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Abstract. We apply the algebraic attacks on stream ciphers with memories
to the summation generator. For a summation generator that uses n LFSRs,
an algebraic equation relating the key stream bits and LFSR output bits can
be made to be of degree less than or equal to 2dlog2 ne, using dlog2 ne + 1 con-
secutive key stream bits. This is much lower than the upper bound given by
previous general results. We also show that the techniques of [5] can be applied
to summation generators using 2k LFSRs to reduce the effective degree of the
algebraic equation.
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1 Introduction

Among recent developments on stream ciphers, the algebraic attack has gath-
ered much attention. In this attack, an algebraic equation relating the initial key
bits and the output key stream bits is set up and solved through linearization
techniques.

Algebraic attack was first applied to block ciphers and public key cryp-
tosystems [7, 2]. And its first successful application to stream cipher was done
on Toyocrypt [3]. As the method was soon extended to LILI-128 [6], it gathered
much attention. Stream ciphers that utilize memory were first thought to be
much more resistant to these attacks, but soon it was shown that even these
cases were subject to algebraic attacks [1, 4].

The summation generator proposed by Ruepel [10] is a nonlinear combiner
with memory. It is known that the generator produces sequences whose period
and correlation immunity are maximum, and whose linear complexity is con-
jectured to be close to the period. Hence it serves as a good building block for
stream ciphers.

However, a correlation attack on the summation generator that uses two
LFSRs was presented in [9], even though it is also stated in [9] that this attack
is not plausible if there are more than two LFSRs in use. Another well known
attack on summation generator is given by [8] and points in the opposite di-
rection. It uses FCSRs to simulate the summation generator and indicates that
for a fixed initial key size, breaking them into too many LFSRs will add to its
weakness.

In this work, we study the summation generator with the algebraic attack in
mind. We show that for a summation generator that uses n LFSRs, an algebraic
equation relating the key stream bits and LFSR output bits can be made to
be of degree less than or equal to 2dlog2 ne, using dlog2 ne + 1 consecutive key



stream bits. This is much lower than the upper bound on the degree of algebraic
equations that is guaranteed by the general works [1, 4]. We also show that the
techniques of [5] can be applied to summation generators using 2k LFSRs to
reduce the effective degree of the equation further.

The impatient reader may confer to Tables 3 and 4, appearing in later
sections, for a quick look on the improvements we have given to understanding
the actual strength of algebraic attacks on summation generators. Actually,
Table 3 should be a good reference in view of algebraic attacks for anyone
considering the use of a summation generator.

2 Summation generators and symmetric polynomials

We consider a summation generator that uses n binary LFSRs. The output
of the j-th LFSR at time t will be denoted by xt

j . Since we are dealing with
binary values, we will not be using powers of these terms, hence the superscript
t should not cause any confusion. The current carry value from the previous
stage is denoted by ct. Note that the carry can be expressed in k = dlog2 ne
bits. We shall let

ct = (ct
k−1, . . . , c

t
1, c

t
0)

be the binary expression of the carry value.
The binary output zt and the carry value for the next stage from the sum-

mation generator is given by

zt = xt
1 ⊕ xt

2 ⊕ · · · ⊕ xt
n ⊕ ct

0, (1)

ct+1 =
⌊
(xt

1 + xt
2 + · · ·+ xt

n + ct)/2
⌋
. (2)

Let us denote by St
i , the i-th elementary symmetric polynomial in the vari-

ables {xt
1, . . . , x

t
n}. We view them as boolean functions rather than as polyno-

mials. Explicitly, they are

St
0 = 1,

St
1 = ⊕n

j=1x
t
j ,

St
2 = ⊕1≤j1<j2≤nxt

j1x
t
j2 ,

...
St

n = xt
1x

t
2 · · ·xt

n.

We shall also call these by the name elementary symmetric boolean functions.
For each 0 ≤ a, b ≤ n, let ma,b denote the value of St

a under the condition∑
j xt

j = b. This condition states that b of the n variable xt
j are equal to 1 and

that the others are equal to 0. Since St
a is symmetric, it makes sense to evaluate

St
a under this condition. It is also clear that the values (ma,b)n

b=0 completely
determines the value of St

a at an arbitrary input. To calculate ma,b, one has
only to count how many of the monomials contained in St

a is nonzero. Hence
we have

ma,b ≡
(

b
a

)
(mod 2). (3)



Now, consider the (n + 1) × (n + 1) matrix M = (ma,b). The n = 4 case is
given in Table 1, as an example. Denote by M ′, the n× n matrix obtained by

∑
xt

j 0 1 2 3 4

St
0 1 1 1 1 1

St
1 0 1 0 1 0

St
2 0 0 1 1 0

St
3 0 0 0 1 0

St
4 0 0 0 0 1

Table 1. The matrix M for n = 4

removing the last row and column from M . When we want to make explicit
the number of variable used in defining M and M ′, we shall write M(n) and
M ′(n).

Lemma 1. For powers of 2, the matrix M ′ satisfies

M ′(2k+1) =
(

M ′(2k) M ′(2k)
0 M ′(2k)

)
.

Proof. Let us first divide M ′ into four parts and write

M ′ =
(

II I
III IV

)
.

It is clear from (3) that the second quadrant, part II, is M ′(2k), as claimed.
The equation also shows that the lower triangular part of M ′ is zero. Hence the
third quadrant is filled with zero, as claimed.

We now show that I, II, and IV are identical. Once more, referring to (3),
it suffices to show(

b
a

)
≡

(
2k + b

a

)
≡

(
2k + b
2k + a

)
(mod 2) (4)

for all 0 ≤ a, b < 2k. To this end, we may easily check that

(1 + x)2
k+b = (1 + x)2

k
(1 + x)b

≡ (1 + x2k
)(1 + x)b (mod 2)

= (1 + x)b + x2k
(1 + x)b.

The coefficient of xa that would appear in the expansion of the left hand side
(1 + x)2

k+b is the middle term of (4). Since a < 2k, the xa term in the right
hand side may appear only in (1 + x)b and is equal to the first term of (4).
This shows the first equality. Similarly, comparison of the coefficients of x2k+a

shows the equality between the first and the last terms of (4). This completes
the proof.



This lemma allows one to write the matrix M ′(2k) explicitly for any given k.
Then, owing to (3), the matrix M(n) for any n may be obtained as a submatrix
of a big enough M ′(2k). For example, Table 1 is a submatrix of M ′(8).

The basic theory on symmetric polynomials tells us that the set consisting
of products of elementary symmetric polynomials forms a basis for the space of
symmetric polynomials. In case of symmetric boolean functions, the following
lemma can easily be seen to be true.

Lemma 2. Any boolean function that is symmetric in its variables, may be
written as a linear combination of the elementary symmetric boolean functions.

3 Summation generator on 4 LFSRs

We fix n = 4 throughout this section and derive an algebraic equation of degree 4
that is satisfied by the summation generator. The variables of the final equation
will consist of the LFSR output bits and the key stream bits but will not contain
any carry bits.

Since we are dealing with 4 = 22 LFSRs, we have k = 2, and it suffices to
use 2 bits in expressing the carry value. It is clear that the carry value should be
symmetric with respect to the order of the LFSRs in use. Recalling Lemma 2,
this implies that, when the current carry value ct is fixed, the carry bits ct+1

0

and ct+1
1 may be expressed as linear combinations of the elementary symmetric

boolean functions St
i . In the general case when the current carry bits are not

fixed, they will be linear combinations of the St
i with boolean functions of the

carry bits ct
0 and ct

1 used as coefficients.
For each value of ct and LFSR inputs possible, we explicitly calculated

ct+1
0 and ct+1

1 . We then used Table 1 to expressed them using the elementary
symmetric boolean functions. The result is given in Table 2.

ct 0 1 2 3

ct+1
0 St

2 St
1 ⊕ St

2 St
0 ⊕ St

2 St
0 ⊕ St

1 ⊕ St
2

ct+1
1 St

4 St
3 ⊕ St

4 St
2 ⊕ St

4 St
1 ⊕ St

2 ⊕ St
3 ⊕ St

4

Table 2. The next carry bits in relation to the current carry value

Lemma 3. For a summation generator on 4 LFSRs, the following expresses the
next stage carry bits as functions of the current LFSR output bits and current
carry bits.

ct+1
0 = St

2 ⊕ ct
0S

t
1 ⊕ ct

1 (5)

ct+1
1 = St

4 ⊕ ct
0S

t
3 ⊕ ct

1S
t
2 ⊕ ct

0c
t
1S

t
1. (6)

Proof. Using Table 2, we may write

ct+1
0 = {(1⊕ ct

0)(1⊕ ct
1)S

t
2} ⊕ {ct

0(1⊕ ct
1)(S

t
1 ⊕ St

2)}
⊕ {(1⊕ ct

0)c
t
1(S

t
0 ⊕ St

2)} ⊕ {ct
0c

t
1(S

t
0 ⊕ St

1 ⊕ St
2)}



and

ct+1
1 = {(1⊕ ct

0)(1⊕ ct
1)S

t
4} ⊕ {ct

0(1⊕ ct
1)(S

t
3 ⊕ St

4)}
⊕ {(1⊕ ct

0)c
t
1(S

t
2 ⊕ St

4)} ⊕ {ct
0c

t
1(S

t
1 ⊕ St

2 ⊕ St
3 ⊕ St

4)}.

Simplification of these equations gives the claimed statements.

Lemma 4. For n = 4, the following expresses the carry bits of the summation
generator as polynomials in the LFSR output bits and the key stream bits.

ct
0 = St

1 ⊕ zt. (7)

ct
1 = St

2 ⊕ (1⊕ zt)St
1 ⊕ St+1

1 ⊕ zt+1. (8)

The first carry bit ct
0 is linear and the second carry bit ct

1 is of degree 2 in the
LFSR output bits.

Proof. The first equation follows immediately from (1). It is a linear function
on the variables xt

j . Substituting this and its shift ct+1
0 into (5) gives

ct
1 = St

2 ⊕ (St
1 ⊕ zt)St

1 ⊕ St+1
1 ⊕ zt+1.

Now, since we are dealing with boolean functions, we have (St
1)

2 = St
1 and the

second equation follows.

Finally, with this lemma, we may remove all occurrence of the carry bits
from (6) to obtain the following proposition.

Proposition 1. The following algebraic equation holds true for a summation
generator on 4 LFSRs.

0 =

St
4 ⊕ (1⊕ zt)St

3 ⊕ St
2S

t+1
1

⊕ (1⊕ zt+1)St
2 ⊕ St+1

2 ⊕ (1⊕ zt)St
1S

t+1
1

⊕ (1⊕ zt)(1⊕ zt+1)St
1 ⊕ (1⊕ zt+1)St+1

1 ⊕ St+2
1

⊕ zt+2.

It is of degree 4 in the output bits of the LFSRs and uses 3 consecutive key
stream bits.

While simplifying the substitution of (7), (8), and shift of (8) into (6), we have
used the equality

St
1S

t
3 = St

3

of boolean functions.

4 Summation generator on n = 2k LFSRs

Let us denote by F t+1
i (n), the (symmetric) polynomial that expresses the next

stage carry bit ct+1
i in terms of LFSR outputs xt

j and current carry bits ct
j .

Since we shall be dealing with polynomials on different number of variables, we



shall write St
j(n) to denote the elementary symmetric boolean function on n

variables. As an example, we saw in the previous section that

F t+1
0 (22) = St

2(2
2)⊕ ct

0S
t
1(2

2)⊕ ct
1, (9)

F t+1
1 (22) = St

4(2
2)⊕ ct

0S
t
3(2

2)⊕ ct
1S

t
2(2

2)⊕ ct
0c

t
1S

t
1(2

2). (10)

Let us suppose that for some n = 2k, the polynomials F t+1
i (2k) are given

by
F t+1

i (2k) = ⊕jfi,jS
t
j(2

k). (11)

Here, each coefficient fi,j is a boolean function defined on the current carry bits
ct
0, c

t
1, . . . , c

t
k−1. For example, we see from (10) that

f1,4 = 1, f1,3 = ct
0, f1,2 = ct

1, f1,1 = ct
0c

t
1, f1,0 = 0,

for k = 2. The following proposition will allow us to inductively calculate all
F t+1

i (2k) for any i and k.

Proposition 2. Suppose equation (11) holds for some k. Then we have

F t+1
i (2k+1) = ⊕jfi,jS

t
j(2

k+1), for i < k − 1, (12)

F t+1
k−1(2

k+1) =
(
⊕j fk−1,jS

t
j(2

k+1)
)
⊕ ct

k, (13)

F t+1
k (2k+1) =

(
⊕j fk−1,jS

t
j+2k(2k+1)

)
⊕ ct

k

(
⊕j fk−1,jS

t
j(2

k+1)
)
. (14)

The proof of this proposition may be found in the appendices. As an immediate
application of this proposition to (9) and (10), we may write

F t+1
0 (23) = St

2(2
3)⊕ ct

0S
t
1(2

3)⊕ ct
1, (15)

F t+1
1 (23) = St

4(2
3)⊕ ct

0S
t
3(2

3)⊕ ct
1S

t
2(2

3)⊕ ct
0c

t
1S

t
1(2

3)⊕ ct
2, (16)

F t+1
2 (23) = St

8(2
3)⊕ ct

0S
t
7(2

3)⊕ ct
1S

t
6(2

3)⊕ ct
0c

t
1S

t
5(2

3)

⊕ ct
2S

t
4(2

3)⊕ ct
0c

t
2S

t
3(2

3)⊕ ct
1c

t
2S

t
2(2

3)⊕ ct
0c

t
1c

t
2S

t
1(2

3).
(17)

Now, let us briefly recall the process we went through in Section 3 in obtain-
ing the degree 4 equation of Proposition 1. We started out with three equations.

zt = St
1 ⊕ ct

0. (18)

ct+1
0 = St

2 ⊕ ct
0S

t
1 ⊕ ct

1. (19)

ct+1
1 = St

4 ⊕ ct
0S

t
3 ⊕ ct

1(S
t
2 ⊕ ct

0S
t
1). (20)

We used (18) to write ct
0 as a degree 1 equation that involves just the key stream

bit and the LFSR outputs. This was substituted in the next equation (19) to
write ct

1 as a degree 2 equation of the same kind. Finally, these expressions for
ct
0 and ct

1 were substituted in the last equation to obtain the degree 4 equation
that involves only key stream bits and LFSR output bits.



What would happen if we wanted to do the same for n = 23. We would start
with the following set of equations.

zt = St
1 ⊕ ct

0. (21)

ct+1
0 = St

2 ⊕ ct
0S

t
1 ⊕ ct

1. (22)

ct+1
1 = St

4 ⊕ ct
0S

t
3 ⊕ ct

1S
t
2 ⊕ ct

0c
t
1S

t
1 ⊕ ct

2. (23)

ct+1
2 = St

8 ⊕ ct
0S

t
7 ⊕ ct

1S
t
6 ⊕ ct

0c
t
1S

t
5

⊕ ct
2(S

t
4 ⊕ ct

0S
t
3 ⊕ ct

1S
t
2 ⊕ ct

0c
t
1S

t
1).

(24)

Notice that the first two equations here are identical to (18) and (19), as stated
by (12) of Proposition 2. Hence, as before, ct

0 and ct
1 will be written as degree 1

and 2 polynomials. The main part of (23) is identical to (20), as stated by (13).
They only differ in that ct

2 appears at the end of (23). Since (20) is of degree
4, equation (23) gives a degree 4 expression for ct

2. Now, as given by (14), the
right hand side of (24) may be broken into two big terms of degree (less than
or equal to) 8. The first term is a degree 4 equation shifted by degree 4 and
the second term is a product of two degree 4 equations. Finally, the left hand
side of (24) is of degree 4. Hence, substitution of ct

0, ct
1 and ct

2 into (24) gives a
degree 8 polynomial connecting various LFSR output bits and key stream bits.

One can easily see that the above argument is general enough to be seen as
the induction step needed in proving the following theorem.

Theorem 1. Consider a summation generator on n = 2k LFSRs. There exists
an algebraic equation connecting LFSR output bits and k + 1 consecutive key
stream bits in such a way that it is of degree 2k in the LFSR output bits.

5 The general case

The following is an easy corollary to Theorem 1.

Theorem 2. Consider a summation generator of n LFSRs. We shall let k =
dlog2 ne. There exists an algebraic equation connecting LFSR output bits and
k + 1 consecutive key stream bits in such a way that it is of degree less than or
equal to 2k in the LFSR output bits.

Proof. We may model a summation generator on n LFSRs as a summation
generator on 2k LFSRs with (2k−n) of the LFSRs set to zero. Hence, our claim
follows from Theorem 1.

For small n’s, we explicitly calculated the algebraic equations. Table 3 com-
pares the upper bounds on the degree of the algebraic equation claimed by
various methods.

We believe this table is big enough to cover any practically usable summa-
tion generator and should serve as a good reference for anyone implementing a
summation generator and considering its immunity to algebraic attacks.



n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

[1, 4] 2 5 6 10 12 14 16 23 25 28 30 33 35 38 40

Thm 2 2 4 4 8 8 8 8 16 16 16 16 16 16 16 16

explicit calc. 2 3 4 6 6 7 8 12 12 13 14 14 14 15 16

Table 3. Degree bounds on algebraic equations for summation generators

6 Reducing the degree further for the n = 2k case

For the case when n = 2k, we may reduce the degree of the algebraic equation a
little bit further, assuming that we have access to consecutive key stream bits.
We will apply the attack described in [5] due to Courtois.

Following the notation of [2, 5], we classify multivariate equations that relate
key bits ki and output bits zj into types given by their degrees of ki and zj .
We say that a polynomial is of type kdzf if all of its monomial terms are of
the form ki1 · · · kidzj1 · · · zjf

. Capital letters will be used in a similar manner to
denote types of equations that may contain lower degree monomials also. For
example, K2 = k2 ∪ k ∪ 1 and KZ = kz ∪ k ∪ z ∪ 1.

In [5], double-decker equations (DDE) of degree (d, e, f) are defined to be
any multivariate equation of type Kd∪KeZf . Cases where d > e are of interest
from the attacker’s point of view. The following proposition states that the
equations describing the summation generator on 2k input LFSRs, given by
Theorem 1, are DDEs.

Theorem 3. A double-decker equation of degree (2k, 2k − 1, 2k−1) that relates
initial key bits and output stream bits exists for the summation generator on 2k

LFSRs.

Proof. Let us, once more, recall the n = 22 case. The following is a very simple
illustration of the process we went through in obtaining the degree 4 equation.

(18) ⇒ Z1 = K1 ⊕ ct
0

⇒ ct
0 is of type K1 ∪ Z1 (25)

(19), (25) ⇒ K1 ∪ Z1 = K2 ∪ (K1 ∪ Z1)K1 ⊕ ct
1

⇒ ct
1 is of type K2 ∪K1Z1 (26)

(20), (26) ⇒
K2 ∪K1Z1 = (K2+2 ∪K1+2Z1) ∪ (K2 ∪K1Z1)(K2 ∪K1Z1)

⇒ relation of type K4 ∪K3Z2 (27)

Let us next consider the n = 23 case also. Since changing the number of
variables, i.e., replacing St

j(2
2) with St

j(2
3) does not change the degree of these



equations, the degree 23 equation is obtained as follows.

(18) = (21), (25) ⇒ ct
0 is of type K1 ∪ Z1 (28)

(19) = (22), (26) ⇒ ct
1 is of type K2 ∪K1Z1 (29)

(20) ∼ (23), (27) ⇒ ct
2 is of type K4 ∪K3Z2 (30)

(24), (30) ⇒
K4 ∪K3Z2 = (K4+4 ∪K3+4Z2) ∪ (K4 ∪K3Z2)(K4 ∪K3Z2)

⇒ relation of type K8 ∪K7Z4 (31)

This shows that the general case may be proved by induction. To prove the
induction step, it suffices to show that

K2k ∪K2k−1Z2k−1
= (K2k+2k ∪K2k−1+2k

Z2k−1
)

∪ (K2k ∪K2k−1Z2k−1
)(K2k ∪K2k−1Z2k−1

)

gives a DDE of type K2k+1∪K2k+1−1Z2k
. Checking the validity of this statement

is trivial. And this completes the proof.

We may assume that all periods of the LFSRs used in the summation gen-
erator are relatively prime. Then the summation generator satisfies the require-
ment of the attack described in [5], if we have access to consecutive key stream
bits. The following steps may be taken to reduce the complexity of the algebraic
attack.

1. Compute an algebraic equation explicitly using the formulae given in Propo-
sition 2.

2. Write the resulting DDE in the following form.

Lt(k) = Rt(k, z).

Here, Lt(k) is the sum of all monomials of type Kd appearing in the equation
and Rt(k, z) is the sum of all other monomials of type KeZf .

3. Fix an arbitrary nontrivial initial key k′ and compute the value Lt(k′) for a
sequence of length 2

(
m
d

)
.

4. Using the Berlekamp-Massey algorithm, find a linear relation α = (αt)t such
that ∑

t

αtL
t(k′) = 0.

We note that steps 1,2,3,4 are independent of the initial key k, hence we
can pre-compute the relation α.

5. We have obtained an algebraic equation of degree e. It is given by∑
t

αtR
t(k, z) = 0.

6. Apply the general algebraic attack given in [6] to the above equation.



Example 1. The DDE for n = 22 is given as follows: St
4 ⊕ St

3 ⊕ St+1
1 St

2

⊕ St+1
2 ⊕ St

2 ⊕ St
1S

t+1
1

⊕ St+2
1 ⊕ St+1

1 ⊕ St
1

 =

 ztSt
3 ⊕ zt+1St

2 ⊕ ztSt
1S

t+1
1

⊕ zt+1St+1
1 ⊕ ztzt+1St

1

⊕ zt+1St
1 ⊕ ztSt

1 ⊕ zt+2

 .

We take 4 LFSRs defined by the following characteristic polynomials.

L1 : x3 + x + 1

L2 : x5 + x2 + 1

L3 : x7 + x + 1

L4 : x11 + x2 + 1

Since
(
26
4

)
' 15, 000, we compute 30,000 bits from the left hand side of the

above equation for some arbitrary nontrivial key bits k′. After applying the
Berlekamp-Massey algorithm, we found that the sequence has a linear relation
of length 3892 <

(
26
4

)
. With a consecutive key stream of length of the order

6520 = 3892 + (3− 1) + (
(
26
3

)
− 1), one will be able to find the 26 bit initial key

k.

Table 4 gives a simple comparison of the data and computational com-
plexities needed for attacks on summation generators. Let w be the Gaussian
elimination exponent. We shall use w = log2 7, as given by the Strassen algo-
rithm. Let the summation generator with 2k input LFSRs use an m-bit initial
key.

generator size (m, 2k) (128, 22) (256, 22) (256, 23)

data
(

m
2k−1(k+1)

)
232.3 238.4 283.1

[1, 4]
computation

(
m

2k−1(k+1)

)w
290.8 2107.9 2233.2

data T = 2
m
2k +k+1

235 267 236

[8]
computation T 2 log2 T log2 log2 T 277.5 2142.7 279.5

data
(

m
2k

)
223.3 227.4 248.5

Thm 1
computation

(
m
2k

)w
265.5 276.9 2136.3

data
(

m
2k−1

)
218.4 221.4 243.6

Thm 3
computation

(
m

2k−1

)w
251.6 260.1 2122.3

Table 4. Complexity comparison of attacks on summation generators

We remark that for [8] and Theorem 3, the key stream needs to be consec-
utive. For [1, 4] and Theorem 1, the key stream need only be partially consecu-
tive, i.e., we need groups of k + 1 consecutive bits, but these groups may be far
apart from each other. Hence, a straightforward comparison of data complexity
might not be fair. Also, the values for [8] have been calculated assuming that
the LFSRs in use have been chosen well, so that their 2-adic span is maximal.



7 Conclusion

We have applied the general results of [1, 4] and [5] on stream ciphers with
memories to the summation generator. Our results show that the degree of
algebraic equation obtainable and the complexity of the attack applicable are
much lower than given by the general results.

For a summation generator that uses n LFSRs, the algebraic equation re-
lating the key stream bits and LFSR output bits can be made to be of degree
less than or equal to 2dlog2 ne, using dlog2 ne + 1 consecutive key stream bits.
Under certain conditions, for the n = 2k case, the effective degree may further
be reduced by 1. And for small n’s we have summarized the degrees of the
explicit equations in Table 3. The table should be taken into account by anyone
using a summation generator.
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A Proof of Proposition 2, equation (12)

To prove (12), we shall evaluate its right hand side at some arbitrary input
value and show that it equals the next carry bit ct+1

i . But before we do this, let
us make some observations.

Note that we may take

ct+1
i ≡ b(

∑
j xt

j + ct)/2i+1c (mod 2) (32)

as the definition of the carry bits. We may evaluate the right hand side of (11) at∑
j xt

j = 0 and equate it with the evaluation of (32) at the same point to shows
ct
i+1 = fi,0. Now, from the discussions in Section 2 on the matrix M , we know

that at
∑

j xt
j = 2k, we have St

0(2
k) = St

2k(2k) = 1 and all other St
j(2

k) = 0.
Once more, evaluating (11) and (32) at

∑
j xt

j = 2k with this in mind shows



ct
i+1 = fi,0 ⊕ fi,2k . Since we already know ct

i+1 = fi,0, this implies fi,2k = 0, or
equivalently, that the term St

2k does not appear in the linear sum (11).
We shall now evaluate the right hand side of (12) at some fixed LFSR output

values (xt
1, . . . , x

t
2k+1) and carry value ct. Set

x =
∑

j xt
j ,

x′ = remainder of x divided by 2k,

c′ = remainder of ct divided by 2k.

From the above observation, we know that the right hand side of (12) contains
some of the terms St

0(2
k+1), . . . , St

2k−1
(2k+1), but does not contain any of the

terms Sj(2k+1) for j ≥ 2k. We also know from discussions of Section 2 that the
evaluation of each St

j(2
k+1) at x for j < 2k is equal to its evaluation at x′. Note

also that the term ct
2k does not appear as input to any of the coefficients fi,j in

the right hand side of (12). Hence,

RHS of (12) at x and ct

= RHS of (12) at x′ and c′

= RHS of (11) at x′ and c′

= b(x′ + c′)/2i+1c (mod 2)

= b(x + ct)/2i+1c (mod 2)

= ct+1
i at x and ct.

The condition i ≤ k − 2 has been used in the fourth equality. And the last
equality is just (32). We have completed the proof that (12) is a valid expression
for the next carry bits.

B Proof of Proposition 2, equation (13)

The proof for (13) is very similar to that of (12) and hence we shall be very
brief. We ask the readers to read Appendix A before reading this section. The
carry bit is given by

ct+1
k−1 ≡ b(

∑
j xt

j + ct)/2kc (mod 2).

Evaluation of (11) at
∑

j xt
j = 0 and 2k shows that fk−1,0 = 0 and fk−1,2k = 1,

hence we now always have St
2k as a linear term, with coefficient equal to 1, in

the sums (11) and (13). The temporary values x, x′, and c′ may be defined as
before. From the discussions of Section 2, one may write(

St
2k(2k+1) at x

)
= bx/2kc =

(
St

2k(2k+1) at x′
)
⊕ bx/2kc (mod 2)

and (
St

j(2
k+1) at x

)
=

(
St

j(2
k+1) at x′

)



for j < 2k. Also note that none of the terms Sj(2k+1), for j > 2k, appears in
the sum (13) and that the term ct

k visible in (13) is its only use in (13). Hence,

RHS of (13) at x and ct

=
(
RHS of (13) at x and c′

)
⊕ ct

k

=
(
RHS of (13) at x′ and c′

)
⊕ ct

k ⊕ bx/2kc (mod 2)

=
(
RHS of (11) at x′ and c′

)
⊕ ct

k ⊕ bx/2kc (mod 2)

= b(x′ + c′)/2kc ⊕ ct
k ⊕ bx/2kc (mod 2)

= b(x + ct)/2kc (mod 2)

= ct+1
k−1 at x and ct.

This completes the proof.

C Proof of Proposition 2, equation (14)

Define x =
∑

j xt
j . Careful reading of Appendices A and B shows that the first

term of (14) simplifies to

⊕jfk−1,jS
t
j+2k(2k+1) =

{
0 for 0 ≤ x ≤ 2k,

b(x− 2k + ct)/2kc ⊕ ct
k for 2k < x ≤ 2k+1,

(33)

and that the second term satisfies

ct
k

(
⊕j fk−1,jS

t
j(2

k+1)
)

= ct
k

(
b(x + ct)/2kc ⊕ ct

k

)
. (34)

It now suffices to compare the sum of these two values with

ct+1
k ≡ b(x + ct)/2k+1c (mod 2). (35)

Define x′ = x− 2k when x > 2k and define c′ = ct − 2k when ct
k = 1.

Case 1) x ≤ 2k, ct
k = 0.

This is the most easy case.

(33)⊕ (34) = 0 = b(x + ct)/2k+1c.

Case 2) x ≤ 2k, ct
k = 1.

(33)⊕ (34) = b(x + ct)/2kc ⊕ 1

= b(x + c′)/2kc
= b{(x + c′) + 2k}/2k+1c
= b(x + c)/2k+1c.

Case 3) x > 2k, ct
k = 0.

(33)⊕ (34) = b(x′ + ct)/2kc
= b{(x′ + ct) + 2k}/2k+1c
= b(x + ct)/2k+1c.



Case 4) x > 2k, ct
k = 1.

(33)⊕ (34) = b(x′ + ct)/2kc ⊕ b(x + ct)/2kc
= b(x′ + ct)/2kc ⊕ (b(x′ + ct)/2kc ⊕ 1)
= 1

= b(x + ct)/2k+1c.

This completes the proof.


