]-  Pr [RSMUOF(b, k) a]
D(n) FeU(nB,1),M
YzeD(n)
< 2"+ 2n(D™, k) (11)

where as previously defined, p is the largest probability in D and (D™, k) = 22| S piny k.

Clearly the first term in 11 can be made negligible since n is now a system parameter.” It remains to
show that even with the added dependency on n, n(D ™), k) can aso be made negligible. Using Lemma 4
and Lemma5witht¢ = |p~"] we have

(D™ k) < ¢(D™, k)
k
< (%-HS) + e lp7m 267 (12)

Finally, combining (11) and (12) and accounting for the advantage due to a pseudorandom F’,

1 k i
ss . B S
AdVNESS om0 (V) = 29" +2 (5 * 5) +2e PR L AdvEIE(4),

where0 < § < 1/2. Therefore by the definition of insecurity,

n 1 k |7 2
Insecls\/lSESS(n,k,n),D(t’ 17 1) S 2 (p + (5 + 5) + e \-p J26 ) —|— InSeC]P_-P({,S(t + O(k), k;) .

E Proof of Theorem 4

Lemma 6. For any distribution D and bit b € {0, 1}, for a randomly chosen predicate F' < U(|D]|, 1),
the encoding error introduced by RS™* (b, k) is equal to ((D, k), where (D, k) = 55 Ygcp @ s
previously defined. B

Proof. RS”¥ (b, k) introduces encoding error whenever after k unsuccessful attempts to find a covertext
x € D suchthat F(xz) = b, it outputs the last (kth) = drawn from D. Using algebra similar to that in the
proof of Lemma 1, this probability can be shown to be (D, k). O
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Proof of Theorem4. The reliability of MESS(k, k,n) is simply one minus the encoding error introduced
by RSHEP-% (., k,n) where Fx € F(k), now a pseudorandom predicate family with security parame-
ter x on the domain D). Recall that in the proof of Theorem 3 it was argued that RS-HEP-Fx (. k, n)
and RSP Fx (., k) are equivalent (see also Remark 2 of Appendix C.2). So, by Lemma 6 and the defini-
tion of pseudorandom function insecurity, the encoding error introduced by RS-HE? ¥ (. k, n) is at most
(D™, k) + InSeci 1) (O(nk), k) (the O(nk) is because the running time of the rejection sampler, which
isplaying the role of the “adversary” here, is O(nk), not counting time required for answering queriesto D
and the PRF). Using the upper bound for ¢ (D(”), k) from (12) in the proof of Theorem 3 and subtracting
from one gives the indicated lower bound for the reliability. O

F Parameter Derivation and Running Time for MESS

Given covertext distribution D with min-entropy H(D) > 1, for MESS to operate with 2% security and a
corresponding reliability of at least 1 — 27*, what values of the parameters k., k, and n suffice? First, we
taken > (s +2)/H(D), sothat 2p™ < 2751, Thenwetakek = s + 6. If weset § = 1/(4(s + 4)), then
the term 2(1/2 + §)*F = 2(1/2)%(1 + 20)F < 27*+1(1 + 1/k)k < 27%+3 = 275-3_ In order for the third
term to be at most 275=3, we need |1/p"|26% logy e > s + 4. Substituting 2572 for 1/p™ and 1/(4(s + 4))
for &, we get that we need log2e2572 > 8(s + 4)3, which holds aslong as s > 13 (insecurity greater than
2713 is not acceptable in most applications, anyway, so thisis not really arestriction).

Finally,  is chosen so that the insecurity InSecl:(1) (O(nk), k) of the given PRF family F is at most
27573, These same parameter choices will also provide the desired reliability level.

Note that the value of k specified here is the maximum number of attempts RS-HE makes, but the
expected number of attemptsisjust 2.

For each hiddentext bit, the stego-encoder for MESS essentially just draws, on average, 2n samples
from the covertext distribution D and thus evaluates, on average, twice the pseudorandom predicate F'i; on
the concatenation of n samples. Similarly, for each hiddentext bit, our stego-decoder just evaluates F'x on
the stegotext received, i.e., on the concatenation of the n messages from D. Thus, the running time of our
decoder is essentially one PRF evaluation, and the average running time of our encoder is about twice that.
The stegotext length is clearly just n covertextslong.

Final Values: To obtain 2% security and a corresponding reliability of at least 1 — 2~ for MESS, as
long ass > 13, it sufficestotaken > [(s + 2)/H(D)], k = s + 6, and  such that for the chosen PRF
family F, InSec?(’jS(O(nk), k) < 27573, Thus for example, for 278 security and 1 — 2% reliability, if
H(D) > 82 then MESS's stegotext is only one covertext long (that is, MESS simplifiesto S1 griginal)-

G Parameter Derivation for S1.qrrected-

Here we demonstrate that for secure and reliable transmission, S1.oprected N€EAS t0 SeNd 1 — Ho(1/2 —
1/4(1 — p)) covertexts per hiddentext bit, where H isthe binary entropy. Thisvalueis between 5 and 6 for
reasonablep (p < .05).

The error correcting codes needed by S1oprected tO assure reliable hiddentext transmission® will stretch
each hiddentext message bit by a code-dependent factor £ = 1/R, where R is the rate of the code. Note
that the “noisy channel” created by the error-prone stego-encoder is essentially a binary symmetric channel

®We reiterate that the definition of stego-system given in [7] and [6] only requires reliability 2/3, i.e., the probability that each
individual hiddentext bit isincorrectly decoded is no morethan 1/3. However, we believe auseful system should have much higher
reliability. Therefore, for comparison purposes, we require that both stegosystems be reliable with probability close to 1.
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with bit-flip probability A, and therefore the rate R of the code is bounded by the channel capacity C' =
1— Hy(A), where Hy(A) denotesthe binary entropy of thedistribution (A, 1 — A). Plugging in the bounds
on A gives

1/5~1— Hay(1/4) > C > 1 — Hy(3/8) ~ 1/22.

H Proof of Theorem 5

Aswedid in the proof of Theorem 3 we will develop intermediate results for the simpler case of S1 oiginal
and then generalize the resultsfor MESS. In thefollowing let RSP+9(1!0!, c0) — = denote the event that the
rejection sampler on bit-by-bit input 1'0' outputs = = x1z5 .. . zo Whereeachz; € Dandg : D — {0,1}
isarandomly chosen predicate.

Lemma 7. Theadvantage of any adversary W' that adaptively asksan oraclefor MESS(, k, n) for the bit-
by-bit stego-encoding of a total of / bits of hiddentext is bound by the advantage of a non-adaptive adversary
that asks the same oracle for the bit-by-bit stego-encoding of the 2I-bit hiddentexts 10°.

Proof. Suppose W' adaptively asks for the bit-by-bit encoding of m = mimsa...m;, m; € {0,1}. W
simply first asks its corresponding stego-encoding oracle for the bit by bit encoding of 1/0¢. Then W just
uses the encoding of the ith zero or the ith one that it received to answer W''s ith adaptively chosen query.
Since the draws from D are independent, the distribution of stego-encodings that W' receives from W is
identical to that it would have received directly. O

Lemma8. For all z = zyxy - z9 € D? suchthat Vi, j z; # z;, that is for any strings of 2! elements
from D which does not contain a repeated element,

Pr  [RSP9(1'0', 00) — 2] > Pr[z].
9€U(B,1),D D2

The proof of Lemma 8 makes use of the following fact.

Proposition 2. For any set of n non-negativereal numbersay,as,...,a, andl > 1,

e ()

Proof of Lemma 8. Combining the fact that successive draws from D are independent, i.e.
Prpa[xz] = Prp[z1] Prp[xe] - - - Prp[zg], with line (1) from the proof of Lemma 1 gives,

geU(Pj)Bfl),D[RSD,g(ﬂOZ’ 00) = T1xp - - Ty 8.t Vi, j x5 # xf] (13)
PI'D2I [.’.B] 1
= —5 > AL (14)
SCD:x1,x2, szsMcH-h T2 ¢S sTs
PI'D2I
= 221 2\D| 21 Z 1 — OéS (15)
l
PrD2z [ZU] ES as(l—Oés)
> 221 ( 2|D|-21 (16)
l
S Prpa[z] 2lDI=2 (17)
- 22 ZS as(l —ag)
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[
Pr T 2|DI-21
o] (Ewm 1 /4> (18)
i=1

>
Prpu[z]4!
= (19)
= 5212 [x] . (20)
Line (16) follows from Proposition 2, line (17) from Proposition 1, and line (18) from the fact that
maxg<q<1 (1 — a) = 1/4, and the remaining lines follow from algebra. O

Corollary 1 (ToLemma 8: Non-collision Statistical Difference). The statistical difference between
RSP (140!, 00) and D? for elements z = 1z - - - 9y € D such that no value z; is repeated, i.e. Vi, j
suchthat 1 < i # j <l z; # =z, islessthan probability of drawing an element = from D2 containing at
least one repeated element. Namely,

>

T=w1T2 T2 ED|Vi,jr, £

Pr  [RSP9(10, 00) — 2] — Pr[z]
geU(B,1),D D2

< > Prla].

T=w1T2 T9 €D TN, jr, =

Proof. The proof follows directly from Lemma 8 by opening the absolute value signs on the statistical
difference and replacing the probability of no collisions by the probability of one minus the probability of a
collision in each of the distributions. That is,

>

Pr  [RSP9(1'0',00) = z] — Prlz]

1
mzwlw?"'mmEDm\Vi,jz,-;éxj QGU(BJ),D D2
2 ( br [RSD’Q(ﬂo’,oon]—P;[xJ) _
$:$1w2"'$2l€D2l\Vi,jxi;ﬁxj QEU(BJ),D D
Z Pr  [RSP9(140!, 00) — z] —
geu(B,1),D

z=z T2 -T2 ED? Vi, ja; AT

2. Prla]

z=z172-T €D Vi, jT; AT

=|1- > Pr  [RSP¥(10,00) = 2] | —
N TE R T g€eU(B,1),D

L= ) Pr[3]
D2l
$:$1$2---w21€D21|3i,jxi:xj
= > Pr[z] -
D2l
E:$1$2...zzl€D2l|3i,jmi:xj
> Pr  [RSP9(10%, 00) — ]

eU(B,1),D
z‘:xlxz---z‘mEDZl|3i,jm¢:z'jg (B,1),

< > Prla].

r=z1w2-2 €D | jzi=0;
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Corollary 2 (To Lemma 8). The probability that RSP+9 (140, o) outputs an element = = zxo - 9 €
D? such that at least one value z; is repeated, i.e. 3i,j suchthat 1 < i # j < landz; = z;, islessthan
or equal to the probability of drawing such an z from D directly.

Proof. Sinceby Lemmas, for every string = of 2/ unique elementsfrom D, PrgeU(BJ)’D[RSDvg(llOl, 00) —
.’E] Z PI'D2I [1?],

> Pr  [RSP9(10!, 00) — 2] =
.. geU(B,1),D
1':1‘1152"'1‘21€D21|3'L,]zi:1j
1-— P RSD,g 1l017 _
2 pevtan,plo  (1000) = el

r=z1T3- T €D |Vi,ja; £

1- > Prla]

r=z1T3- T €D |Vi,ja; £

= Z 521"1 [x].

z=w1T2 T9 €D? i, jr, =

IN

O

Lemma9. Let D be any memoryless discrete probability distribution and p be the probability of the most
likely event in D. Then for the hiddentext bit string 1'0¢ for any 1 < [ and a randomly chosen predicate
g: D — {0,1}, the statistical difference between D% and RS?+9(1!0%, oo) is at most 612p. More precisely,

>

VzeD?2!
Proof of Lemma 9. Splitting the statistical difference into the collision and non-collision components, then
applying Corollary 1 and the triangle inequality, next applying Corollary 2, and finally upper bounding the
probability of collisionson I draws from D by 21%p (derived using counting and the union bound) gives the
stated results. More precisely,

2

vzeD?2!

Pr  [RSP9(1%0!, 00) — z] — Prlz]| < 61%p.

geU(B,1),D D2

Pr  [RSP9(110!, 00) — z] — Prlz]
g€U(B,1),D D2

2.

r=z1T3- T €D Vi, jz; £

>

z=z1T2 -T2 €D?|Ti,jr,=x;

Pr  [RSP9(1'0!,00) = 2] — Prlz]
g€U(B,1),D D2l

+

Pr  [RSP¥(1'0!, 00) — z] — Prlz]
g€U(B,1),D D2

< E Prz] +
D21
z=z1T2 -T2 €D?|Ti,jr,=x;
> Pr  [RSP9(110!, 00) — ]| +
. g€l(B,1),D
z=z172 -T2 €D |, j;=x;
E ‘Pr[m]
D2l
m:w1w2-~-a)2[€D2lBi,ja)i:m]‘
< 3 E Pr[z]
D2l
r=w129x2 €D |, jr;=x;
< 6k%p.
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Lemma 10. For afixed k,l € N,

> Pr  [RSP9(110!,00) - 2] —  Pr  [RSP9(110, k) — 2]| < 4ln(D, k)
v lesU(B1),D 9€U(B,1),D

Proof. This sum captures the difference in probabilities between the rejection sampler in the infinite and
finite cases. The element x = x4 ... 29 Will be output in the infinite case, but not in the finite case,
whenever at least one z; is output by RS after more than & attempts. Thus, because D is memoryless,
taking the union over the 2I components with the probability that each element needed more than k draws
from Lemma 3 for the 1-hit case, the stated bound follows directly. O

Proof (sketch) of Theorem 5. The structure of the proof is similar to that of Theorem 3. The proof follows
by first inserting positive and negative Prycp(5,1),p[RS?9(10', 00) — 2] inside the absolute value signs,
applying the triangle inequality, and then using Lemmas 9 and 10 with D™ in place of D to account for the
repeated sampling by MESS. Then n(D™, k) isbound using Lemma5 asin the proof of Theorem 3. Finaly,
adjusting for the advantage due to a pseudorandom F' gives the desired result. O

|  Proof of Theorem 6

Proof. Assume for simplicity that [ is even and let D be the uniform distribution: D has 1/p elements of
probability p each. Let z; ... x; be the elements drawn. Simply consider the probability that there exists a
collision between z; and z;;, 1 < < 1/2 < j < 1. ItisOinthe case of RSP9(11/201/2, o).

Now in the case of D!, first think of choosing all of the elements first and then randomly assigning them
to either half. If thereisacollision among the ! elements drawn, then the probability that colliding elements
end up in different halves at least ﬁ Next, we lower bound the probability of collisions among and I
element draw from D in general by upper bounding the probability of non-collisions as follows,

> Prlz] = (1=p)(1-2p)---(1-(=1)p) (21)
z=z1T2- 7 €D |Vit] z; 7w

< e P (-lp (22)

e—pl(l—l)/2 (23)

< 1—pl(l—=1)/2+ (pl(1—1)/2)%/2. (24)

Line (22) and Line (24) follow from the Taylor series expansion of e * which gives (1 — z) < e * <
1 — z + 2%/2. Thusthe probability of collisions among the ! elements drawn from D is,

> Prla] = 1- > Prle]

z=z1z2-7 €DV <i<l/2<j<lizw;=wx; z=x172--7 €D Vi) zi#z;
_ _ 2
S S
2 2
_pli=1)  (pl—1)/2)°
2 2 '
Multiplying this by ﬁ from above gives the lower bound of pi2/4 — (pl?/4)2. O
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