An attack on a multisignature scheme

Zheng Dong, Kefei Chen

Department of Computer Science and Engineering

Shanghai Jiaotong University

Shanghai 200030, China

{zheng-dong,chen-kf}@cs.sjtu.edu.cn

In this letter, we show that structured ElGamal-type multisignature scheme due to Burmester *et al.* is not secure if the adversary attacks key generation.

Keywords: cryptanalysis, multisignature, authentication

An attack on a multisignature scheme

Zheng Dong, Kefei Chen

In this letter, we show that structured ElGamal-type multisignature scheme due to Burmester et al .is not secure if the adversary attacks key generation.

Introduction: Multisignature scheme realizes that plural users generate the signature on a message, and that the signature is verified. Recently, Burmester et al.[1] presented a structured ElGamal-type scheme (Burmester et al.'s scheme), which is based on discrete logarithm problem (DLP). This letter shows that the Burmester et al.'s scheme is not secure if the adversary attacks *key generation*. In the following, the brief review of Burmester et al.'s scheme is given, and then an attack is proposed.

Brief review of Burmester et al.'s scheme

We assume that n signers I_1 , I_2 ,... I_n generate a signature on a fixed message M according to order fixed beforehand.

Key generation: In their scheme, there are three public system parameters. The parameter p and q are two large prime numbers, p>q, the parameter $g\in Z_p^*$ is an element with order $q.\ h(\)$ is a public hash function. Each user selects his private key $a_i\in Z_q^*$, then computes his public key sequentially as follows: $y_1=g^{a_1} \pmod p$, $y_i=(y_{i-1}\cdot g)^{a_i} \pmod p$, then a

public key of ordered group $(I_1, I_2,...I_n)$ is set to $y = y_n$.

Signature generation:

- (1) Generation of r: signer I_1 , I_2 ,... I_n generate r together as follows:
 - 1. Player I_1 selects $k_1 \in Z_q^*$ randomly and computes $r_1 = g^{k_1} \mod p$. If $\gcd(r_1,q) \neq 1$, then select new k_1 again.
 - 2. For $i \in \{2,...,n\}$, a signer $I_{i\cdot l}$ sends r_{i-l} to I_i . And I_i selects $k_i \in Z_q^*$ randomly and computes $r_i = r_{i-l}^{a_i} \cdot g^{k_i} \pmod{p}$. If $\gcd(r_i,q) \neq 1$, then select new k_i again.
 - 3. $r = r_n$
- (2) Generation of s: Signer $I_1, I_2, ... I_n$ generate s together as follows:
 - 1. I_1 computes $s_1 = a_1 + k_1 \cdot r \cdot h(r, M) \mod q$
 - 2. For $i \in \{2,...,n\}$; $I_{i\cdot l}$ sends s_{i-1} to I_i . I_i verifies that $g^{s_{i-1}} \stackrel{?}{=} y_{i-1} r_{i-1}^{r \cdot h(r,M)} \mod p$, then computes $s_i = (s_{i-1} + 1)a_i + k_i \cdot r \cdot h(r,M) \mod q$
 - 3. $s = s_n$
- (3) The multisignature on M by order $(I_1, I_2, ... I_n)$ is given by (r, s).

Signature verification:

A multisignature (r, s) on M is verified by $g^{s} = y_{i-1}r^{r \cdot h(r,M)} \mod p$.

If the adversary attacks key generation, the above scheme is not secure at all.

Our attack

Key generation is the same as Burmester *et al.*'s scheme but that player I_j is bad and generates his public key by choosing a secret key $a_j \in Z_q^*$ and setting $y_j = g^{a_j} \pmod{p}$. The key of ordered group $(I_1, I_2, ..., I_n)$ is set to $y = y_n$

In this case, The multisignature (r, s) on M can be generate without I_1, \ldots, I_{j-1} signing it:

(1) Generation of r:

- 1. Player I_j selects $k_j \in Z_q^*$ randomly and computes $r_j = g^{k_j} \mod p$. If $\gcd(r,q) \neq 1$, then select new k_j again.
- 2. for $i \in \{j+1,...,n\}$, a signer $I_{i\cdot I}$ sends r_{i-1} to I_i . And I_i selects $k_i \in Z_q^*$ randomly and computes $r_i = r_{i-1}^{a_i} \cdot g^{k_i} \pmod{p}$. If $\gcd(r_i,q) \neq 1$, then select new k_i again.
- 3. $r = r_n$
- (2) Generation of s: signer I_1 , I_2 ,... I_n generate s as follows:
 - 1. I_j computes $s_j = a_j + k_j \cdot r \cdot h(r, M) \mod q$
 - 2. for $i \in \{j+1,...,n\}$, I_{i-1} sends s_{i-1} to I_i . I_i verifies that $g^{s_{i-1}} \stackrel{?}{=} y_{i-1} r_{i-1}^{r \cdot h(r,M)} \mod p$, then computes $s_i = (s_{i-1} + 1)a_i + k_i \cdot r \cdot h(r,M) \mod q$
 - 3. $s = s_n$

The bad multisignature on M is (r, s)

Verification:

The following equation is still hold

$$g^s = y \cdot r^{r \cdot h(r,M)} \mod p$$

The above attack shows that I_j can cheat $I_{j+1}, ..., I_n$ to sign any message M without knowing $I_1, ..., I_{j-1}$ not signing it. Especially, when j = n, player I_j can sign any message M it wants on behalf of the entire group $\{I_1, I_2, ..., I_n\}$.

Conclusion: we have presented an attack on Burmester et al.'s scheme, the attack shows that Burmester *et al.*' scheme is insecure against attacks on key generation. It is possible to modify the Burmester *et al.*'s scheme by requiring that each player I_i to provide a zero-knowledge proof of knowledge (ZKPoK) of the discrete log of y_i/y_{i-1} in base g.

Acknowledgment: This work was partially supported by NSFC under grants 90104005, 60173032 and 60273049.

References

[1] M. Burmester, Yvo Desmedt, Hiroshi Doi, Masahiro Mambo, Eiji Okamoto, Mitsure Tada, and Y. Yoshifuji, "a structured ElGamal-Type multisignature scheme", Advances in Cryptology-Proceedings of PKC'2000, Lecture notes in computer science,(2000), Spfinger-Verlag, 466-482.

Authors' affiliations:

Zheng Dong, Kefei Chen (Department of Computer Science and Engineering, Shanghai Jiaotong University, 1954 Hua Shan Road, Shanghai 200030, People's Republic of China)

Email: {zheng-dong, chen-kf }@cs.sjtu.edu.cn