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Abstract

Steganography is the science of hiding the very presence of a secret message within a public com-
munication channel. In Crypto 2002, Hopper, Langford, and von Ahn proposed the first complexity-
theoretic definition and constructions of stegosystems. They later pointed out a flaw in their basic con-
struction. Their proposed fix for this flaw dramatically reduces the efficiency of the construction, because
it requires the use of strong error-correcting codes.

Our first contribution is to demonstrate that the construction that was thought flawed is actually often
not. By carefully analyzing the severity of the flaw in their original construction, we show that it is safe to
use under proper conditions—thus eliminating the need for expensive error-correction. Moreover, when
such conditions do not hold, we provide an alternative fix for the flaw, which is often more efficient.

In addition, we demonstrate that for memoryless channels, the construction can be used to send
multiple bits statelessly (maintaining synchronized state between the sender and the recipient, as was
proposed for the original construction, is particularly problematic in steganography). We provide tight
bounds on the security of such an approach.

1 Introduction

1.1 Background

Steganography’s goal is to conceal the presence of a secret message within an innocuous-looking com-
munication. In other words, steganography consists of hiding a secret hiddentext message within a public
covertext to obtain a stegotext in such a way that any observer (except, of course, the intended recipient) is
unable to distinguish between a covertext with a hiddentext and one without. In CRYPTO 2002, Hopper,
Langford and von Ahn [7] offer the first rigorous complexity-theoretic formulation of steganography. They
formally define steganographic secrecy of a stegosystem as the inability of a polynomial-time adversary to
distinguish between observed distributions of unaltered covertexts and stegotexts. This brings steganogra-
phy into the realm of cryptography, unlike many previous works, which tended to be information-theoretic
in perspective (see, e.g., [2] and other references in [7]).

The model assumes that the two communicating parties have some underlying distribution D of cover-
texts that the adversary expects to see. All parties are allowed to draw from D; the game for the sender
is to alter D imperceptibly for the adversary, while transmitting a meaningful hiddentext message to the
recipient. Conversely, the game for the adversary is to distinguish the distribution of transmitted messages
from D.

�The work of both authors was partly funded by the National Science Foundation under Grant No. CCR-0311485. The second
author’s work was also partly funded by a National Physical Science Consortium Fellowship and stipend support from the National
Security Agency.
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The Flawed Construction. In addition to providing a model, the authors of [7] also present a number of
constructions satisfying the definition. The most elementary of them, on which others rely heavily, is called
“Construction 1” in [7]. Subsequently, a subtle security flaw was observed. Though the exact effect of the
flaw was not analyzed, the flaw was corrected by the authors in [6]. To distinguish between the original and
the corrected versions of this construction, we call them S1original and S1corrected, respectively.

The Expensive Fix. S1original is an efficient construction: it can transmit one bit of hiddentext for each
covertext message, and the decoding and encoding algorithms are very fast (involving just a few applications
of a pseudorandom function). Unfortunately, the correction of [6] has a detrimental effect on this efficiency.
S1corrected requires between 5 and 6 covertext messages (for most distributions D of interest) to transmit
one hiddentext bit, and encoding and decoding involves using expensive error-correcting codes.

The reason for such high cost is the high probability of incorrectly decoding an encoded bit. To provide
reliability, therefore, S1corrected has to first encode the hiddentext in an error-correcting code and then stego-
encode the resulting codewords1. The high rate of error in stego-encoding (between 1=4 and 3=8, depending
on D) provides an easy upper bound on the rate of the error-correcting code used, and thus a lower bound
on the stretch factor, which must be 1=(1�H2(1=4)) � 5.

The Stateful Multibit Extension. Both S1original and S1corrected encode messages one bit at a time. Note
that S1corrected, due to the stretch of the error-correcting codes, must necessarily allow transmissions of
hiddentexts longer than one bit.

Encoding of multibit messages is accomplished by having the sender and the recipient maintain a syn-
chronized counter in order to refresh, for each bit, the pseudorandom function key used in the construction.
The need for synchrony presents a particular problem in steganography. Unlike in counter-mode symmet-
ric encryption where the counter value can be sent along with the ciphertext in the clear, here this is not
possible. Indeed, the counter itself would also have to be steganographically encoded to avoid detection,
which brings us back to the original problem of steganographically encoding multibit messages. Thus, strict
synchrony between the sender and the recipient is required, and if a single stegotext is dropped, the recipient
will fail to decode everything that follows (moreover, standard error-correcting techniques cannot help with
this problem).

1.2 Our Contributions

The Fix Is Often Not Needed. Our main result, Theorem 1, demonstrates that the impact of S1original’s
flaw on its security is irrelevant provided D has sufficiently high min-entropy. Specifically, we show that
the adversary’s advantage in distinguishing transmitted messages from D is at most 2p (plus a negligible
amount 2�D), where p is the probability of the most likely element in D. Thus, if D has no elements of high
probability (in other words, has high min-entropy), the adversary will be unable to break S1original. We also
show that the bound of 2p is tight within a small constant factor.

Taken together these bounds demonstrate that the expensive fix of S1corrected is often unnecessary. Thus,
our main contribution is to demonstrate that a more efficient construction, once thought flawed, is actually
secure under the proper conditions.

1The authors of [6] are content with a stego-system with reliability 2=3, i.e., one in which each individual bit can be incorrectly
decoded with probability 1=3, and thus require only weak error-correcting codes. However, it is clear that for a stegosystem to be
useful, one would require much higher reliability. Therefore, in order to make accurate performance comparisons, we will require
all stegosystems to be reliable with probability close to 1.
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Cheaper Fix When Needed. Our second contribution is to describe an alternative fix for the flaw when the
min-entropy of D is not sufficiently high. We propose a generalization of S1original that simply uses Dn (for
a small n) instead of D. We call this construction MESS for “Minimum-Entropy-Sensitive Stegosystem”
(in particular, for n = 1, S1original and MESS are the same).

While the technique MESS uses for improving min-entropy is far from novel, proving that the dis-
tinguishing advantage of the adversary in this case remains a negligible function of the relevant security
parameters is a technical challenge. Because the negligible quantity �D is distribution-dependent and the
distribution changes in MESS as n grows, one cannot simply invoke the result of our main theorem directly.

min-entropy of D
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Figure 1: Stegosystems with Highest Data Rate for 2�s Security Level

For comparison purposes we carefully analyze the gains in efficiency that result from using S1original

or its generalization MESS instead of S1corrected. In particular, for a security level of 2�s, using MESS
results in shorter stegotexts as long as min-entropy of D is at least (s + 2)=5. For example, for a common
security level of 2�80, MESS has a shorter stegotext whenever min-entropy of D is at least 17. The gains
in efficiency of encoding and decoding are even more dramatic. This is because S1corrected needs expensive
error-correcting codes, while MESS consists simply of repeated sampling from D. Thus, MESS may be
beneficial at lower min-entropies as well: even though the data rate will be lower, the computations will be
faster.

The Stateless Multibit Extension. Our third significant contribution is to prove that for memoryless
covertext distributions D, the scheme S1original and its generalization MESS can securely transmit multibit
hiddentext messages using bit-by-bit steganographic encoding without additional state. In particular, no
synchronization between the sender and the recipient is required; therefore, if a portion of the stegotext gets
lost in transit, the rest of the message can be correctly recovered.

Specifically, by a non-trivial extension of the techniques used to bound the flaw of S1original and to prove
the security of MESS, we demonstrate that for a hiddentext message of length l, the distinguishing advantage
of the adversary is no more than 6l2p (plus 4l�D, an amount that remains negligible for reasonable values
of l). This bound is also tight within a small constant factor.

Prior to our work, no analysis of such stateless multibit extension was available in the literature. How-
ever, Hopper [5] stated that the advantage of the multi-bit construction was loosely quadratic. (Our bound
was derived in an attempt to disprove his statement.)

We stress that our result is only for distributions D that are memoryless, i.e., where each covertext
message is independent of the history. Proving multibit security of these constructions in the more general
case remains an open problem, as far as we know.
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2 Background: Work of Hopper, Langford, and von Ahn

2.1 Definitions

We reiterate the main definitions and notational conventions from [7] which we utilize herein. Many of these
are taken nearly verbatim from the original work.

Define a channel C to be a distribution of bit sequences time stamped with monotonically non-decreasing
values. The conditional distribution Ch describes the channel distribution conditioned on channel history h
of previously drawn bits. All messages are assumed to be of fixed length B bits. Furthermore, assume
there exists an oracle M which on input h efficiently samples the distribution CBh . That is M samples Ch
in B-bit blocks with the first bit of the block dependent on the history h and each successive bit in the
block dependent on the concatenation of h and all previous bits in the block. Where the specific history h is
irrelevant we will use M for M(h). We also find it convenient to abbreviate the covertext distribution CBh by
D except for situations where the original provides additional clarity. Additionally, we will abuse notation
and use D = CBh in place of M , particularly when denoting oracle access to D and when the availability or
action of the sampler is not of primary interest2.

Definition 1. A stegosystem or steganographic protocol is a pair of probabilistic polynomial time algo-
rithms S = (SE; SD) such that, for a security parameter �,

1. SE takes as input a randomly chosen key K 2 f0; 1g�, a string m 2 f0; 1g� (called the hiddentext),
a message history h, and a channel sampling oracle M(h); SEM (K;m; h) returns a sequence of
blocks. c1kc2k : : : kcl (called the stegotext) each of which is an element of the support of the channel
being sampled by the oracle M

2. SD takes as input a key K, a sequence of blocks c1kc2k : : : kcl, a message history h, and a channel
sampling oracle M(h); SDM(K; c; h) returns a hiddentext m.

3. SEM and SDM satisfy 8m : Pr[SDM(K;SEM(K;m; h); h) = m] � 2
3 , where the randomization

is over any coin tosses of SEM ; SDM , and M .

Stegosystem Reliability. We believe it useful for later discussions to elaborate on the final point in the
definition of a stegosystem S. The reliability of a stegosystem S with security parameter � for a channel C
(for messages of fixed length B) is defined as

RelS(�);C = min
m2f0;1gB

f Pr
K2f0;1g�

[SDM(K;SEM(K;m; h); h) = m]g :

While the above definition from [7] considers reliability of 2=3 sufficient, we will generally consider more
reliable stegosystems, since they will likely be of greater practical use.

The Adversary. In this work only passive (i.e., non-malicious) adversaries mounting chosen hiddentext
attacks on S are considered. The capabilities of such an adversary are described next.

Definition 2. A probabilistic polynomial time adversary W is a (t; q; l) passive adversary for stegosystem
S with key K, if

1. W runs in time t.
2Technically M is made necessary by the fact that we do not assume either complete knowledge of nor direct access to CBh .

Therefore, even though we use D in place of M , throughout, we assume parties accessing D know at most the min-entropy of D.
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2. W can make an arbitrary number of draws from CB
h via the sampling oracle M(�).

3. W can make at most q queries of combined length l bits to an oracle which is either SE(K; �; �) or

O(�; �), where O is such that O(m;h) C
jSE(K;m;h)j
h .

4. W outputs a bit indicating whether it was interacting with SE or with O.

W , sometimes referred to as the “warden”3, is nothing more than a distinguisher in the usual sense. It
attempts to differentiate between channel messages which have been altered by SE and those which have
simply been drawn from CB

h as usual and sent without modification.

Stegosystem Advantage and Insecurity. The advantage of a passive adversary W against stegosystem S
with security parameter � for a given channel C (having messages of fixed length B bits) is defined as

Adv
SS
S(�);C(W ) =

���� Pr
K f0;1g�; r f0;1g�

[WM;SE(K;�;�)
r = 1]� Pr

r f0;1g�
[WM;O(�;�)

r = 1]

����
where the SS superscript means “Steganographic Secrecy”.

For t; q; l given, the insecurity of stegosystem S with respect to channel C is defined as

InSec
SS
S(�);C(t; q; l) = max

W2W(t;q;l)
fAdvSS

S(�);C(W )g;

whereW(t; q; l) denotes the set of all adversaries which make at most q queries of total length at most l bits
and run in time at most t.

Definition 3 (Steganographic Secrecy). A stegosystem S = (SE; SD) is (t; q; l; �) steganograph-
ically secret against chosen hiddentext attacks on channel distribution C, (t; q; l; �)-SS-CHA-C, if
InSec

SS
S(�);C(t; q; l) � �.

With respect to the specific constructions discussed herein we need some additional notation which also
mirrors that in [7]. Let U(k) denote the uniform distribution on the set of k-bit strings, and U(B; 1) denote
the uniform distribution on predicates on B-bit strings. Let FK , for K 2 f0; 1g�, denote a specific member
of the family of pseudorandom predicates F : f0; 1g� � f0; 1gL ! f0; 1g with key K (pseudorandom
predicates and functions were first defined by [3]).

PRF Advantage and Insecurity. For a probabilistic adversary A, the PRF-advantage of A over F is
defined as

Adv
PRF
F(�)(A) =

���� Pr
K U(�);r f0;1g�

[AFK(�)
r = 1]� Pr

g U(L);r f0;1g�
[Ag

r = 1]

���� :
For t; q given, the insecurity of the pseudorandom function family F is defined as

InSec
PRF
F(�)(t; q) = max

A2A(t;q)
Adv

PRF
F(�)(A);

where A(t; q) denotes the set of all adversaries which make at most q queries run in time t.
3The idea of the adversary as a warden and the use ofW to designate it is a consequence of original problem formulation in [9].
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Minimum Entropy. Lastly, define H(D), the minimum entropy of probability distribution D, as

H(D) = max
x2D

�
� log2 Pr

D
[x]

�
:

2.2 Flawed Construction 1

We now give the flawed version of Construction 1 from [7] to concretely ground later discussions of its
problem and to make this work more self contained. Also, as our analysis will demonstrate, in many cases
Construction 1 can be used without any modification, and even when modification is necessary, it will be
very minimal.

Construction 1, henceforth referred to as S1original for brevity, appears in Section 3.2 of [7]. We present
it for one-bit messages; as already mentioned, [7] extend it to multibit messages simply by using a synchro-
nized counter. We will address multibit messages in Section 5.

S1original relies on a rejection sampler sub-procedure RS, which appears in Section 2.3 of [7]. This
rejection sampler, and consequently S1original, requires sampling access to the covertext distribution D. We
denote this by oracle access to M , a sampling oracle for D (CBh ) or, when abusing notation, by oracle access
to D itself. RS also requires access to a predicate F whose domain is the support of D. More formally,
F : f0; 1gB ! f0; 1g. RS on input a target bit y and maximum number of allowed iterations count draws
messages x from D until one is found that evaluates to the target bit y under F or the maximum number of
allowed iterations is reached. In the latter case it outputs the last message drawn. count can and should be
thought of as RS’s security parameter. It will become clear later that count directly influences the reliability
of S1original. The specification of RS follows.

Procedure RSM;F (y; count):
i = 0
repeat:

x M ; i i+ 1
until F (x) = y or count = i

Output: x

The stego encoding algorithm SE for S1original takes a keyK for a pseudorandom functionF , additional
security parameter k, hiddentext bit m, and channel history h as input4. It runs RS with input m and jKj
and returns the output of RS. The stego decoding or extraction algorithm SD for S1original takes the key K
and a stegotext x and outputs the image of x under F as the hiddentext m.

Procedure S1original:SE(K; k;m; h): Procedure S1original:SD(K;x):
x RSM(h);F (K;�)(m;k) m F (K;x)
h hkx

Output: x Output: m

From here on we will cease to explicit mention the sampling oracle M and message history h when
discussing RS; SE; and SD.

2.3 How and Why S1original Fails

Corollary 1 in [7] falsely states that S1original is steganographically secure on all channels C with minimum
entropy H(D = CBh ) > 2 against wardens W that ask only a single 1-bit query. The corollary is false as a

4In [7], k = jKj = � is a single security parameter. Here we separate them for precision of discourse.
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consequence of a subtle but serious flaw in the proof of Theorem 1 which incorrectly bounds the insecurity
of S1original by the insecurity of the pseudorandom function family F . The authors became aware of this
issue and published [6] which contains an acknowledgment of this flaw and S1corrected, a corrected version
of S1original, which will be discussed later.

The flaw in the proof of their Theorem 1 follows from the false implicit claim that the output of the
rejection sampler using a randomly chosen predicate is identical to the covertext distribution D = C Bh , the
input distribution for RS. This is stated more precisely and discussed in greater detail below.

False Claim 1. For any covertext distribution D with minimum entropy H(D) > 2, fixed bit b, randomly
chosen predicate g from U(B; 1), and k 2 N , the distribution of messages x 2 D output by RSD;g(b; k) is
identical to the distribution of messages drawn from D directly (where the probabilities are taken over the
random choice of g).

The flawed proof of the theorem tries to show, using a very straight forward two step reduction, that
stegosystem S1original adversary W has advantage equal to an adversary A’s advantage against the pseu-
dorandom function FK . In the first step, the proof shows RSD;FK � RSD;g, and then in the second step
infers RSD;g = D using false Claim 1, and thus concludes the advantages are equal from their respective
definitions. The theorem then follows directly from the respective insecurity definitions.

At first glance, false Claim 1, and consequently the flawed proof of Theorem 1, seems quite reasonable.
Indeed, as the authors state, for a given bit b and randomly chosen g, it follows from the independence of D
and g that PrD[xjg(x) = b : g  U(B; 1)] = PrD[x]. However, since RSD;g repeatedly draws blocks from
D and returns the first to satisfy g(x) = b without choosing a new g before each draw, the independence
breaks down.

2.4 Revised Construction 1

Hopper, Langford, and von Ahn corrected the flaw of S1original, described in Section 2.3 of this work, shortly
after its publication in [7]. They gave S1corrected, a revised version that we describe below, in [6], but did so
without any analysis of the severity of the flaw. Our main result, presented in Section 3, shows that the flaw
can be precisely quantified. Our second result, presented in Section 4, shows that it can, in fact, be made
negligible for any distribution D.

There are two main differences between S1corrected and S1original. First, although S1corrected uses the
same rejection sampler RS as S1original did, it forces RS to give up after only k = 2 attempts. In this case
the output distribution of RS can be shown, as in [6] or using our Lemma 1, to be identical to the covertext
distribution D. Unfortunately, as the authors point out, limiting RS to 2 attempts increases the probability
� that an encoding error is introduced by RSD;FK (b; 2) to � = 1

2 �
1�p
4 (plus the PRF insecurity), where p

is the highest probability in D. So, depending on the covertext distribution D, 1=4 < � � 3=8, where the
upper bound of 3=8 comes from the assumption that H(D) � 1. Essentially, the encoding error increases
because there is a good chance the rejection sampler will not find a covertext x 2 D such that FK(x) = b in
just two tries. This motivates the second main difference: the use of an error-correcting code by S1corrected.
In order to achieve reliable (i.e. Rel � 1) hiddentext transmission, prior to stego-encoding S1corrected

must first encode the hiddentext input using an error correcting code that corrects � fraction of errors.
The stego-decoder S1corrected:SD, in turn, as its final step reconstructs the transmitted hiddentext from the
error-encoding codewords it recovered.
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3 Main Result: Bounding the Flaw

Despite the seemingly bad news that the rejections sampler perceptibly alters non-uniform covertext source
distributions D, we bound the magnitude of the distortion by giving an upper bound on the statistical differ-
ence between D and RSD;g. We then give a lower bound demonstrating that the upper bound is tight up to
a small constant factor.

3.1 Upper Bound

Before presenting the formal theorem statement, we introduce some additional notation. For a function
g : D ! f0; 1g, define �g to be the weight of g where

�g =
X

x02D:g(x0)=1

Pr
D
[x0] ;

and �g the weight of the complement as �g = 1 � �g . Similarly, for a subset S � D, define �S =P
x02S PrD[x

0] and �S = 1� �S . Lastly, define

�(D; k) =
1

2jDj

X
S(D

�kS and �(D; k) =
1

2jDj

X
S�D

�kS = �(D; k) +
1

2jDj
:

Note that, for a fixed D, �(D; k) is a negligible function of k (providedD has no zero-probability elements),
because �S < 1 for S ( D.

Theorem 1. Let D be any discrete probability distribution, k 2 N and a bit b 2 f0; 1g. Let p be the
probability of the most likely event in D. Then for a randomly chosen predicate g : D ! f0; 1g, the
statistical difference betweenD and RSD;g(b; k) is at most 2p plus a negligible function in k. More precisely,

X
8x2D

����PrD [x]� Pr
g2U(B;1);D

[RSD;g(b; k)! x]

���� � 2p+ 2�(D; k) :

The remainder of this section is devoted to formulating and proving a number of intermediate results
that will yield the proof of Theorem 1.

On the way to proving Theorem 1, the first step is to quantify the output distribution of the rejection
sampler. First we consider the limiting case when the maximum number of allowed channel draws made by
RS, the parameter k in the above, is allowed to go to infinity. Note that in S1original, the security parameter k,
which is length of the pseudorandom function key K, is also used as the cutoff parameter for RS. However,
from here on k will only denote the maximum number of attempts made by RS, and � will denote the
security parameter for S1original and the length of the pseudorandom function key K. The following lemma
provides an expression for the probability distribution of RS in the infinite case. Lemma 2 then uses this
expression to give a version of Theorem 1 in the case of an infinite k.

Lemma 1. For x an element from the support of D and a bit b 2 f0; 1g, let us define RSD;g(b;1) �
limk!1RSD;g(b; k) and Prg2U(B;1);D[RS

D;g(b;1) ! x] � limk!1 Prg2U(B;1);D[RS
D;g(b; k) ! x].

Then,

Pr
g2U(B;1);D

[RSD;g(b;1)! x] =
PrD[x]

2jDj

0
@1 +

X
g2U(B;1):g(x)=1

1

�g

1
A

where the probability is taken over the choice of g.
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Proof. The proof of this Lemma is contained in Appendix A.

Now we give the infinite analog of Theorem 1 which we use later in its proof.

Lemma 2. Let D be any discrete probability distribution and b 2 f0; 1g a bit. Let p be the probability of
the most likely event in D. Then for a randomly chosen predicate g : D ! f0; 1g, the statistical difference
between D and RSD;g(b;1) is at most 2p. More precisely,

X
8x2D

����PrD [x]� Pr
g2U(B;1);D

[RSD;g(b;1)! x]

���� � 2p :

The proof employs the following proposition which is a consequence of the relationship between the har-
monic and arithmetic means.

Proposition 1. For a set of n non-zero real numbers a1; a2; : : : ; an,

1

a1
+ � � �+

1

an
�

n2

(a1 + � � �+ an)
:

Proof. The proposition can be verified by recalling that the harmonic mean of a set of n values a1; a2; : : : ; an,
is defined as n=(1=a1 + � � � + 1=an), whereas the usual arithmetic mean is defined as (a1 + � � � + an)=n.
A well known property of the harmonic mean is that it is less than or equal to the arithmetic mean for the
same set of numbers with equality only when all ai are equal [1, p. 471]. Therefore, inverting both sides of
this relation and multiplying by n, gives the above proposition.

Proof of Lemma 2. First we remind the reader of the property of the statistical difference that for any distri-
butions D1 and D2,

X
8x2D1;D2

����PrD1

[x]� Pr
D2

[x]

���� = 2
X

x2D1;D2:PrD1
[x]�PrD2

[x]

Pr
D1

[x]� Pr
D2

[x] :

For the remainder of the proof, where not indicated probabilities are with respect to D. Also, define t = jDj.
For each function g, let us consider the subset S of D which is the pre-image of 1 under g, that is

S = fx 2 D : g(x) = 1g. Since there are 2t�1 subsets S containing any given element x, rewriting
Lemma 1 in terms of S rather than g and applying the inequality of Proposition 1 to the result gives,

Pr
g2U(B;1);D

[RSD;g(b;1)! x] =
Pr[x]

2t

0
@1 +

X
S�D:x2S

1

�S

1
A

�
22(t�1)Pr[x]

2t
P

S�D:x2S
�S

=
2t�2 Pr[x]P

S�D:x2S

P
8x2S

Pr[x]

=
2t�2Pr[x]

2t�1 Pr[x] + 2t�2
P
x0 6=x

Pr[x0]

=
Pr[x]

2 Pr[x] + 1� Pr[x]
=

Pr[x]

1 + Pr[x]
:
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Thus,

Pr
D
[x]� Pr

g2U(B;1);D
[RSD;g(b;1)! x] � Pr[x]�

Pr[x]

1 + Pr[x]
=

(Pr[x])2

1 + Pr[x]
� (Pr[x])2 :

Finally, combining these two pieces,X
x

����PrD [x]� Pr
g2U(B;1);D

[RSD;g(b;1)! x]

����
= 2

X
fx:Pr[x]�Prg2U(B;1);D[RSD;g(b;1)!x]g

Pr[x]� Pr
g2U(B;1);D

[RSD;g(b;1)! x]

� 2
X

fx:Pr[x]�Prg2U(B;1);D[RSD;g(b;1)!x]g

(Pr[x])2 � 2
X
8x2D

(Pr[x])2 � 2p
X
8x2D

Pr[x] = 2p ;

where p is the probability of the most probable element in D.

Lastly, we consider the statistical difference between the probability distributions of the finite and infinite
rejection samplers.

Lemma 3. For a fixed k 2 N ,X
8x2D

���� Pr
g2U(B;1);D

[RSD;g(b;1)! x]� Pr
g2U(B;1);D

[RSD;g(b; k)! x]

���� � 2�(D; k)

Proof. The proof of this Lemma is contained in Appendix B.

At this point we have assembled the necessary tools to prove our bound on the statistical difference between
an arbitrary message distribution D and RSD;g(b; k) for a random function g.

Proof of Theorem 1. The proof follows by first inserting positive and negativePrg2U(B;1);D[RS
D;g(b;1)!

x] inside the absolute value signs, applying the triangle inequality, and then using Lemmas 2 and 3.

3.2 Lower Bound

Theorem 2. For any p, there exists a probability distribution D with highest-probability element p such
that, for any k > 2, a bit b 2 f0; 1g and for a randomly chosen predicate g : D ! f0; 1g, the statistical
difference between D and RSD;g(b; k) is at least p=16. More precisely,X

8x2D

����PrD [x]� Pr
g2U(B;1);D

[RSD;g(b; k)! x]

���� � p=8 :

Proof. For lack of space, we only sketch the proof of this theorem. Simply let D consist of 1=(2p) elements
of probability p each, and 1=(2q) elements of probability q, where q is very small. Then one can show that
the likelihood that RSD;g will pick a p-probability element is p=16 less than 1=2.

4 Generalizing S1original

We have shown that for D with sufficiently high min-entropy, S1original (i.e., Construction 1 of [7]) needs
no modification. On the other hand, since p is fixed for any given D, the error of S1original is not a negligible
function. Thus, when D lacks sufficiently high min-entropy, S1original in its current form is insecure. This
brings us to our second contribution: a modified version of S1original that is secure for all D. We call it
MESS for “Minimum-Entropy-Sensitive Stegosystem.”
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4.1 Our Construction

The problem with S1original is that it is stuck with whatever min-entropy D provides. To fix this, we pro-
pose RS-HE, a modified version of RS, that uses the well known technique of repeated sampling on D to
effectively increases the minimum entropy. Specifically, instead of using one covertext message x 2 D per
hiddentext bit, RS-HE uses n covertexts xi 2 D. The concatenation of all of these xi is then evaluated under
the predicate F (with a suitably expanded domain). The exact value of n depends on H(D) and is fixed
for a given D. Our proposed stegosystem MESS is the same as S1original except for a few minor syntactic
changes necessary to accommodate its use of RS-HE instead of RS.

Thus, MESS has three security parameters: � = jKj, k and n, which are, respectively, the length of the
pseudorandom predicate key, the number of attempts made by RS-HE, and the number of draws from D
that are concatenated and given to the pseudorandom predicate. Let MESS(�; k; n) denote our new system
instantiated with these parameters. For a formal description of MESS see Appendix C.

4.2 Proof of Correctness

The proof of S1original given in [7] only attempted to show security with respect to adversaries making a
single 1-bit query. In this section, we will initially do the same, because multi-bit security follows from
1-bit security by use of a synchronized counter as in [7]. Later we will show that for the special case of
memoryless channels, our techniques can be adapted to prove stateless multibit security.

The proof that MESS is 1-bit steganographically secure follows (although not immediately) from Theo-
rem 1 with D(n) in place of D. Clearly the first term becomes at most pn and can be made negligible by tak-

ing n sufficiently large. The only complication is that the second term, �(D (n); k) = 2�jD
(n)jP

S(D(n) �kS
now depends on both n and k. We need to show that it can be made negligible even as n grows.

Theorem 3. Let D be a covertext message distribution conditioned on message history h, and let p be the
probability of the most likely element of D (p = 2�H(D)). Then for any 0 < Æ < 1=2,

InSec
SS
MESS(�;k;n);D(t; 1; 1) � 2

 
pn +

�
1

2
+ Æ

�k
+ e�b

1
pn
c2Æ2

!
+ InSec

PRF
F(�)(t+O(k); k) :

Proof. As already stated, the hard part is to bound �(D(n); k). We actually bound a closely related value
�(D(n); k). This relies on two lemmas: Lemma 4 bounds �(D; k), for any distribution D, by �(UD; k),
where UD is the uniform distribution with essentially the same min-entropy as D. Lemma 5 bounds � of
this uniform distribution.

The detailed proof of this theorem (including the lemmas) is contained in Appendix D.

4.3 Reliability

We provided an explicit bound on the insecurity InSec of our stegosystem MESS in the previous section.
However, there is another important stegosystem property: reliability Rel, that is, the probability that the
recipient decodes the encoded message correctly. While Definition 1 requires only Rel � 2=3, in reality the
communicating parties will most likely desire Rel � 1. We bound the reliability of MESS in the following
theorem.

Theorem 4. Let D be a covertext message distribution conditioned on message history h with H(D) > 1
and let p be the probability of the most likely element of D (p = 2�H(D)). Then for any 0 < Æ < 1

2 ,

RelMESS(�;k;n) � 1�

 �
1

2
+ Æ

�k
+ e�b

1
pn
c2Æ2

!
� InSecPRF

F(�)(O(nk); k) :
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Proof. The proof of this Theorem is contained in Appendix E.

4.4 MESS Parameter Choices and Efficiency

Given covertext distribution D with min-entropy H(D), for MESS to operate with 2�s security and a
corresponding reliability of at least 1�2�s (for s � 13), it suffices to take n = d(s+2)=H(D)e, k = s+6,
and � such that for the chosen PRF family F , InSecPRF

F(�)(O(nk); k) � 2�s�3 (the derivation of these
parameter values can be found in Appendix F). The stegotext is just n covertexts long.

In Appendix G, we show that to achieve reasonable reliability, S1corrected needs to send more than 5
covertexts for each hiddentext bit (more for distributions with really low min-entropy). Thus, if H(D) �
(s + 2)=5, MESS sends fewer covertexts than S1corrected, and if H(D) � (s + 2), MESS sends only a
single covertext, effectively reducing to S1original. Moreover, MESS requires no computationally expensive
error-correction.

5 Stateless Multibit Extension of MESS

Having addressed the security flaw of S1original for 1-bit hiddentexts by demonstrating the security of the
more general construction MESS in the 1-bit case, we now consider secure transmission of multibit hidden-
text messages. As previously mentioned, a secure stateful multibit version of MESS can be obtained, as was
done in [7]. Namely, the sender and recipient maintain a synchronized counter c and do straightforward bit-
by-bit stego-encoding with MESS by providing c as an additional input to the PRF. The counter essentially
serves to refresh the pseudorandom function key, thereby making each successive hiddentext bit as secure
as the first. However, as we will show next, if the covertext message distribution D is memoryless, we can
achieve secure stateless multibit steganographic encodings by directly doing bit-by-bit stego-encoding using
MESS, thus eliminating the need for a synchronized counter.

Theorem 5. Let D be a memoryless covertext message distribution, and let p be the probability of the most
likely element of D (p = 2�H(D)). Then for a total of l � 1 hiddentext bits transmitted (chosen by the
adaptive warden)

InSec
SS
MESS(�;k;n);D(t; l; l) � 6l2pn + l

 �
1

2
+ Æ

�k
+ e�b

1
pn
c2Æ2

!
+ InSec

PRF
F(�)(t+O(lk); lk) :

Proof. The proof makes use of two key lemmas for memoryless distributions D. The first, Lemma 7, shows
that the advantage of any adversary adaptively asking for the stego-encoding of a total of l bits of hiddentext
can be bounded by the advantage of a non-adaptive adversary that asks 2l-bit hiddentext queries of the form
1l0l. The second, Lemma 8, shows that a string x = x1x2 : : : x2l that contains no repeated elements is no
less likely to occur as a stego encoding of 1l0l than as a random draw from D2l (provided sampler RSD;g is
allowed to make as many draws as needed, i.e. k =1). The rest follows from (1) using Lemma 8 to argue
that the statistical difference is no more than three times the probability of the existence of a collision among
2l elements chosen from D; (2) bounding the probability of such a collision and (3) dealing with finite k.

A more detailed proof of this Theorem (including the lemmas) is contained in Appendix H.

This bound is also nearly optimal: we show that the adversary who asks l=2 1-queries followed by l=2
0-queries can distinguish with probability roughly l2pn=4.

Theorem 6. For any p, there exists a probability distributionD with highest-probability element p such that,
for a randomly chosen predicate g : D ! f0; 1g, the statistical difference betweenD l and RSD;g(1l=20l=2;1)

12



is greater than one half the probability of obtaining a collision among l draws from D.

X
8x2Dl

���� Pr
g2U(B;1);D

[RSD;g(m;k)! x]� Pr
Dl

[x]

���� � pl2

4
�

�
pl2

4

�2

:

Proof. The proof of this Theorem is contained in Appendix I. It is obtained by comparing the probability of
a collision between an answer to a 1-query and an answer to a 0-query, which is 0 for RSD;g and non-zero
for Dl.
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A Proof of Lemma 1

Proof. We will prove the case of b = 1 and argue by symmetry that this also suffices to prove the case of
b = 0. To compute the probability that RSD;g(1; k) outputs x, simply find the expected value over the 2jDj

possible random functions g : D ! f0; 1g, as follows,

Pr
g2U(B;1);D

[RSD;g(1; k)! x] =
1

2jDj

0
@ X
g:g(x)=1

Pr
D
[x]

k�1X
i=0

�ig +
X

g:g(x)=0

Pr
D
[x]�k�1g

1
A

=
PrD[x]

2jDj

0
@ X
g:g(x)=1

1� �kg
1� �g

+
X

g:g(x)=0

�k�1g

1
A : (1)
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Taking the limit as k ! 1, that is as the rejection sampler makes greater and greater numbers of draws
from D before “giving up”, we have

lim
k!1

Pr
g2U(B;1);D

[RSD;g(1; k)! x] =
PrD[x]

2jDj

0
@1 +

X
g:g(x)=1

1

1� �g

1
A

=
PrD[x]

2jDj

0
@1 +

X
g:g(x)=1

1

�g

1
A :

It remains to prove the case for b = 0. However, by symmetry, for each specific function g which maps
an element x to 0, there exists a unique ĝ such that 8x 2 D; ĝ(x) = 1 � g(x). Consequently, for each
function g we have,

Pr[RSD;g(0; k)! x] = Pr[RSD;ĝ(1; k)! x]:

Generalizing this over all possible choices for the function g gives

Pr
g2U(B;1);D

[RSD;g(0; k)! x] = Pr
g2U(B;1);D

[RSD;g(1; k)! x]

so our consideration of RSD;g(1; k) is sufficient and the proof is complete.

Remark 1. It can be seen from (1) and some algebra, that when k = 2, in fact, Prg2U(B;1);D[RS
D;g(b; k)!

x] = PrD[x] as stated in [6]. Indeed, the proposed fix in [6] is to set k = 2 and accept the fact that this
causes a high probability (between 1=4 and 3=8) of decoding incorrectly, and thereby reduced reliability.

B Proof of Lemma 3

Proof. Using (1) from the proof of Lemma 1 it follows that

X
8x2D

���� Pr
g2U(B;1);D

[RSD;g(b;1)! x]� Pr
g2U(B;1);D

[RSD;g(b; k)! x]

���� (2)

=
X
8x2D

Pr[x]

2jDj

������1 +
X

S�D:x2S

1

�S
�

X
S�D:x2S

�kS � 1

�S � 1
�

X
S�D:x=2S

�k�1S

������ (3)

=
X
8x2D

Pr[x]

2jDj

������1 +
X

S�D:x2S

1

�S
�

X
S�D:x2S

1� �kS
�S

�
X

S�D:x2S

�k�1S

������ (4)

=
X
8x2D

Pr[x]

2jDj

������
X

S(D:x2S

�kS � �kS
�S

������ (5)

= 2
X

x2D:j�j�0

Pr[x]

2jDj

X
S(D:x2S

�kS � �kS
�S

(6)

�
1

2jDj�1

X
8x2D

Pr[x]
X

S(D:x2S

�kS
�S

(7)

=
1

2jDj�1

X
S(D:S 6=;

�kS
�S

X
8x2S

Pr[x] (8)
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=
1

2jDj�1

X
S 6=;

�kS =
1

2jDj�1

X
S(D

�kS (9)

� 2�(D; k) : (10)

Line (4) follows from the definitions of � and � and the symmetry of the set of all functions. To obtain
Line (5), combine the sums and remove the term 1 by restricting S to be a proper subset of D. Line (6)
follows from the same property of statistical difference used in the proof of Lemma 2. Line (8) follows by
expanding the sums, gathering common terms with respect to a specific subset S and rewriting the sums
with the appropriate modifications to their bounds (the empty set is excluded because every subset S must
have at least one element). Canceling the �S denominator and noting that �D = �; = 0 gives us the last
line and completes the proof.

C Formal Description of MESS

C.1 The Memoryless Channel Case

For now, assume that the channel is memoryless: D is independent of the previous message history h.
In other words, successive covertext messages are independent of one another. Consequently h can be
completely ignored and is suppressed.

Let n be an additional security parameter for MESS and RS-HE. It specifies the number elements of D
(covertexts) over which a single hiddentext bit will be encoded. Recall that S1original and RS had security
parameters � = jKj and k, the length of the pseudorandom predicate key and the number of attempts made
by RS respectively. As before, in general, RS-HE uses a predicate F , but the domain is expanded, i.e. now
F : Dn ! f0; 1g. When running as a subroutine of MESS, RS-HE has oracle access to FK , a specific
pseudorandom predicate family member with key K 2 f0; 1g� .

The modified version of RS-HE is:

Procedure RS-HED;F (y; count ; n):
i = 0
repeat:

for j = 1 to n:
xj  D

x (x1 k x2 k : : : k xn)
i i+ 1

until FK(x) = y or count = i
Output: x

The only differences between the stego-encoding algorithms for MESS and S1original is that MESS:SE
has additional input n that it uses when it calls RS-HE, and its stegotext output is n times longer. The
stego-decoding algorithm MESS:SD is unchanged from S1original:SD except that its stegotext input is n
times longer. It should be emphasized that with respect to the “flawed” S1original given in Section 2.2, the
only differences in MESS (aside from those between RS-HE and RS) are the additional security parameter
n input to both SE and SD, the expansion of the domain of FK , and the n times longer stegotext output by
SE and input to SD.

C.2 The General Case

To generalize our modifications, we drop the memoryless channel assumption. Suppose instead that the
distribution of covertexts does depend on the history h of previously sent messages. In other words, D truly
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is conditioned by h. The distribution resulting from sending n messages is more complex than Dn. Let D(n)

denote this distribution. With respect to the original channel notation, D (n) � CnBh (recall that CnBh denotes
a conditional distribution of messages of fixed length nB bits conditioned on history h). The general version
of RS-HE then is:

Procedure RS-HEM;F (y; count ; n):
i = 0
repeat:

for j = 1 to n:
xj  M(h)
h h k xj

x (x1 k x2 k : : : k xn)
i i+ 1

until FK(x) = y or count = i
Output: x

The resulting MESS:SE and MESS:SD are the same as described for Dn in Section C.1 with the
stipulation that now FK : D(n) ! f0; 1g.

Remark 2. The inner “for” loop of RS-HE can be thought of as an oracle M (n)—an efficient sampling
oracle for D(n). Observe that such a sampling oracle can always be built given n and access to the original
oracle M . Thus, the analysis of RS given in Theorem 1 applies here as well, except that D must be replaced
with D(n).

D Proof of Theorem 3

Before proving Theorem 3 we deal with the issue of bounding �(D(n); k) in two steps. It is easier to bound
a closely related value

�(D(n); k) =
1

2jD
(n)j

X
S�D(n)

�kS = �(D(n); k) +
1

2jD
(n)j

;

which differs from � only by the inclusion of the full subset S = D (n) in the sum. As we will see in
Lemma 6 (in Appendix F), � is exactly the failure probability of the rejection sampler RS-HED;g.

Lemma 4 bounds �(D; k), for any distribution D, by �(UD; k), where UD is the uniform distribution
with essentially the same min-entropy as D. Lemma 5 bounds � of this uniform distribution.

Lemma 4. Among all distributions of a given min-entropy, � is the largest for the uniform distribution.
More precisely, for a distribution D with minimum entropy H(D), define UD = U(b2H(D)c), that is UD is
a uniform distribution with b2H(D)c elements. Then for all k 2 N , �(D; k) � �(UD; k)

The following two claims will help with the proof of Lemma 4.

Claim 1. If D has an element with zero probability and D 0 differs from D only by the removal of this zero
probability element, then �(D0; k) = �(D; k).

Proof. This is easily verified using the definition of �: the number of terms in the sum is cut in half (with
every pair of terms of equal weight becoming one), but the coefficient in front of the sum is multiplied by
two.
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Claim 2. Let a; b be elements of D with probabilities pa and pb such that pa � pb. Define D00 to be the
distribution with the same probabilities as D except with pa+
 and pb�
 in place of pa and pb respectively
(0 � 
 � pb). Then �(D00; k) � �(D; k).

Proof. For 
 = pb, a simple proof is obtained by using the definition of � to rewrite the two expressions as
sums. Then using binomial series and regrouping the terms the claim follows directly. For the general case
one can treat �(D00; k) as a continuous real-valued function of 
. Then

�(D00(
); k) =
1

2jDj

X
S�D:a;b=2S

(�S + pa + 
)k + (�S + pb � 
)k + �kS + (�S + pa + pb)
k :

Taking the derivative with respect to 
 we obtain

k

2jDj

X
S�D:a;b=2S

(�S + pa + 
)k�1 � (�S + pb � 
)k�1 > 0 ;

because pa > pb � 
. Hence �(D00; k) is a nondecreasing function of 
 on the interval 0 � 
 � pb.

Proof of Lemma 4. We can transform D into UD by adding the mass to the highest-probability elements
until their probability reaches 1=b2H(D)c, while simultaneously removing the same mass from lowest-
probability elements until their probability reaches 0. By Claim 2, � of the resulting distribution will not
decrease. Then we remove all zero-probability elements to obtain UD (this, by Claim 1, will not change
�).

Lemma 5. For U(t), a uniform distribution on t elements, �(U(t); k) can be made negligible for both t and

k sufficiently large. Specifically for 0 < Æ < 1
2 , �(U(t); k) �

�
1
2 + Æ

�k
+ e�2tÆ

2
.

Proof. Consider � as a subset of a union of two “bad” events: (1) that fewer than 1=2 + Æ elements of U(t)
map to 1 under g or (2) that more than 1=2+ Æ elements of U(t) map to 1 under g, but not one of those gets
selected after k tries. More precisely, rewriting the definition of �,

�(U(t); k) =
X

8S�U(t)

�kS
2jtj

=

2
4Pr[�S � (1=2 + Æ)]

X
S:�S�(1=2+Æ)

�kS

3
5+

2
4Pr[�S > (1=2 + Æ)]

X
S:�S>(1=2+Æ)

�kS

3
5

�

�
1

2
+ Æ

�k
+ e�2tÆ

2
:

The exponential term follows from the application of Hoeffding’s Inequality5 [4] to Prg[�S > (1=2+ Æ)] =
Prg[t�S > t(1=2+ Æ)]. It is a Chernoff like bound which states that for t independent 0=1 random variables
Xi each with probability p, the random variable S =

Pt
i=1Xi obeys,

Pr[S � pt+ Æt] � e�2tÆ
2
:

5The use of such a bound makes sense since for S � U(t), t�S = jSj, that is the number of heads/ones observed for on t
independent fair coin tosses.
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Proof of Theorem 3. We first consider the case of MESS for a truly random predicate F and then add the
necessary correction for a pseudorandom F . The security of MESS is completely determined by the security
of RS-HE and the pseudorandom random predicate F which it accesses.

Recall that D(n) is the covertext distribution consisting of n subsequent draws from the given covertext
distribution D via its sampling oracle M(h) with message history input h. Let M (n)(h) be an efficient
sampling oracle for D(n). As we pointed out in the remark at the end of Section C.2, such an M (n) can
be easily constructed from M and, in fact, RS-HEM(�);F (b; k) is equivalent to RSM(�);F (b; k) for the same
predicate F . Thus applying Theorem 1 gives,

X
8x2D(n)

���� Pr
D(n)

[x]� Pr
F2U(nB;1);M

[RS-HEM(�);F (b; k)! x]

����
=

X
8x2D(n)

���� Pr
D(n)

[x]� Pr
F2U(nB;1);M

[RSM
(n)(�);F (b; k)! x]

����
� 2pn + 2�(D(n); k) (11)

where as previously defined, p is the largest probability in D and �(D (n); k) = 2�jD
(n)jP

S(D(n) �kS .
Clearly the first term in 11 can be made negligible since n is now a system parameter. It remains to

show that even with the added dependency on n, �(D(n); k) can also be made negligible. Using Lemma 4
and Lemma 5 with t = bp�nc we have

�(D(n); k) < �(D(n); k)

�

�
1

2
+ Æ

�k
+ e�bp

�nc2Æ2 (12)

Finally, combining (11) and (12) and accounting for the advantage due to a pseudorandom F ,

Adv
SS
MESS(�;k;n);D

(W ) � 2pn + 2

�
1

2
+ Æ

�k
+ 2e�bp

�nc2Æ2 +Adv
PRF
F(�)(A) ;

where 0 < Æ < 1=2. Therefore by the definition of insecurity,

InSec
SS
MESS(�;k;n);D

(t; 1; 1) � 2

 
pn +

�
1

2
+ Æ

�k
+ e�bp

�nc2Æ2

!
+ InSec

PRF
F(�)(t+O(k); k) :

E Proof of Theorem 4

Lemma 6. For any distribution D and bit b 2 f0; 1g, for a randomly chosen predicate F  U(jDj; 1),
the encoding error introduced by RSD;F (b; k) is equal to �(D; k), where �(D; k) = 1

2jDj

P
S�D �kS as

previously defined.

Proof. RSD;F (b; k) introduces encoding error whenever after k unsuccessful attempts to find a covertext
x 2 D such that F (x) = b, it outputs the last (kth) x drawn from D. Using algebra similar to that in the
proof of Lemma 1, this probability can be shown to be �(D; k).
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Proof of Theorem 4. The reliability of MESS(�; k; n) is simply one minus the encoding error introduced
by RS-HED;FK (�; k; n) where FK 2 F(�), now a pseudorandom predicate family with security parame-
ter � on the domain D(n). Recall that in the proof of Theorem 3 it was argued that RS-HED;FK (�; k; n)

and RSD
(n);FK (�; k) are equivalent (see also Remark 2 of Appendix C.2). So, by Lemma 6 and the defini-

tion of pseudorandom function insecurity, the encoding error introduced by RS-HED;FK (�; k; n) is at most
�(D(n); k) + InSec

PRF
F(�)(O(nk); k) (the O(nk) is because the running time of the rejection sampler, which

is playing the role of the “adversary” here, is O(nk), not counting time required for answering queries to D
and the PRF). Using the upper bound for �(D(n); k) from (12) in the proof of Theorem 3 and subtracting
from one gives the indicated lower bound for the reliability.

F Parameter Derivation and Running Time for MESS

Given covertext distribution D with min-entropy H(D) > 1, for MESS to operate with 2�s security and a
corresponding reliability of at least 1 � 2�s, what values of the parameters �; k; and n suffice? First, we
take n � (s+ 2)=H(D), so that 2pn < 2�s�1. Then we take k = s+ 6. If we set Æ = 1=(4(s+ 4)), then
the term 2(1=2 + Æ)k = 2(1=2)k(1 + 2Æ)k � 2�k+1(1 + 1=k)k < 2�k+3 = 2�s�3. In order for the third
term to be at most 2�s�3, we need b1=pnc2Æ2 log2 e � s+ 4. Substituting 2s+2 for 1=pn and 1=(4(s+ 4))
for Æ, we get that we need log2e2s+2 � 8(s + 4)3, which holds as long as s � 13 (insecurity greater than
2�13 is not acceptable in most applications, anyway, so this is not really a restriction).

Finally, � is chosen so that the insecurity InSecPRF
F(�)(O(nk); k) of the given PRF family F is at most

2�s�3. These same parameter choices will also provide the desired reliability level.
Note that the value of k specified here is the maximum number of attempts RS-HE makes, but the

expected number of attempts is just 2.
For each hiddentext bit, the stego-encoder for MESS essentially just draws, on average, 2n samples

from the covertext distribution D and thus evaluates, on average, twice the pseudorandom predicate FK on
the concatenation of n samples. Similarly, for each hiddentext bit, our stego-decoder just evaluates FK on
the stegotext received, i.e., on the concatenation of the n messages from D. Thus, the running time of our
decoder is essentially one PRF evaluation, and the average running time of our encoder is about twice that.
The stegotext length is clearly just n covertexts long.

Final Values: To obtain 2�s security and a corresponding reliability of at least 1 � 2�s for MESS, as
long as s � 13, it suffices to take n � d(s + 2)=H(D)e, k = s + 6, and � such that for the chosen PRF
family F , InSecPRF

F(�)(O(nk); k) � 2�s�3. Thus for example, for 2�80 security and 1� 2�80 reliability, if
H(D) � 82 then MESS’s stegotext is only one covertext long (that is, MESS simplifies to S1original).

G Parameter Derivation for S1corrected.

Here we demonstrate that for secure and reliable transmission, S1corrected needs to send 1 � H2(1=2 �
1=4(1� p)) covertexts per hiddentext bit, where H2 is the binary entropy. This value is between 5 and 6 for
reasonable p (p < :05).

The error correcting codes needed by S1corrected to assure reliable hiddentext transmission6 will stretch
each hiddentext message bit by a code-dependent factor ` = 1=R, where R is the rate of the code. Note
that the “noisy channel” created by the error-prone stego-encoder is essentially a binary symmetric channel

6We reiterate that the definition of stego-system given in [7] and [6] only requires reliability 2=3, i.e., the probability that each
individual hiddentext bit is incorrectly decoded is no more than 1=3. However, we believe a useful system should have much higher
reliability. Therefore, for comparison purposes, we require that both stegosystems be reliable with probability close to 1.
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with bit-flip probability �, and therefore the rate R of the code is bounded by the channel capacity C =
1�H2(�), where H2(�) denotes the binary entropy of the distribution (�; 1��). Plugging in the bounds
on � gives

1=5 � 1�H2(1=4) > C > 1�H2(3=8) � 1=22 :

H Proof of Theorem 5

As we did in the proof of Theorem 3 we will develop intermediate results for the simpler case of S1original

and then generalize the results for MESS. In the following let RSD;g(1l0l;1)! x denote the event that the
rejection sampler on bit-by-bit input 1l0l outputs x = x1x2 : : : x2l where each xi 2 D and g : D ! f0; 1g
is a randomly chosen predicate.

Lemma 7. The advantage of any adversaryW 0 that adaptively asks an oracle for MESS(�; k; n) for the bit-
by-bit stego-encoding of a total of l bits of hiddentext is bound by the advantage of a non-adaptive adversary
that asks the same oracle for the bit-by-bit stego-encoding of the 2l-bit hiddentexts 1 l0l.

Proof. Suppose W 0 adaptively asks for the bit-by-bit encoding of m = m1m2 : : :ml, mi 2 f0; 1g. W
simply first asks its corresponding stego-encoding oracle for the bit by bit encoding of 1 l0l. Then W just
uses the encoding of the ith zero or the ith one that it received to answer W 0’s ith adaptively chosen query.
Since the draws from D are independent, the distribution of stego-encodings that W 0 receives from W is
identical to that it would have received directly.

Lemma 8. For all x = x1x2 � � �x2l 2 D2l such that 8i; j xi 6= xj , that is for any strings of 2l elements
from D which does not contain a repeated element,

Pr
g2U(B;1);D

[RSD;g(1l0l;1)! x] � Pr
D2l

[x] :

The proof of Lemma 8 makes use of the following fact.

Proposition 2. For any set of n non-negative real numbers a1; a2; : : : ; an and l > 1,

1

n

nX
i=1

ali �

�Pn
i=1 ai
n

�l
:

Proof of Lemma 8. Combining the fact that successive draws from D are independent, i.e.
PrD2l [x] = PrD[x1] PrD[x2] � � �PrD[x2l], with line (1) from the proof of Lemma 1 gives,

Pr
g2U(B;1);D

[RSD;g(1l0l;1)! x1x2 � � �x2l s:t: 8i; j xi 6= xj ] (13)

=
PrD2l [x]

2jDj

X
S�D:x1;x2;���;xl2S^xl+1;���;x2l =2S

1

�lS�
l
S

(14)

=
PrD2l [x]

22l
1

2jDj�2l

X
S

1

�lS(1� �S)l
(15)

�
PrD2l [x]

22l

 P
S

1
�S(1��S)

2jDj�2l

!l

(16)

�
PrD2l [x]

22l

 
2jDj�2lP

S �S(1� �S)

!l

(17)
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�
PrD2l [x]

22l

 
2jDj�2lP2jDj�2l

i=1 1=4

!l

(18)

=
PrD2l [x]4l

22l
(19)

= Pr
D2l

[x] : (20)

Line (16) follows from Proposition 2, line (17) from Proposition 1, and line (18) from the fact that
max0<�<1 �(1� �) = 1=4, and the remaining lines follow from algebra.

Corollary 1 (To Lemma 8: Non-collision Statistical Difference). The statistical difference between
RSD;g(1l0l;1) and D2l for elements x = x1x2 � � �x2l 2 D2l such that no value xi is repeated, i.e. 8i; j
such that 1 � i 6= j � l xi 6= xj , is less than probability of drawing an element x from D2l containing at
least one repeated element. Namely,

X
x=x1x2���x2l2D2lj8i;jxi 6=xj

���� Pr
g2U(B;1);D

[RSD;g(1l0l;1)! x]� Pr
D2l

[x]

���� � X
x=x1x2���x2l2D2lj9i;jxi=xj

Pr
D2l

[x] :

Proof. The proof follows directly from Lemma 8 by opening the absolute value signs on the statistical
difference and replacing the probability of no collisions by the probability of one minus the probability of a
collision in each of the distributions. That is,

X
x=x1x2���x2l2D2lj8i;jxi 6=xj

���� Pr
g2U(B;1);D

[RSD;g(1l0l;1)! x]� Pr
D2l

[x]

���� =
X

x=x1x2���x2l2D2lj8i;jxi 6=xj

�
Pr

g2U(B;1);D
[RSD;g(1l0l;1)! x]� Pr

D2l
[x]

�
=

X
x=x1x2���x2l2D2lj8i;jxi 6=xj

Pr
g2U(B;1);D

[RSD;g(1l0l;1)! x]�

X
x=x1x2���x2l2D2lj8i;jxi 6=xj

Pr
D2l

[x]

=

0
@1�

X
x=x1x2���x2l2D2lj9i;jxi=xj

Pr
g2U(B;1);D

[RSD;g(1l0l;1)! x]

1
A�

0
@1�

X
x=x1x2���x2l2D2lj9i;jxi=xj

Pr
D2l

[x]

1
A

=
X

x=x1x2���x2l2D2lj9i;jxi=xj

Pr
D2l

[x]�

X
x=x1x2���x2l2D2lj9i;jxi=xj

Pr
g2U(B;1);D

[RSD;g(1l0l;1)! x]

�
X

x=x1x2���x2l2D2lj9i;jxi=xj

Pr
D2l

[x] :
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Corollary 2 (To Lemma 8). The probability that RSD;g(1l0l;1) outputs an element x = x1x2 � � �x2l 2
D2l such that at least one value xi is repeated, i.e. 9i; j such that 1 � i 6= j � l and xi = xj , is less than
or equal to the probability of drawing such an x from D2l directly.

Proof. Since by Lemma 8, for every string x of 2l unique elements fromD, Prg2U(B;1);D[RS
D;g(1l0l;1)!

x] � PrD2l [x], X
x=x1x2���x2l2D2lj9i;jxi=xj

Pr
g2U(B;1);D

[RSD;g(1l0l;1)! x] =

1�
X

x=x1x2���x2l2D2lj8i;jxi 6=xj

Pr
g2U(B;1);D

[RSD;g(1l0l;1)! x]

� 1�
X

x=x1x2���x2l2D2lj8i;jxi 6=xj

Pr
D2l

[x]

=
X

x=x1x2���x2l2D2lj9i;jxi=xj

Pr
D2l

[x] :

Lemma 9. Let D be any memoryless discrete probability distribution and p be the probability of the most
likely event in D. Then for the hiddentext bit string 1l0l for any 1 � l and a randomly chosen predicate
g : D ! f0; 1g, the statistical difference between D2l and RSD;g(1l0l;1) is at most 6l2p. More precisely,X

8x2D2l

���� Pr
g2U(B;1);D

[RSD;g(1l0l;1)! x]� Pr
D2l

[x]

���� � 6l2p :

Proof of Lemma 9. Splitting the statistical difference into the collision and non-collision components, then
applying Corollary 1 and the triangle inequality, next applying Corollary 2, and finally upper bounding the
probability of collisions on l draws from D by 2l2p (derived using counting and the union bound) gives the
stated results. More precisely,X

8x2D2l

���� Pr
g2U(B;1);D

[RSD;g(1l0l;1)! x]� Pr
D2l

[x]

���� =
X

x=x1x2���x2l2D2lj8i;jxi 6=xj

���� Pr
g2U(B;1);D

[RSD;g(1l0l;1)! x]� Pr
D2l

[x]

����+
X

x=x1x2���x2l2D2lj9i;jxi=xj

���� Pr
g2U(B;1);D

[RSD;g(1l0l;1)! x]� Pr
D2l

[x]

����
�

X
x=x1x2���x2l2D2lj9i;jxi=xj

Pr
D2l

[x] +

X
x=x1x2���x2l2D2lj9i;jxi=xj

���� Pr
g2U(B;1);D

[RSD;g(1l0l;1)! x]

����+
X

x=x1x2���x2l2D2lj9i;jxi=xj

����Pr
D2l

[x]

����
� 3

X
x=x1x2���x2l2D2lj9i;jxi=xj

Pr
D2l

[x]

� 6k2p :
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Lemma 10. For a fixed k; l 2 N ,

X
8x2D2l

���� Pr
g2U(B;1);D

[RSD;g(1l0l;1)! x]� Pr
g2U(B;1);D

[RSD;g(1l0l; k)! x]

���� � 4l�(D; k)

Proof. This sum captures the difference in probabilities between the rejection sampler in the infinite and
finite cases. The element x = x1x2 : : : x2l will be output in the infinite case, but not in the finite case,
whenever at least one xi is output by RS after more than k attempts. Thus, because D is memoryless,
taking the union over the 2l components with the probability that each element needed more than k draws
from Lemma 3 for the 1-bit case, the stated bound follows directly.

Proof (sketch) of Theorem 5. The structure of the proof is similar to that of Theorem 3. The proof follows
by first inserting positive and negative Prg2U(B;1);D[RS

D;g(1l0l;1) ! x] inside the absolute value signs,
applying the triangle inequality, and then using Lemmas 9 and 10 with Dn in place of D to account for the
repeated sampling by MESS. Then �(Dn; k) is bound using Lemma 5 as in the proof of Theorem 3. Finally,
adjusting for the advantage due to a pseudorandom F gives the desired result.

I Proof of Theorem 6

Proof. Assume for simplicity that l is even and let D be the uniform distribution: D has 1=p elements of
probability p each. Let x1 : : : xl be the elements drawn. Simply consider the probability that there exists a
collision between xi and xj , 1 � i � l=2 < j � l. It is 0 in the case of RSD;g(1l=20l=2;1).

Now in the case of Dl, first think of choosing all of the elements first and then randomly assigning them
to either half. If there is a collision among the l elements drawn, then the probability that colliding elements
end up in different halves at least l

2(l�1) . Next, we lower bound the probability of collisions among and l
element draw from D in general by upper bounding the probability of non-collisions as follows,X

x=x1x2���xl2Dlj8i6=j xi 6=xj

Pr
Dl

[x] = (1� p)(1� 2p) � � � (1� (l � 1)p) (21)

� e�p�2p�����(l�1)p (22)

= e�pl(l�1)=2 (23)

� 1� pl(l � 1)=2 + (pl(l � 1)=2)2=2 : (24)

Line (22) and Line (24) follow from the Taylor series expansion of e�x which gives (1 � x) � e�x �
1� x+ x2=2. Thus the probability of collisions among the l elements drawn from D is,X

x=x1x2���xl2Dlj91�i�l=2<j�li:xi=xj

Pr
D2l

[x] = 1�
X

x=x1x2���xl2Dlj8i6=j xi 6=xj

Pr
D2

[x]

� 1�

�
1�

pl(l � 1)

2
+

(pl(l � 1)=2)2

2

�

=
pl(l � 1)

2
�

(pl(l � 1)=2)2

2
:

Multiplying this by l
2(l�1) from above gives the lower bound of pl2=4� (pl2=4)2.
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