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Abstract. The use of FPGAs for cryptographic applications is highly
attractive for a variety of reasons but at the same time there are many
open issues related to the general security of FPGAs. This contribution
attempts to provide a state-of-the-art description of this topic. First, the
advantages of reconfigurable hardware for cryptographic applications are
discussed from a systems perspective. Second, potential security prob-
lems of FPGAs are described in detail, followed by a proposal of a some
countermeasure. Third, a list of open research problems is provided. Even
though there have been many contributions dealing with the algorithmic
aspects of cryptographic schemes implemented on FPGAs, this contri-
bution appears to be the first comprehensive treatment of system and
security aspects.
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1 Introduction

The choice of the implementation platform of a digital system is driven by many
criteria and heavily dependent on the application area. In cryptographic ap-
plications there are many criteria which are unique to the security context in
which there are used. In addition to the aspects of algorithm and system speed
and costs — which are present in most other application domains too — there
are crypto-specific ones: physical security (e.g., against key recovery and algo-
rithm manipulation), flexibility (regarding algorithm parameter, keys, and the
algorithm itself), power consumption (absolute usage and prevention of power
analysis attacks), and other side channel leakages.

The advantages of software implementations include ease of use, ease of up-
grade, portability, low development costs, low unit prices and flexibility. On
the down side, a software implementation offers moderate speed, high power
consumption compared to custom hardware, and only limited physical security,
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especially with respect to key storage [Sch96]. ASIC implementations show lower
price per unit, can reach high speeds, and can have low power dissipation. Fur-
thermore hardware implementations of cryptographic algorithms are more secure
because they cannot as easily be read or modified by an outside attacker [Dou99)
as software implementations. The downside of ASIC implementations, however,
are higher development costs and the lack of flexibility with respect to algorithm
and parameter switching. Reconfigurable hardware devices, such as Field Pro-
grammable Gate Arrays (FPGAs), seem to combine the advantages of SW and
HW implementations. At the same time, there are still many open questions re-
garding FPGAs as a module for security functions. There has been a fair amount
of work been done by the research community dealing with the algorithmic and
computer architecture aspects of crypto schemes implemented on FPGAs since
the mid-1990s (see, e.g., relevant articles in [KP99,KP00,KNP01,KKP02]), often
focusing on high-performance implementations. At the same time, however, very
little work has been done dealing with the system and physical aspects of FPGAs
as they pertain to cryptographic applications. It should be noted that the main
threat to a cryptographic scheme in the real world is not the cryptanalysis of the
actual algorithm (such as the Enigma break by the allied intelligence services
during WW II), but rather the exploration of weaknesses of the implementation.
Given this fact, we hope that the contribution at hand is of interest to readers
in academia, industry and government sectors.

In this paper we’ll start in Section 2 with the description of the advantages
of FPGAs in cryptographic applications from a systems perspective. Then, we
highlight important questions pertaining to the security of FPGAs when used
for crypto algorithms in Section 3. A major part of this contribution is a state-
of-the-art perspective of security issues with respect to FPGAs, by illuminating
this problem from different viewpoints and by trying to transfer problems and
solutions from other hardware platforms to FPGAs (Section 4). In Section 5,
we provide a list of open problems. Finally, we end this contribution with some
conclusions. We would like to stress that this contribution is not based on any
practical experiments, but on a careful analysis of available publications in the
literature and on our experience with implementing crypto algorithms.

2 System Advantages of FPGAs for Cryptographic
Applications

In this section we list the potential advantages of reconfigurable hardware (RCHW)
in cryptographic applications. Some of the ideas are taken from our earlier work
in [EYCPO1] which have been extended.

Algorithm Agility: This term refers to the switching of cryptographic algo-
rithms during operation of the targeted application. One can observe that the
majority of modern security protocols, such as IPSec [KA98], SSL [FKK96]
or TLS [DA99], are algorithm independent and allow for multiple encryption
algorithms. The encryption algorithm is negotiated on a per-session basis and



a wide variety may be required; e.g., IPsec allows among others DES, 3DES,
Blowfish, CAST, IDEA, RC4 and RC6 as algorithms, and future extensions
are possible. Whereas algorithm agility is costly with traditional hardware,
FPGAs can be reprogrammed on-the-fly.

Algorithm Upload: It is perceivable that fielded devices are upgraded with a
new encryption algorithm. Algorithm upload can be necessary because a cur-
rent algorithm was broken (e.g., Data Encryption Standard - DES [Fed77]),
a standard expired (e.g. DES), a new standard was created (e.g. Advanced
Encryption Standard - AES [U.S01]), and/or that the list of ciphers in an al-
gorithm independent protocol was extended. Assuming there is some kind of
(temporary) connection to a network such as the Internet, FPGA-equipped
encryption devices can upload the new configuration code. Notice that the
upgrade of ASIC-implemented algorithms is practically infeasible if many
devices are affected or if the systems are not easily accessible, for instance
in satellites.

Architecture Efficiency: In certain cases a hardware architecture can be much
more efficient if it is designed for a specific set of parameters. Parameters
for cryptographic algorithms can be for example the key, the underlying
finite field, the coefficient used, and so on. Generally speaking, the more
specific an algorithm is implemented the more efficient it can become. An
efficient parameter-specific implementation of the symmetric cipher IDEA
[LM90,LMM91] was presented in [TG99]. The general modular multiplica-
tion in IDEA requires 16 partial multiplications and only eight assuming
a fixed key. Another example taken from asymmetric cryptography is the
arithmetic architectures for Galois fields. Squaring in GF(2™) takes m/2
cycles with a general architecture, but only one cycle if the architecture is
compiled for a fixed field [Wu99]. FPGAs allow this type of design and op-
timization with specific parameter set. Due to the nature of FPGAs, the
application can be changed totally or partially.

Resource Efficiency: The majority of security protocols are hybrid protocols,
e.g. IPSec, SSL, and TLS. This implies that a public-key algorithm is used
to transmit the session key. After the key was established a private-key al-
gorithm is needed for data encryption. Since the algorithms are not used
simultaneously, the same FPGA device can be used for both through run-
time reconfiguration.

Algorithm Modification: There are applications which require modification
of standardized cryptographic algorithms, e.g., by using proprietary S-boxes
or permutations. Such modifications are easily made with RCHW. One ex-
ample, where a standardized algorithm was slightly changed, is the UNIX
password encryption [MvOV97] where DES is used 25 times in a row and a
12-bit salt modifies the expansion mapping Furthermore, in many occasions
cryptographic primitives or their modes of operation have to be modified
according to the application.

Throughput: General-purpose CPUs are not optimized for fast execution es-
pecially in the case of public-key algorithms. Mainly because they lack in-
structions for modular arithmetic operations on long operands, for example



exponentiation for RSA [RSA78]. Although typically slower than ASIC im-
plementations, FPGA implementations have the potential of running sub-
stantially faster than software implementations. The block cipher AES, ex-
emplarily, reaches a data rate of 112,3 Mbit/s and 718,4 Mbit/s on a DSP
TI TMS320C6201 [WWGP00] and Pentium III [Lip], respectively. In com-
parison, the FPGA implementation of the same algorithm on a Virtex XCV-
1000BG560-6 achieved 12 GBit/s using 12,600 slices and 80 RAMs [GCO1].
On the other hand, an ASIC encrypts at about double the speed of the
FPGA, e.g. Amphion CS5240TK reaches 25.6 Gbit/s at 200MHz [Amp].

Cost Efficiency: There are two cost factors that have to be taken into consid-
eration, when analyzing the cost efficiency of FPGAs: cost of development
and unit prices. The costs to develop an FPGA implementation of a given
algorithm are much lower than for an ASIC implementation, because one is
actually able to use the given structure of the FPGA (e.g. look-up table)
and one can test the reconfigured chip endless times without any further
costs. This results in a shorter time-to-market period, which is nowadays an
important cost factor. The unit prices are not so significant when comparing
them with the development costs. However, for high-volume applications,
ASIC solutions usually become the more cost-efficient choice.

We would like to stress that the advantages above are not necessarily re-
stricted to cryptographic applications. They can also be exploited in different
contexts. For example, the remote upload of a configuration can be used to fix
bugs in fielded devices, or to upgrade existing devices to make them compatible
with new standards. However, some of the cryptographic advantages, such as
replacement of a broken algorithm, may carry more weight here than in other
application domain. Note that the listed potential advantages of FPGAs for
cryptographic applications can only be exploited if the security shortcomings of
FPGAs discussed in the following have been addressed.

3 Security Shortcomings of FPGAs

This section summarizes security problems produced by attacks against given
FPGA implementations. First we would like to state what the possible goals of
such attacks are.

3.1 Objectives of an Attacker

The most common threat against an implementation of cryptographic algorithm
is to learn a confidential cryptographic key, that is, either a symmetric key or the
private key of an asymmetric algorithm. Given that the algorithms applied are
publicly known in most commercial applications, knowledge of the key enables
the attacker to decrypt future (assuming the attack has not been detected and
countermeasures have not been taken) and, often more harming, past commu-
nication which had been encrypted. Another threat is the one-to-one copy, or



“cloning”, of a cryptographic algorithm together with its key. In some cases it
can be enough to run the cloned application in decryption mode to decipher past
and future communication. In other cases, execution of a certain cryptographic
operation with a presumingly secret key is in most applications the sole crite-
ria which authenticates a communication party. An attacker who can perform
the same function can masquerade as the attacked communication party. Yet
another threat is given in applications where the cryptographic algorithms are
proprietary. Even though such an approach is not wide-spread, it is standard
practice in applications such as pay-TV and in government communication. In
such scenarios it is already interesting for an attacker to reverse-engineer the en-
cryption algorithm itself. The associated key might later be recovered by other
methods (e.g., bribery or classical cryptanalysis.)

The discussion above assumes mostly that an attacker has physical access
to the encryption device. Whether that is the case or not depends heavily on
the application. However, we believe that in many scenarios such access can be
assumed, either through outsiders or through dishonest insiders.

In the following we discuss vulnerabilities of modern FPGAs against such
attacks. In areas were no attacks on FPGAs have been published, we tried to
extrapolate from attacks on other hardware platforms, mainly memory cell and
chip cards.

3.2 Black Box Attack

The classical method to reverse engineer a chip is the so called Black Box attack.
The attacker inputs all possible combinations, while saving the corresponding
outputs. The intruder is then able to extract the inner logic of the FPGA, with
the help of the Karnaugh map or algorithms that simplify the resulting tables.
This attack is only feasible if a small FPGA with explicit inputs and outputs is
attacked and a lot of processor power is available. The reverse engineering effort
grows and it will become less feasible as the size and complexity of the FPGA
increases and with the usage of state machines, LFSRs (Linear Feedback Shift
Registers), integrated storage, and so on [Dip].

3.3 Readback Attack

Readback is a feature that is provided for most FPGA families. This feature
allows to read a configuration out of the FPGA for easy debugging. The idea
of the attack is to read the configuration of the FPGA through the JTAG or
programming interface in order to obtain secret information (e.g. keys) [Dip].
The readback functionality can be prevented with security bits provided by
the manufactures. In [AEC99], the idea of using a security antifuse to prevent
readout of information is patented.

However, it is conceivable, that an attacker can overcome these countermea-
sures in FPGA with fault injection. This kind of attack was first introduced
in [BDL97] and it was shown how to break public-key algorithms by exploiting



hardware faults. This publication, was followed by [BS97], where the authors in-
troduced differential fault analysis, which can potentially be applied against all
symmetric algorithms in the open literature. Meanwhile there have been many
publications that show different techniques to insert faults, e.g., electro mag-
netic radiation [QSO01], infrared laser [Ajl95], or even a flash light [SA02]. It
seems very likely that these attacks can be easily applied to FPGAs, since they
are not especially targeted to ASICs. If this is in fact feasible, an attacker is able
to deactivate security bits and/or the countermeasures, resulting in the ability
to read out the configuration of the FPGA [Kes,Dip].

3.4 Cloning of SRAM FPGAs

In a standard scenario, the configuration data is stored (unprotected) exter-
nally in nonvolatile memory (e.g., PROM) and is transmitted to the FPGA at
power-up in order to configure the FPGA. An attacker could easily eavesdrop
on the transmission and get the configuration file. This attack is therefore fea-
sible for large organizations as well as for those with low budgets and modest
sophistication.

3.5 Reverse-Engineering of the Bitstreams

The attacks described so far output the bitstream of the FPGA design. In order
to get the design of proprietary algorithms or the secret keys, one has to reverse-
engineer the bitstream. The condition to launch the attack is that the attacker
has to be in possession of the (unencrypted) bitstream.

FPGA manufactures claim that the security of the bitstream relies on the
disclosure of the layout of the configuration data. This information will only be
made available if a non-disclosure agreement is signed, which is, from a crypto-
graphic point of view, an extremely insecure situation. This security-by-obscurity
approach was broken at least ten years ago when the CAD software company
NEOCad reverse-engineered a Xilinx FPGA. NEOCad was able to reconstruct
the necessary information about look-up tables, connections, and storage ele-
ments [Sea]. Hence, NEOCad was able to produce design software without sign-
ing non-disclosure agreements with the FPGA manufacturer. Even though a big
effort has to be made to reverse engineer the bitstream, for large organizations
it is quite feasible. In terms of government organizations as attackers, it is also
possible that they will get the information of the design methodology directly
from the vendors or companies that signed NDAs.

3.6 Physical Attack

The aim of a physical attack is to investigate the chip design in order to get
information about proprietary algorithms or to determine the secret keys by
probing points inside the chip. Hence, this attack targets parts of the FPGA,
which are not available through the normal I/O pins. This can potentially be



achieved through visual inspections and by using tools such as optical micro-
scopes and mechanical probes. However, FPGAs are becoming so complex that
only with advanced methods, such as Focused Ion Beam (FIB) systems, one
can launch such an attack. To our knowledge, there are no countermeasures to
protect FPGAs against this form of physical threat. In the following, we will
try to analyze the effort needed to physically attack FPGAs manufactured with
different underlying technologies.

SRAM FPGAs: Unfortunately, there are no publications available that
accomplished a physical attack against SRAM FPGAs. This kind of attack is
only treated very superficially in a few articles, e.g. [Ric98]. In the related area of
SRAM memory, however there has been a lot of effort by academia and industry
to exploit this kind of attack [Gut96,Gut01,AK97, WKM*96,Sch98,SA93, KIK99].
Due to the similarities in structure of the SRAM memory cell and the internal
structure of the SRAM FPGA, it is most likely that the attacks can be employed
in this setting.

Contrary to common wisdom, the SRAM memory cells do not entirely loose
the contents when power is cut. The reason for these effects are rooted in the
physical properties of semiconductors (see [Gut01] for more details). The phys-
ical changes are caused mainly by three effects: electromigration, hot carriers,
and ionic contamination. Most publications agree that device can be altered,
if 1) threshold voltage has changed by 100mV or 2) there is a 10% change in
transconductance, voltage or current.

One can find attacks against SRAM memory cells using the access points
provided by the manufactures. An extreme case of data recovery, was described
in [AK97]. The authors were able to extract a DES master key from a module
used by a bank, without any special techniques or equipment on power-up. The
reason being that the key was stored in same SRAM cells over a long period
of time. "Ipp¢ testing” is one of the widely used methods to analyze SRAM
cells and it is based on the analysis of the current usage. The idea is to exe-
cute a set of test vectors until a given location is reached, at which point the
device current is measured. Hot carrier effects, cell charge, and transitions be-
tween different states can then be detected at the abnormal Ippg characteristic
[Gut01,WKM™96,5ch98]. Another possibilities for the attack are also to use the
scan path that the IC manufacturers insert for test purposes or techniques like
bond pad probing [Gut01].

When it becomes necessary to use access points that are not provided by the
manufacturer, the layers of the chip have to be removed. Mechanical probing with
tungsten wire with a radius of 0,1 — 0,2um is the traditional way to discover
the needed information. These probes provide gigahertz bandwidth with 100 f F
capacitance and 1M {2 resistance. Due to the complex structure and the multi
layer production of chips the mechanical testing is not sufficient enough. Focused
Ion Beam (FIB) workstations can expose buried conductors and deposit new
probe points. The functionality is similar to an electron microscope and one can
inspect structures down to 5nm [KK99]. Electron-beam tester (EBT) is another
measurement method. An EBT is a special electron microscope that is able to



speed primary electrons up to 2.5 kV at 5nA. EBT measures the energy and
amount of secondary electrons that are reflected.

Resulting from the above discussion of attacks against SRAM memory cells,
it seems likely that a physical attack against SRAM FPGAs can be launched
successfully, assuming that the described techniques can be transfered. However,
the physical attacks are quite costly and having the structure and the size of
state-of-the-art FPGA in mind, the attack will probably only be possible for
large organizations, for example intelligence services.

Antifuse FPGAs: To discuss physical attacks against antifuse (AF) FP-
GAs, one has to first understand the programming process and the structure of
the cells. The basic structure of an AF node is a thin insulating layer (smaller
than 1um?) between conductors that are programmed by applying a voltage. Af-
ter applying the voltage, the insulator becomes a low-resistance conductor and
there exists a connection (diameter about 100nm) between the conductors. The
programming function is permanent and the low-impedance state will persist
indefinitely.

In order to be able to detect the existence or non-existence of the connection
one has to remove layer after layer, or/and use cross-sectioning. Unfortunately,
no details have been published regarding this type of attack. In [Dip], the author
states that a lot of trial-and-error is necessary to find the configuration of one cell
and that it is likely that the rest of the chip will be destroyed, while analyzing
one cell. The main problem with this analysis is that the isolation layer is much
smaller than the whole AF cell. One study estimates that about 800,000 chips
with the same configuration are necessary to explore one configuration file of
an Actel A54SX16 chip with 24,000 system gates [Dip]. Another aggravation of
the attack is that only about 2-5 % of all possible connections in an average
design are actually used. In [Ric98] a practical attack against AF FPGAs was
performed and it was possible to alter one cell in two months at a cost of $1000.
Based on these arguments some experts argue that physical attacks against AF
FPGAs are harder to perform than against ASICs [Act02]. On the other hand,
we know that AF FPGAs can be easily attacked without being connected to
power. Hence, it is easier to drill holes to disconnect two connections or to repair
destroyed layers.

Flash FPGAs: The connections in flash FPGAs are realized through flash
transistors. That means the amount of electrons flowing through the gate changes
after configuration and there are no optical differences as in the case of AF
FPGAs. Flash FPGAs can be analyzed by placing the chip in a vacuum chamber
and powering it up. The attacker can then use a secondary electron microscope
to detect and display emissions. The attacker has to get access to the silicon die,
by removing the packet, before he can start the attack [Dip|. However, experts
are not certain about the complexity of such an attack and there are controversial
discussions about its practicality [Act02,Ric98]

Other possible attacks against flash FPGAs can be found in the related
area of flash memory. The number of write/erase cycles are limited to 10,000 —
100,000, because of the accumulation of electrons in the floating gate causing a



gradual rise of the transistors threshold voltage. This fact increases the program-
ming time and eventually disables the erasing of the cell [Gut01]. Another less
common failure is the programming disturbance in which unselected erased cells
gain charge when adjacent selected cells are written [ASHT93,Gut01]. Further-
more, electron emission causes a net charge loss. The electrons in the floating
gate migrate to the interface with the underlying oxide from where they tun-
nel into the substrate [PGP*91]. In addition, hot carrier effects have a high
influence, by building a tunnel between the bands. This causes a change in the
threshold voltage of erased cells and it is especially significant for virgin cells
[HCSL89]. Another phenomenon is overerasing, where an erase cycle is applied
to an already-erased cell leaving the floating gate positively charged [Gut01].

All the described effects change in a more or less extensive way the cell
threshold voltage, gate voltage, or the characteristic of the cell. We remark that
the stated phenomenons apply as well for EEPROM memory and that due to
the structure of the FPGA cell these attacks can be simply adapted to attack
flash/EEPROM FPGAs.

3.7 Side Channel Attacks

Any physical implementation of a cryptographic system might provide a side
channel that leaks unwanted information. Examples for side channels include
in particular: power consumption, timing behavior, and electromagnet radia-
tion. Obviously, FPGA implementations are also vulnerable to these attacks.
In [KJJ99] two practical attacks, Simple Power Analysis (SPA) and Differen-
tial Power Analysis (DPA) were introduced. The power consumption of the
device while performing a cryptographic operation was analyzed in order to
find the secret keys from a tamper resistant device. The main idea of DPA is
to detect regions in the power consumption of a device which are correlated
with the secret key. Moreover, in some cases little or no information about the
target implementation is required. Since their introduction, there has been a
lot of work improving the original power attacks (see, e.g., relevant articles in
[KP99,KP00,KNP01,KKP02]). More recently the first successful attacks based
on the analysis of electromagnetic emissions have also been published [AARR].
Even though most of the published attacks are not specific to a particular plat-
form, there has usually been an assumption that the underlying platform is either
software or an ASIC. There seems to be very little work at the time of writing
addressing the feasibility of actual side channel attacks against FPGAs. How-
ever, it seems almost certain that the different side channels can be exploited in
the case of FPGAs as well.

4 How to Prevent Possible Attacks?

This section shortly summarizes possible countermeasures that can be provided
to minimize the effects of the attacks mentioned in the previous section. Most of



them have to be realized by design changes through the FPGA manufacturers,
but some could be applied during the programming phase of the FPGA.

Preventing the Black Box Attack: The Black Box Attack is not a real
threat nowadays, due to the complexity of the designs and the size of state-
of-the-art FPGAs (see Section 3.2). Furthermore, the nature of cryptographic
algorithms prevents the attack as well. Cryptographic algorithms can be seg-
mented in two groups: symmetric-key and public-key algorithms. Symmetric
key algorithms can be further divided into stream and block ciphers. Todays
stream ciphers output a bit stream, with a period length of 128 bits [TABGO3].
Block ciphers, like AES, are designed with a block length of 128 bits and a
minimum key length of 128 bits. Minimum length in the case of public-key algo-
rithms is 160 bits for elliptic curve cryptosystems [Mil86,Kob87]) and 1024 bits
for discrete logarithm and RSA-based systems. It is widely believed that it is in-
feasible to perform a brute force attack and search a space with 280 possibilities.
Hence, implementations of this algorithms can not be attacked with the black
box approach.

Preventing the Cloning of SRAM FPGAs: There are many suggestions
to prevent the cloning of SRAM FPGAs, mainly motivated by the desire to
prevent reverse engineering of general, i.e., non-cryptographic, FPGA designs.
One solution would be to check the serial number before executing the design
and delete the circuit if it is not correct. This approach is not practical because
of the following reasons: 1) The whole chip, including the serial number can be
easily copied; 2) Every board would need a different configuration; 3) Logistic
complexity to manage the serial numbers [Kes]. Another solution would be to
use dongles to protect the design (a survey on dongles can be found in [Kea01]).
Dongles are based on security-by-obscurity, and therefore do not provide solid
security. A more realistic solution would be to have the nonvolatile memory and
the FPGA in one chip or to combine both parts by covering them with epoxy.
This reflects also the trend in chip manufacturing to have different components
combined, e.g., the FPSLIC from Atmel. However, it has to be guaranteed that
an attacker is not able to separate the parts.

Encryption of the configuration file is the most effective and practical coun-
termeasure against the cloning of SRAM FPGAs. There are several patents that
propose different scenarios related to the encryption of the configuration file: how
to encrypt, how to load the file into the FPGA, how to provide key management,
how to configure the encryption algorithms, and how to store the secret data
[Jef02,Aus95,Eri99,SW99, Alg]. Furthermore, there are a good number of publica-
tions that suggest encryption schemes, e.g. [YNOO] proposes a partial encryption
of the bitstream and [KBO0O] published the idea to divide the configuration file
and encrypt the parts with different keys. The 60RS family from Actel was the
first attempt to have a key stored in the FPGA in order to be able to encrypt
the configuration file before transmitting it to the chip. The problem was that
every FPGA had the same key on board. This implies that if an attacker has
one key he can get the secret information from all FPGAs.



An approach in a completely different direction would be to power the whole
SRAM FPGA with a battery, which would make transmission of the configura-
tion file after a power loss unnecessary. This solution does not appear practical,
however, because of the power consumption of FPGAs. Hence, a combination
of encryption and battery power provides a possible solution. Xilinx addresses
this with an on-chip 3DES decryption engine in its Virtex II [Xil] (see also
[PWFT00]), where the two keys are stored in the battery powered memory.

Preventing the Physical Attack: To prevent physical attacks, one has to
make sure that the retention effects of the cells are as small as possible, so that
an attacker can not detect the status of the cells. Already after storing a value in
a SRAM memory cell for 100-500 seconds, the access time and operation voltage
will change [vdPK90]. Furthermore, the recovery process is heavily dependant on
the temperature: 1.5 hours at 75°C, 3 days at 50°C', 2 month at 20°C, and 3 years
at 0°C [Gut01]. The solution would be to invert the data stored periodically or
to move the data around in memory. Cryptographic applications cause also long-
term retention effects in SRAM memory cells by repeatedly feeding data through
the same circuit. One example is specialized hardware that always uses the same
circuits to feed the secret key to the arithmetic unit [Gut01]. Neutralization
of this effect can be achieved by applying an opposite current [TCH93] or by
inserting dummy cycles into the circuit [Gut01]. In terms of FPGA application,
it is very costly or even impractical to provide solutions like inverting the bits or
changing the location for the whole configuration file. A possibility could be that
this is done only for the crucial part of the design, like the secret keys. Counter
techniques such as dummy cycles and opposite current approach can be carried
forward to FPGA applications.

Antifuse FPGAs can only be protected against physical attack, by building
a secure environment around them. If an attack was detected every cell should
be programmed in order not to leak any information or the antifuse FPGA has
to be destroyed.

In terms of flash/EEPROM memory cell, one has to consider that the first
write/erase cycles causes a larger shift in the cell threshold [SKM95] and that this
effect will become less noticeable after ten write/erase cycles [HCSL89]. Thus,
one should program the FPGA about 100 times with random data, to avoid these
effect (suggested for flash/EEPROM memory cells in [Gut01]). The phenomenon
of overerasing flash/EEPROM cells can be minimized by first programming all
cells before deleting them.

Preventing the Readback Attack: The readback attack can be prevented
with the security bits set, as provided by the manufactures, see Section 3.3. If
one wants to make sure that an attacker is not able to apply fault injection, the
FPGA has to be embedded into a secure environment, where after detection of
an interference the whole configuration is deleted or the FPGA is destroyed.

Preventing the Side Channel Attack: In recent years, there has been a
lot of work done to prevent side-channel attacks (see, e.g., relevant articles in
[KP99,KP00,KNP01,KKP02]). The methods can generally be divide into soft-
ware and hardware countermeasures, with the majority of proposals dealing



with software countermeasures. “Software” countermeasures refer primarily to
algorithmic changes, such as masking of secret keys with random values, which
are also applicable to implementations in custom hardware or FPGA. Hardware
countermeasures often deal either with some form of power trace smoothing or
with transistor-level changes of the logic. Neither seem to be easily applicable to
FPGAs without support from the manufacturers. However, some proposals such
as duplicated architectures might work on today’s FPGAs.

5 Open Problems

At this point we would like to provide a list of open questions and problems
regarding the security of FPGAs. If answered, such solutions would allow stand-
along FPGAs with much higher security assurance than currently available.

Side channel attacks Side channel attacks on FPGAs should be investigated
with the same intensity as it has been done with processor and ASIC plat-
forms. We assume that many characteristics from ASIC attacks carry over,
but some features will certainly be different. One extremely interesting ques-
tion in this context is whether there are design strategies that make FPGA
designs less vulnerable against power analysis attacks. If so, can we integrate
such strategies in the design tools?

Fault injection There appears to be no published attempt to perform this kind
of attack against FPGAs. It seems very likely that one can use, for example,
radiation or glitches to alter the contents of FPGAs. However, for attacks
that need to target specific components of a design, the small features of
current FPGAs together with the uncertainty of the location of the design
might make those fault injection attacks a more formidable task in the FPGA
case. We think that this subject is worth further investigation.

Key management for configuration encryption  On-chip decryption of
an encrypted configuration file would have benefits well beyond crypto-
graphic applications. One major problem to overcome is the key manage-
ment. The specific problems include who assigns the keys, who keeps track
of them, secure storage of the key, and possibly zeroization of the key when
an attack is detected.

Secure deletion The configuration time of an FPGA transcends more than one
minute and hence it is not possible to overwrite or delete the configuration
after an attack was detected. This is bad, especially if the configuration of
the FPGA includes any proprietary algorithms which should be kept secret.
There should be research on how to securely delete the design information.
A related problem is on-chip tamper detection for FPGAs.

Physical attacks There has not been any published physical attacks against
FPGAs. Again, we think it would be very interesting to study this problem.

6 Conclusions

This contribution analyzed possible attack against the use of FPGA in security
applications. For black box attacks, we stated that they are not feasible for



state-of-the-art FPGAs. However, it seems very likely for an attacker to get the
secret information stored in a FPGA, when combining readback attacks with
fault injection. Cloning of SRAM FPGA and reverse engineering depend on
the specifics of the system under attacked, and they will probably involve a lot
of effort, but this does not seem entirely impossible. Physical attacks against
FPGAs are very complex due to the physical properties of the semiconductors
in the case of flash/SRAM/EEPROM FPGAs and the small size of AF cells. Tt
appears that such attacks are even harder than analogous attacks against ASICs.
Even though FPGA have different internal structures than ASICs with the same
functionality, we believe that side-channel attacks against FPGAs, in particular
power-analysis attacks, will be feasible too.

From the discussion above it may appear that FPGAs are currently out of
question for security applications. We don’t think that this the right conclusion,
however. It should be noted that many commercial ASICs with cryptographic
functionality are also vulnerable to attacks similar to the ones discussed here.
A commonly taken approach to prevent these attacks is to put the ASIC in
a secure environment. A secure environment could for instance be a box with
tamper sensors which triggers what is called “zeroization” of cryptographic keys,
when an attack is being detected. Similar approaches are certainly possible for
FPGAs too. (Another solution often taken by industry is not to care and to build
cryptographic products with poor physical security, but we are not inclined to
recommend this.)
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