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Abstract

We present, implement and apply a new privacy primitive tiraicall “Traceable Signatures.”
To this end we develop the underlying mathematical and pobdtimols, present the concepts and
the underlying security model, and then realize the schewddta security proof. Traceable sig-
natures support an extended set of fairness mechanismbagnisms for anonymity management
and revocation) when compared with the traditional grogpaiure mechanism. We demonstrate
that this extended function is needed for proper operatiwhaalequate level of privacy in various
settings and applications. For example, the new notiomvall@istributed) tracing of all signatures
by a single (misbehaving) party without opening signatuned revealing identities of any other
user in the system. In contrast, if such tracing is implemeily a state of the art group signature
system, such wide opening of all signatures of a single sse(dentralized) operation that requires
the opening o&ll anonymous signatures and revealing the users associatethesn, an act that
violates the privacy of all users.

Our work includes a novel modeling of security in privacyteyss that leads to simulation-
based proofs. Security notions in privacy systems are &jlgicnore complex than the traditional
security of cryptographic systems, thus our modeling nalagyy may find future applications
in other settings. To allow efficient implementation of ouheme we develop a number of basic
tools, zero-knowledge proofs, protocols, and primitivest tve use extensively throughout. These
novel mechanisms work directly over a group of unknown qrdentributing to the efficiency
and modularity of our design, and may be of independentésterThe interactive version of our
signature scheme yields the notion of “traceable (anongnidentification.”
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1 Introduction

A number of basic primitives have been suggested in cryptographicrcbseadeal with the issue
of privacy. The most flexible private authentication tool to date is “greigpatures,” a primitive
where each group member is equipped with a signing algorithm that inctepagroof of group-
membership. Group-signatures were introduced by Chaum and Van iddi®] and were further
studied and improved in many ways in [11, 8, 6, 7, 4, 2]. Each signatlwe ¥@anonymous, in the
sense that it only reveals that the issuer is a member of the group, withenutieking signatures by
the same signer.

Privacy comes at a price. Unconditional privacy seems to be an at&awiiion from the user’s
viewpoint, nevertheless it can potentially be a very dangerous tool agaibkc safety (and can even
be abused against the user herself). Undoubtedly everybodystandds that privacy is a right of
law-abiding citizens, while at the same time a community must be capable of revakihgprivacy
when illegal behavior (performed under the “mask of privacy”) is detcthis balancing act is thus
called “fairness”. Group-signatures were designed with one embddatadss mechanism which, in
fact, allows for the “opening” of an atomic signature value, revealing thetiigeof its signer. Such
opening capability can be assigned to a special entity, a Trustee, whichlszaibe distributed (to
further increase privacy). Such functionality is possible in existing reese for example in the very
efficient and scalable state of the art scheme of Ateniese et al. [2].

We observe that while group signatures are a very general “privetientials” tool, their opening
capability is not a sufficient mechanism to ensure safety and/or privaayumber of settings. What
we need is additional mechanisms for lifting of privacy conditions. It mayd@aradoxical that offer-
ing more mechanisms for revoking privacy actually contributes to privadyconsider the following
scenario: a certain member of the group is suspected of illegal activitynfaitg its identity was
revealed by opening a signature value). It is then crucial to detect velgyclatures were issued by
this particular member so that his/her transactions are traced. The only soelittiche existing group
sighature schemes is to have the Group Manager (GM) open all signahwesiolating the privacy of
all (including law-abiding) group members. Furthermore, this operation dssaialability impairing,
since the Group Manager would have to open all signatures in the systethesme signatures may be
distributed in various locations. What would be desirable, instead, is toehenechanism that allows
the selective linking of the existing signatures of a misbehaving user witholating the privacy of
law-abiding group members; this mechanism should be efficient (e.g. dgregatiel by numerous
agents when required). This capability, in fact, implements an “oblivious matang” where only
signature values of a selected misbehaving user are traced. Suchiligogaperty should be offered
in conjunction with the standard opening capability of group signatures.

Another type of traceability, “self-traceability,” is helpful to the user anidigortant in our setting.
It suggests that a user should also be capable of claiming that he is thextmigiha certain signature
value if he wishes (or when a certain application protocol requires thisptHer words, a group-
member should be capable of stepping out alaiiming a certain group-signature value as his own,
withoutcompromising the privacy of the remaining past or future group-sigrathet he/she issues.
Adding self-traceability to the existing solutions in group-signatures is atsiodian ideal: at best the
user will be required to remember her private random coin-tosses ftineallignatures she signed,
which is an unreasonable user storage overhead in many settings.

Our Concept: Motivated by the above, in this work we introduce a new basic primitive whieh w
call Traceable Signatureslt incorporates the following three different types of traceability: (i)ruse
tracing: check whether a signature was issued by a given user; itecappdied to all signatures by
agents running in parallel; (i) signature opening: reveal the signer ofem gignature (as in group



signature); and (iii) signature claiming: the signer of a signature provadiiys a given signature that
it has signed. When recovering all transactions by performing useéndgrigamay be useful to avoid
collecting all signatures to a central location and in order to reduce thetofdhe GM (which may be
a distributed entity), we divide user tracing into two steps: the first is exgédytehe GM and reveals
some secret information about the user; this is given to a set of desiggeats (clerks) that scan all
signatures in parallel and reveal those signed by the suspected ugerthisit the secret information
revealed should not allow the agents to impersonate the user or violate tgratyoof law-abiding
users.

Modeling: We model our concepts of traceable signatures and their interactiviervéss traceable
identification) and define their correctness and security.

We introduce a novel way of modeling privacy systems which is more gtharaprevious models.
The model includes the definition of correctness and of security propeftibe system. In a security
system, like encryption, it is obvious who is the attacker and who tries to déferencryption device,
so adversary modeling is relatively easy. In a privacy system, on the ludinel, a protocol between
many parties may involve mutually distrusting, malicious users attacking eachfathremany sides
and in various coalitions: e.g., a server (perhaps collaborating with a&tsabsome users) trying
to violate the user’s privacy interacting with a user trying to impersonate @pgrmember. Since in
privacy systems we deal with mutually adversarial parties, we develogvanuelel that copes with
this situation and is geared towards simulation-based security proofs.

To this effect, we introduce a set of queries by which adversaries caipuate the system (and
the simulator during the security proof). Then we present an “arragafrgty definitions,” where each
definition is modeled as an adversary with partial access to the queriesseaping a capability that
the attack captures. This allows us to deal with various notions of simultameessarial behavior
within one system, modeling them as an “array of attacks” and provingigeagainst each of them.
Specifically in our setting, we classify three general security requirenttesitsapture all possibilities
for adversarial activity: misidentification attacks, anonymity attacks amdifigaattacks. We note that
previous security notions that have appeared in the group signaturéuli,esaich as unforgeability,
coalition-resistance and exculpability are subsumed by our classification.

Constructions: Our construction is motivated by the state of the art and in particular by the mathe
matical assumptions that allow a group of users to generate a multitude of kelygonaocomposite
number that are private, namely are (partially) unknown even to the gnauager who owns a trap-
door (prime factorization of the composite); such an ingenious mathematitafjsgas presented in
[2]. Due to the refined notions of fairness of our model and its extengiectibnality, we need to in-
troduce a number of new tools as well as employ a number of new cryptogramstructs that enable
the various mechanisms that our model and scheme employ. We also note ali@ue is consistent
with the present state-of-the-art revocation method for group sigrsapuesented in [9], thus member
revocation can be added modularly to our construction. We remark thas#rgracing (combined
with the GM publishing the user’s “tracing trapdoor”) can be used to impleméyye of “CRL-based
revocation” that nullifies all signatures by a private key. This type obcation has been considered
recently in [3].

In order to implement the scheme efficiently, we design a number of basicpetnd primitives
that we use extensively throughout (as useful subroutines). Aipteésature of these novel notions
and protocols is that they work directly over a group of unknown ordé&r.show useful properties of
such groups of quadratic residues that are required for the secwdfspWe then introduce the notion
of “discrete-log relation sets” which is a generic way of designing zermakedge proof systems that
allows an entity to prove efficiently the knowledge of a number of witnessesnfp such relation set
that involves various discrete-logarithms and satisfies a condition thatMaieagularity.” Triangular



discrete-log relation sets are employed extensively in our protocols bat;tntiey are a useful as an
abstraction that can be used elsewhere and are therefore of indepererest. We then define a notion
called “discrete-log representations of arbitrary powers,” as well agehanism we call “drawing
random powers” which is a two party protocol wherein one party getsratsgiscrete logarithm whose
value she does not control, while at the same time the other party gets the myblierkion, i.e., the
exponentiated value.

Based on the above primitives we present traceable signatures amdtipeavcorrectness and se-
curity. We remark that our traceable signature scheme adds only a domaamead to the complexity
measures of the state of the art group signature scheme of [2].

Applications: We demonstrate the power of the new notion by presenting a number of digpigca
One generic application is transforming an anonymous system to one witlpfifacy.” Another is a
mix-net application where originators of messages or messages of aratwigian be opened, while
otherwise retaining privacy. A specific application to open-bid auctionis@sdiscussed.
Organization: In section 2 we present basic preliminary technical details regarding tlaetialxlity
assumptions that are employed in our primitives. The main technical cont¢hisofiork starts at
section 3 that investigates certain mathematical properties of the groupdrbtjoaesidues modulo a
composite. Section 4 then describes the notion of “discrete-log relation s&ligd Section 5 presents
the notion of “discrete log representations of arbitrary powers” andid@®eé introduces the basic
protocol of “drawing random powers”. We then move to the conceptadland present definitions
and modelling of our notion in Section 7 which presents the properties andatb&lcadversarial
model of traceable signatures and identification. Combining the definitionsnaddl and the basic
protocol constructions, Section 8 deals with the design of the traceab&sigischeme, while Section
9 presents the correctness and security proofs. Section 10, in tasenps a number of applications.
Notations: The notationS(a, b) (called a sphere of radidscentered at: wherea, b € Z denotes the
setfa—b+1,...,a+b—1}. Afunction inw will be called negligible if it holds that it is smaller than
any fraction of the form# for any ¢ and sufficiently largev; we use the notationegl(w) for such
functions. The concatenation of two strings will be denoted by:||b. If a is a bitstring we denote by
(a);,...; the substrinda),|| . . . ||(a); where(a); denotes the-th bit of a. For any set4, we will denote
by # A its cardinality. If X andY are parameterized probability distributions with the same support,
we will write X ~ Y if the statistical distance betweeéf Y is a negligible function in the parameter.
Furthermore, iff andg are functions over a variable, we will wrife= g if their absolute distance is a
negligible function in the same variable. Finally note thgtdenotes the logarithm base 2, PPT stands
for “probabilistic polynomial-time,” and=4¢ means “equal by definition.”

2 Preliminaries

Throughout the paper we work (unless noted otherwise) in the grogpasfratic residues modulq
denoted by R(n), withn = pg andp = 2p’+1 andg = 2¢'+ 1. All operations are to be interpreted as
modulon (unless noted otherwise). We will employ various related security parasi@introduced
in the sequel); with respect tQR(n) the relevant security parameter is the number of bits needed
to represent the order of the group, denoted/by4¢ [logp'q’]. Next we define the Cryptographic
Intractability Assumptions that will be relevant in proving the security progeof our constructions.
The first assumption is the so called Strong-RSA assumption. It is similar inentiuthe as-
sumption of the difficulty of finding:-th roots of arbitrary elements ia;, with the difference that the
exponent is not fixed (part of the instance).

Definition 1 Strong-RSA. Given a composite (as described above), ande QR(n), itis infeasible



to findu € Z; ande > 1 such that:® = z(modn), in time polynomial inv.

The second assumption that we will employ is the Decisional Diffie-Hellman rAggan over
the quadratic residues modulo in stating this assumption we also take into account the fact that the
exponents may belong to pre-specified integer spheres{1,...,p'¢'}.

Definition 2 Decisional Diffie-Hellman(overB;, B, B3) Given a generatog of a cyclic groupQ R(n)
wheren is as above, a DDH distinguishet is a polynomial inv timePPTthat distinguishes the family
of triples of the form{(¢”, ¢¥, ¢*) from the family of triples of the forny®, ¢¥, g*¥), wherez €r Bi,

Y ER By, andz g Bs.

The maximum distance of these two distributions of triples as quantified dveossible PPT
distinguishers will be denoted bydvgDs! 5 (v); if Bi = By = Bs = {1,...,p'¢'} we will write
simpIyAdvDDH(y) instead. Thé&DH assumption suggests that this advantage is a negligible function
inwv.

We remark that when the size of the sphdBes,, B3 are sufficiently close to the order fR(n)
it will hold that Advg "l 5 (v) ~ AdvPP"(v). Nevertheless we discover that the spheres can be
selected to be much smaller than that without any degradation in security ésesrtark at the end of
section 3).

Finally, we will employ the discrete-logarithm assumption over the quadratidues modulo.
and a pre-specified spheffe when the factorization of is known:

Definition 3 Discrete-Logarithm. Given two valueg, b that belong to the set of quadratic residues
modulon with known factorization, so thatr € B : a* = b, find in time polynomial inv the integer:
so thata™ = b. AgainB3 is an integer sphere into the sgt, ..., p'¢'}.

Conventions. (i) our proofs of knowledge will only be proven to work properly in thenket-verifier
setting. On the one hand, the honest-verifier setting is sufficient foupnagl signatures. On the other
hand, even in the general interactive setting the honest-verifier soe&aarbe enforced by assuming
the existence, e.g., of a beacon, or some other mechanism that caneptaditied randomness; alter-
natively the participants may execute a distributed coin flipping algorithm (warielby now standard
tools for converting random coin honest verifier scenario to a gepssaf). Such protocols where the
randomness that is used to select the challenge is trusted will be calledhitalio(ii) the public pa-
rameters employed in our various protocol designs (e.g., the composite rmefiwiil be be assumed
to be selected honestly (in a system initiation protocol or procedure).

3 Sphere Truncations of Quadratic Residues

Let n be a composite so that= pq andp = 2p’ + 1 andq = 2¢' + 1 with p,q,p’, ¢’ all prime. Let
a be a generator of the cyclic group of quadratic residues moduRecall that the order ) R(n) is
p'q. LetS(2¢,2H) = {2¢ — 2 +1,...,2° +2# — 1} be a sphere for two parametérg: € N. Observe
that#5(2¢, 2#) = 2#+1 — 1,

In this section we will prove a basic result that will be helpful later in the asiglyf our scheme. In
particular we will show that, assuming factoring is hard and the fact theespfig¢, 2#) is sufficiently
large (but still not very large) the random variabfewith = € S(2¢, 2#) is indistinguishable from the
uniform distribution ovei) R(n); note that the result becomes trivial if the size of the sphere is very
close to the order af) R(n); we will be interested in cases where the size of the sphere is exponentially



smaller (but still sufficiently large). Intuitively, this means that a truncatiothet) R(n) as defined by
the spheres(2¢, 2#) is indistinguishable to any probabilistic polynomial-time observer.

Letrv = [logp/q’]. Consider the functiotf, ,,(z) = g*(modn) defined for ale < n. The inverse
of this functionf, } is defined for any element i@ 2(n) so thatf, . (y) = = wherez < p/¢q’ and it
holds thata® = y(modn). Observe that: can be written as a-bitstring. Note that ify is uniformly
distributed ovefZ it holds that every bifz); of z withi = 1, ..., v follows a probability distribution
DY with support the se{0,1}. Note that for theO(log~) most significant bitg it holds that the
distributionD; is biased towards 0, whereas for the remaining bits the distrib@jois uniform,; this
bias is due to the distance betwe®nandp’q’. Below we define the simultaneous hardness of the bits
of the discrete-logarithm function, (cf. [15]):

Definition 4 The bits[l,...,j],l > j, offg—ﬁ are simultaneously hari the following two distributions
are PPT-indistinguishable:

o theSD/ distribution: (£, }(y)):....;,¥) Wherey €r QR(n).
. theSR{ distribution:(r|| . .. ||7;, y) wherey eg QR(n) andr; «— DY fori =1,...,j.

Hastad et al. [15] studied the simultaneous hardness of of the discretétog over composite
groups and one of their results imply the following theorem:

Theorem 5 The bits[v, .. ., j] of fgj}L are simultaneously hard under the assumption that factaoring
is hard, provided thag = [5] — O(logv).

Now let us return to the study of the subsetiiR(n) defined by the sphetg(2¢, 2#). Consider the

uniform probability distributiori/ overQR(n) and the probability distributio@f(ze’w with support
QR(n) that assigns the probability/ (2#! — 1) to all elements® with 2 € S(2¢,2#) and probability
0 to all remaining elements of the support. The main result of this section is thevifugjdheorem:
Theorem 6 The probability distribution@f@e’w) andi/ with support)) R(n) are PPT-indistinguishable
under the assumption that factorimgis hard, provided thag: S (2¢, 2#) = 2[51-0Ollogv),
Proof. Let A be a probabilistic polynomial-time distinguisher for the two distributi@rw\de(Qz’Zu).
Consider the modification ofl called.A’ that given the inpub it simulatesA on inputba—2"+2".

We will show how.4A" can be turned into a distinguisher for the simultaneous hardness of the
sequence of bitg, . .., u + 2] for the discrete-logarithm function. By theorem 5 the result will follow.

Leté = (c||...||cut2,y) be a challenge for the simultaneous hardness of the discrete-log bits
[v,...,u+ 2]. We compute the following:

y* =4f yafcl,2”_1fcu_12”_27...70H+22“+1

observe that it is drawn from the probability distributio§8D}, , it follows that the above oper-
ation will cancel all the high order bits af, and as a resul§* will be an element that is uniformly
distributed over the subsét, a, ..., a2 ~1} of QR(n). Alternatively, if ¢ is drawn from the proba-
bility distribution SR, _, it follows thaty* is uniformly distributed ove@) R(n).

It is clear from the above thad’ is a distinguisher between the probability distributi#®;,
andRD), ., with the same advantage as the distinguishing advantage létween the probability

distributionst@e’Q“) andl{. Based on the assumption on the size of the spB¢é, 2#) we can
employ theorem 5 to complete the proof. a



Remark. The results of this section suggest that we may truncate the range of @mardiable

a®, r €g {1,...,p'¢'}, into a subset of) R(n) that is of size approximately/p’q’; this truncation

will not affect the behavior of any polynomial-time bounded observerpdricular, for the case of
the Decisional Diffie Hellman assumption)R(n) over the sphereB;, B2, 33, we may use spheres

of size approximately/p’q’; under the assumption that factoring is hard, we will still maintain that
Advghi! 5. (v) = AdvPPH (1), In some few cases we may need to employ the DDH over spheres that
are smaller in size thag/p’q’ (in particular we will employ the sphei8, to be of size approximately
Vp'q"). While the DDH over such sphere selection does not appear to be itasigéld be possible that
this version of DDH is a stronger intractability assumption. Neverthelessmwarkethat if we assume
that factoring remains hard even[if /4] of bits of the prime factors of are knowr then as stated

in [15] approximately 3/4 of the bits qujg are simultaneously hard and thus, using the methodology
developed in this section, we can still argue thdtg5! 5. (v) ~ AdvPPT (1), even if B, is selected

to be of size approximately/p’q’.

4 Discrete-log Relation Sets

Discrete-log relation sets are quite useful in planning complex proofs ofvlenige for protocols
operating over groups of unknown order in general. BelowGdbe the unknown order group of
quadratic residues module, denoted also by R(n), wheren is an RSA modulus that satisfies
n=pq=(2p'+1)(2¢ + 1) with p, ¢, p’, ¢’ all prime numbers.

Definition 7 A discrete-log relation se® with z relations overr variables andm objects is a set of

relations defined over the objects, .. ., 4,, € G and the free variablesa;, .. ., «, with the following
specifications: (1) The-th relation in the setR is specified by a tupléai, ..., a},) so that eachd)
is selected to be one of the free variablgsy,...,a;} or an element ofZ. The relation is to be

interpreted asH}”:l A?j = 1. (2) Every free variabley; is assumed to take values in a finite integer
rangeS (2%, 24i) wherel;, ui; > 0.

We will write R(a, ..., ) to denote the conjunction of all relatiorﬁg.”:1 A;j = 1 that are
included inR.

Below we will design a 3-move honest verifier zero-knowledge proe¢ @.g. [12]) that allows
to a prover that knows witnesses, . . ., =, such thatR(z, ..., x,) = 1 to prove knowledge of these
values. We start with a definition:

Definition 8 A discrete-log relation seR is said to betriangular if for each relationi containing
the free variablesy,,, o, , - . . , ay, it holds that the free-variables,,,, ..., a,, were contained in
relations1,...,i — 1.

The 3-move proof of knowledge is presented in figure 1. The followingliary lemma will be
useful in proving the properties of the protocol.

Lemma 9 Consider a fixed: € S(2¢,2*) and the random variables €p +{0,1}<“+k) ¢ ep

{0, 1}*. It holds that the random variablé = ¢ — c(z — 2°) is statistically indistinguishable from
the random variables € {0, 1}<(“+*)_ The parameter assumption required for statistical indistin-
guishability (assuming is the security parameter andy are functions irk) is that(e — 1)(n + k) =
w(log k); in particular this forcese — 1 to be an asymptotically larger function inthan any function

of the formlog k/(u(k) + k).

'Efficient factorization techniques are known when at I¢agB] bits of the prime factors af are known, [15].
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Proof of knowledge for a Discrete-Log Relation Sef:
objectsAy, ..., A, r free-variablesy, . . ., .., parameterse > 1,k € N,
Each variabley; takes values in the rang# 2%, 2+5)
P proves knowledge of the witnessese S(2%, 2€+R+2) st R(xy, ..., 2,) = 1

P %

forw e {1,...,r} selectt,, € £{0, 1}(rwtk)

fori e {1,...,2} setBi = [[;30.i—a, A" BLo s c€g{0,1}*
J o

forw e {1,...,7r} Setsy, =ty — ¢+ (1, — 20w) "2 Verify:

forwe {1,...,r}
Sy €7 £{0, 1}c(Hwtk)+1
forie {1,...,z2}
? 2210

P : ai'
Hj:EIw,a;-:aw Ajw = Bl’(Hj:a;-EZ Ajj Hj:EIw,aé:aw Aj )C

Figure 1:Proof of Knowledge for a Discrete-Log relation et

Proof. We will denote byD, the distribution of the random variabkeand by D, the distribution of
5=t — c(x — 2%. Assume that the support of the two random variablés is

e RegardingD, observe that a certaisy in £{0, 1}<(“**) has probability of being selected equal
to 5mr (uniform probability distribution). Anysy ¢ +{0, 1}“**) has probability 0.

e RegardingD; observe that a certaisy has the following probabilities of being selected:

1. For—2¢(uwtk) 4 optk g0 < 2€(utk) _ outk for each of the2® differentcy’s we can find

aty such thatsy = ty — co(z — 2¢), as a result the probability of obtaining the given
. . k

according toDs IS 52t = 5T

2. Forsg > 2¢(mtk) fontk or 5o < —2¢(utk) _ontk the probability of obtaining, according
to Ds is O (it is impossible to solve the equatien = ty — cox for tg, ¢g in their respective
domains).

3. For the remaining, € Z the probability of selecting them accordingy is smaller than
smr but potentially higher than 0.

It is clear from the above that the absolute difference between thelglibpaf a certainsy ac-
cording toD, andD, is 0O for the integer ranges of cases 1 and 2 above. The distribdipaad D,
will accumulate some statistical distance though due to their different betawigyrthat belong to the
integer range specified in item 3. In this case, for a spegjfidistributionD, assigns probability either
0or W whereas distributio®, assigns probability that belongs in the real inten{Oalm).
Clearly, in the worst case the absolute difference Willjggj,c)ﬁ The number of elementg of case 3,
are2+tk+2 thus it follows that the statistical distance of the distributi®hsandD, cannot be greater

than

2u+k+2 1

oe(utk)+1 — 9(e—1)(utk)—1

9



Clearly under the assumption that— 1)(x + k) = w(log k) the above distance is negligible in
and as a result the distributiof% ., andDs;, are statistically indistinguishable. O

Theorem 10 For any triangular discrete-log relation sdt the 3-move protocol of figure 1 is a honest
verifier zero-knowledge proof that can be used by a party (praueoyving a witness foR to prove
knowledge of the witness to a second party (verifier).

We remark that the proof assumes that the prover is incapable of sahengtrong-RSA problem;
under this assumption the cheating probability of the prover/i2*. Regarding the length of the proof
we note that the proof requires the first communication flow from the ptowee verifier to be of size
z QR(n) elements (where is the number of relations i) and the second communication flow from
the prover to the verifier to be of total bit-lengph, _, (e(pw + k) + 1).

Proof. Leta = {aq,...,a,} be the set of the free-variables Bfandx, . .., z, the witness forR
that is in the knowledge of the prover; further assume thét. . ., a’,) is thei-th relation of R and
that there are relations inR.

In the first move the prover seledts €p +{0,1}<(#w+k) for allw = 1,...,r. Then, for each
relationi € {1, ..., z} The prover computes the valig = [| A§ and transmits all values
By,..., B, to the verifier.

The verifier selects € {0, 1}* and transmits to the prover. The prover in response prepares the
valuess,, = t,, — c(zy — 25w) forw = 1,...,r and transmits them to the verifier.

The verifier performs the following checks in order to accept the proof:

j:Hw,a;-:aw

e Checkss,, € +{0, 1}tk + forallw =1,...,r.
e Tests the equalities far=1,. .., z,
v 2B % 2w
II 4r=mCIl 4 II 47
j:ﬂw,aé:aw j:a;'.ga j:Hw,aé.:au,

Next we argue for the three properties of the above protocol, comptstes@undness and honest
verifier zero-knowledge.

1. Completeness follows easily by inspection. In particular observe that if 0, 1}%, it follows
that eache(z,, —2%) € +{0, 1}#«** (recall thatz,, € S(2%,2#v)), and as a resutt, —c(z, —
2tw) € +{0, 1}<reth)+1 glways.

2. Regarding soundness we (&, ..., B., ¢, s1,...,S) and(B1,..., B, c* s},...,sk) be two
accepting conversations. between a prover and the (honest) verthiar % ¢*.

First observe that due to the triangularity property it holds that the fieioaship inR involves
only a single free variable, say,, at locations7,, C {1,...,m}. Now let us denote by

A=l Ty Aj.
Because the two conversations are accepting it follows that:

Swo — S 2w a’ c—c*
Ao~ = (AP T A7)
JETwq

Next, we computé = gcd(sw, — 55,, ¢ — ¢*) anda, § such thab = a(sw, — s5,,) + 6(c —c*).
Observe that with very high probability it should hold tldahas no common divisor with the
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order of G (otherwise we can turn the prover into a factorization algorithm) and asu# ies
follows that:

*
swg ~Sw

A5 = (AQZ“’O

€ Twg
Now observe that,

swq sk

07’“0 c= c Ly at o c—c*
A=A = I A7)

Observe now that it — ¢* > § it follows easily that we can turn the prover into an algorithm
that solves a given strong-RSA challenge (indeed, given the Str@fgeRallenge/” we would
select at random the elements{od; | j € J,,} with the conditionl—[jejw0 A; = K and as

shown above we would obtain tfg<--root of K).
It follows thatc — ¢* = § and as a result it follows that:

CTT 452 ] 4% =1

J EJ’wO €-.7w0

The above equality implies that we have constructed the witness fowgth free variable

8% —Sw
Ty = —2 _O + 2fwo.

Observe that SINCRy,, 5%, € £{0, 1}tk +1jt follows thatsk, — s, € £{0, 1}Huth)+2
and also thafe "0 ¢ +{0, 1}<0uw+h)+2 As a resulti,,, € §(200, 2< k) +2),

Now assume that we have processed all the relations with index less.th&e process the
i-th relation as follows: first, observe that due to triangularity, relatimvolves the variables
Qg s Qs 5 - - - 5 Oy, SO that the variables,,, , . . ., oy, Were contained already in the previous
relations. It follows by an inductive argument that we have alreadytnaried witnesses for the

free-variables:,,, = w + 2bwr s Ty, = + 2fwy, . As before let7,,, be the set
of locations of the-th relation that mvolve they,,, variable and similarly defing,, , ..., Ju,;
we also set7 = U,—,.. pJw,. Furthermore letd,,, = Hjejw Ajfores =0,...,b. Since the

two conversations are accepting, it follows that

[I o4 s=(Il 47 I 4"

j:EIw,a;.:aw j:a; €L j:ﬂw,aé:aw

sfﬂb—swb

Now observe that due to the conditions that we have foi-therelation it holds that

s*

H Asm*sru _Ast SwOASwl Swl Awa— wy,
j == wo e Ay

b

j:Hw,a;:aw

and

(li! 0 * ~olq ~ol ~olw * a’ *

j 2fwNe—c* 2°wo A2°w1 2"%b \c—c jyc—c
( H Aj H Aj ) - (Awo Awl . 'Awb ) (H Aj )
j:ag €Z j:Hw,aé:aw JgT

11



From the above we obtain that:
* * *\ ol * ) olw i
A 8wy S5 Ae—c*)2two 48ty —Swy H(c—c*)271 A8y, —Swy+(c—c*)2"b a’ . ._ .
Ay 70 = Algme2m0 4 At (JT A7)
JET

Now due to the fact that for allc {1,...,b} it holds thatz,, = @ + 20 with § = ¢ — ¢
we obtain thak}, — s, + 2% (c — ¢*) = &y, (c — ¢*) and as a result,

A0 = (A2 Ay Ay TT A7)
J¢T
Now we define’ = ged(sy, — s,,, ¢ — ¢*) ande’, §’ such thad’ = o/ (s, — s3,,) + ' (c — ¢*)
and with an identical argument as in the case of the first relation, we centhad it must be
the case that’ = ¢ — ¢* = 4. Moreover, as in the case of the first relation, we construct
the witnessz,,, = m + 2%wo for the free-variable,,; it is easy to verify thatt,,, €
S(2£u10 , 25(,1141)0 +k)+2) .

3. Regarding honest verifier zero-knowledge, we will describe a storuiar protocol transcripts
between the honest prover and the honest verifier. The simulatortepasfollows: it selects
cer {0,1}* andforj = 1,...,r, §; €g +{0,1}<+*) and it computes foi = 1,. ..,z the

> ) Sw ) a} ’ QHw\ —¢ .
valuesB; = Hjﬂw@}:aw Aj (sza;ez A; Hjﬂw’a;_:aw A57")7¢. The simulator outputs the
transcript

(Bi,...,B.,c,81,...,5)

Then we need to show that the simulated transcripts are statistically indistireigleishom
transcripts that are generated in conversations between the hongstamd the honest verifier.
This boils down to calculating the statistical distance between the randomlearidimputed as
t — c(x — 2%) for afixedz € S(2¢,2*) andt € +{0, 1}<+k) andc € {0, 1}* to the random
variables €z {0, 1}<*+%), This follows immediately from lemma 9.

O

4.1 Examples of Discrete-Log Relation Sets

Proving knowledge of a witness for a discrete-log relation sets can leugevariety of settings. We
list some of them below:

Proving knowledge of a discrete-logarithm over a group of unknowleioConsider the base elements
Ay, Ay and the free variable € S(1,2l°s#G1=1); we consider the discrete-log relation set with a
single relationA$ A; ' = 1. Itis immediate that this relation set is triangular. Furthermore, it is easy to
see that a proof of knowledge for the above discrete-log relation setsatloe to prove knowledge of
the discrete-logarithm ofl; baseA;.

Proving knowledge of a discrete-logarithm inside an intervkbllowing the above description but
the variablea will be restricted to a rangé(2¢,2#). Note that the soundness property will only
guarantee that the constructed witness lies in the extended sgfét@c(#+%)+2): tighter intervals
can be achieved by increasing the size of the zero-knowledge pesoé.g. [5].

Proving knowledge of a committed discrete-logarithm representati@h A, Ao, Az, A4, A5 be the
objects and consider the free-variabtasas € S(1,2°8#G1=1) we define two relationd* A, =
landA$* AP A = 1.

12



First, note that the above discrete-log relation set is triangular. Furtherinaltows a proof of
knowledge for a representation 4§ over the baseds, A,.

4.2 Spheres and Innerspheres

As demonstrated in the proof of knowledge of a discrete-log relation setwifreess belongs to a
certain spheres (2, 2#) we are able to enforce the membership of the witness to an extended sphere
S(2¢, 25(”+’€)) based on the parametérande (recall that the parameteksande calibrate the prover
cheating probability and the statistical distance of the zero-knowledge simuldit@ zero-knowledge
argument, respectively).

Frequently, sphere relationships will be immensely useful in proving pties®f our constructs. If
proof of discrete-log relation sets are to be employed in proving the seofiritgre complex structures
and enforcing various sphere relationships, we should take into adbaufiact that the witness interval
is slightly expanded because of the way the soundness proof is pedfote that the tightness can be
increased by employing more complex interval proofs (see [5]); nesledh the amount of tightness we
achieve is sufficient for our setting. Given a sphéte’, 2#) we define its innersphere for parameters
e,k as followsSF (2, 24) =g S(2¢,2"7 %), If a witnessz € S¥(2¢,2") is employed in a proof of
discrete-log relation set, then the verifier is guaranteed that the prossegges a witness §(2¢, 2).

5 Discrete Log Representations of Arbitrary Powers

In this section we introduce and present some basic facts about “dikgyetpresentations of arbitrary
powers” inside the set of Quadratic ResiddgB(n) wheren is a composite modulus with = pg =
(2p" +1)(2¢' + 1) where allp, ¢, p', ¢’ are prime. Lev = [logp'q'].

We will define three spheres, I', M inside the sef0, ..., 2" — 1} so that the following conditions
are satisfied:

S1. (minT)? > maxT.
S2. M has size approximately equal2&’/2!.

S3. minI" > max M max A + max A + maxM

The above set of conditions is attainable as shown by the following possiklgtisn: for simplic-
ity, we assume that is divisible by4:

e A=S5(2i71 2771, note that¢ A = 27 — 1 andmax A = 27 — 1.
e M =S(2271,2271), note thatM = 2z — 1 andmax M = 27 — 1.

o I = S(27 +2571,2571), note that#T' = 27 — 1, minT = 2% + 1 > maxAmaxM +
max A + maxM = 2% — 1.

In the exposition below we use some fixed valugs:, b € QR(n).

Definition 11 A discrete-log representation of an arbitrary power is a tuplg e : =, 2’) so that it
holds A¢ = aga®b® with z,2’ € A ande € T.

13



In this work we will be interested in the following computational problem:

© The One-more Representation Problegivenn, ag, a, b and K discrete-log representations of arbi-
trary powers find “one-more” discrete-log representation of an arpirawer insideQ R(n).

The main result of this section, stated in the theorem below, establisheslthiat)sbe One-more
representation problem cannot be substantially easier than solving ting-&&A problem.

Theorem 12 Fix ag,a,b € QR(n) and spheres\, M, I" satisfying the above properties. L&t be a
PPTalgorithm that givenk™ discrete-log representations of arbitrary powers ins@&(n) it outputs

a different discrete-log representation of an arbitrary power ingigig(n) with non-negligible prob-
ability. Then, the Strong-RSA problem can be solved with non-negligibbabpility. In particular if

a is the success probability ¢¢1, the Strong-RSA problem can be solved with success probability at
leasta/2K.

Proof. Suppose we are given an instance of the Strong-RSA probler), wheren is a composite
modulus and € Z; we will show how to useM to construct a paifu, ¢) such that.® = z(modn).

Below we will describe an algorithm that solves the given Strong-RSA instaithe algorithm
is comprised of four games that are played at random. The major issue i @hthes is the con-
struction of the discrete-log representations of random powers thhtiaded to the adversary and the
relationship of the output of the adversary to these representationgublymes construct somehow
the discrete-log representations of random powelrse; : z;,z;) fori = 1,..., K, and obtain the
output representation of the adversdr; ¢ : i, 4'). Each game may fail according to the following
specifications:

1. Game 1 will fail ifé has a non-trivial common divisor with any of the valugs. . ., ex.

2. Game 2 will fail if (i) ¢ is relatively prime to all vaJ/uegh ...,ex, and (ii) it is not possible to
findaj € {1,..., K} for which it holds tha®~%i5" ~%5 = 1 with eitherz # x; or &’ # .

3. Game 3 will fail if (i) ¢ is relatively prime to all values,, ..., ek, and (ii) for a pre-selected
valuej it does not hold that; dividesé and it does not hold that; = # andz’; = 4.

4. Game 4 will fail if (i) ¢ is relatively prime to all values, ..., ek, and (i) for a pre-selected
valuej it does not hold that; dividesé and it does not hold that*~%i5" ~%5 # 1.

Observe that playing the above games at random covers all possilblédrstof the algorithm\1
with respect to the relation of the output discrete-log representation to\tbe ghes. The detailed
description of the four games follows below.

Game 1.

1. Selectrandomy,...,zx,z},..., 2% € Aandey,...,ex €T.

2. Seta = 2% (modn), ag = a” andb = a” wherer, " are random integers ih. Observe
that due to theorem 6 and the properties of the selected sph€82) it holds that the values
ap, a, b are indistinguishable from random elementsdt(n).

3. Computed; = Z(mﬁwﬂlm;)%(modn), foralli = 1,..., K. Observe that$’ = aga® b"
foralli = 1,.... K, i.e., (A, ¢ : x;,}) are discrete-log representations of arbitrary powers
inside@R(n) overag, a, b.

14



4.

Simulath by providing theK discrete-log representations of arbitrary powers computed above
and let(A, ¢ : #,7’) denote the output o1 which is a discrete-log representation of an arbitrary
power (distinct from(A;, e; : z;,2}) fori =1,..., K).

. If ¢ has a non-trivial common divisor with any ef, . . . , ex abort.

Now observe thati® = aa®b®"; based on our selection of the valugs a, b it is easy to see
that aga®b?’ = (rtétr'ier..ex  Gete = (r+ &+ r'it')e;...ex. Next we compute :=
ged(é,é) = ged(r + & + 7’3, €). In the casé has a non-trivial common divisor with the order
of QR(n) we can factom and thus compute the solution of the given Strong-RSA instance; in
the other case, we compute such thaty = aé + Fé and we have

«

5 — La5tB

= (25)2205 = (A45)22F5 = (A22P)5

Sl
|

Clearly if § < é we are done, since the above equations reveals a solution to the givag-Stro
RSA instance. Observe that< r + Z + 2/, and due to property S3 of the sphere selection it
holds thaty < e for anye € I and as a result < é. It follows thatu := 2*A? ande := § isa
solution for the Strong-RSA instange, z).

Game 2.
1. We flip a random coibit €z {0, 1} and ifbit = 0 we setv, = z andv;, = 2", otherwise we set
v = 2" andv, = z, wherer’ € M.
2. Selectrandomy, ..., zx,x},..., 2% € Aandey,...,ex €.
3. Seta = v{!°¥(modn), ag = a” andb = v;* ¥ (modn) wherer is a random integer ibl.

Due to sphere selection property S2 and theorem 6 it holdsghat b are indistinguishable from
random elements @) R(n).

; el---ei

. Computed; = (agv¥iv,’)” % (modn), foralli = 1,..., K. Observe tha{’ = apa®i b

foralli = 1,..., K, i.e., (A e : x;,}) are discrete-log representations of arbitrary powers
inside@R(n) overag, a, b.

. SimulateM by providing theK discrete-log representations of arbitrary powers computed above

and let(A, ¢ : 2, #') denote the output of1 which is a discrete-log representation of an arbitrary
power (distinct from(A;, e; : z;, z) fori = 1,. .., K).

. If éis relatively prime with alky, .. ., ex game 2 aborts.

. For allj we computeA = # — z; andA’ = —' + 2; We check whethes® = b". If we find

no j for which the test passes or if we find onl for which it holds thatA = A’ = 0 we abort
game 2. Below we assume thasatisfiess® = v so that not both\, A’ are 0. Now observe

thatygiex8 = ugl'“eKA/ which is equivalent te2* = v since the primes;, ..., ex do not
divide the order of)R(n).
. (Case a) suppose that # 0 and A’ # 0. We compute) = ged(A, A’) anda, 8 such that

J = alA+ A

Observe that if we come up withdthat divides the order of) R(n) we can factom and as a
A N

result solve the Strong-RSA instaneez. In the other case, it will hold that’ = vb5
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Now observe that,

A A’ A’ A’ /
va = (08 )* (0" )? = (1,7 ) (v )’ = (o)) ¥
Now if A’ > § it follows easily that since), is be equal to: with probability 1/2, the above
relation reveals a solution for the Strong-RSA instance.

In the case)\’ = ¢ it follows that A’ dividesA. Again if A’ has a non-trivial common divisor
with the order of the group) R(n) we can factor: and thus solve the Strong-RSA instance.

A
In the other case observe that it will hold that' = v, and sincey, = z with probability 1/2
we will solve the given Strong-RSA instance, unléss= A’, something hardly possible since
this would makey, = vy, which is a negligible probability event.

9. (Case b). Suppose that= 0. It follows thatvbA’ = 1 and as a result eithex’ has a non-trivial
divisor with the order of) R(n) that allows us to factor and thus solve the Strong-RSA instance
n, z or it also holds that\’ = 0. But this cannot be true as this case has been excluded. The case
whenA’ = 0 is similar.

Game 3.
1. We selectrandomy, ..., zx, 2}, ..., 2% € Aandey,...,ex €T.
el.A..SK ) , el.A..eK
2. Selecj €g {1,...,K}andsett =v, 7 (mod n),ap = A} /(a*b")andb=v, “ (mod

e]...er

n) whereA; = z % (modn) andv, = 2" andwv, = v’ with r,7’ random integers iM.
Clearly a, b are indistinguishable from random elements(oR(n) given the sphere selection
property S2, theorem 6 and the fact that. . . , e are all relatively prime to the order GfR(n)
(and this fact holds for a fixed). Moreover since: is a free selected element §fR(n), also
agp is uniformly distributed ove€) R(n) (sinceey, ..., ex are all relatively prime to the order of

QR(n)).

/.0 €l--CK
T;—; x,—x

3. Computed; = (z%v," “v," 7) % (modn), foralli =1,...,5—1,7+1,...K. Ob-
serve thatd?" = apa®ib® foralli = 1,..., K, It follows that (A;,e; @ z;, ) are discrete-log
representations of arbitrary powers foe 1,..., K.

4. SimulateM by providing theK discrete-log representations of arbitrary powers computed above
and let(A, ¢ : ,7’) denote the output of1 which is a discrete-log representation of an arbitrary
power (distinct from(A;, e; : z;, z}) fori = 1,..., K).

5. If éis relatively prime tae; game 3 aborts.

6. Ifx; # zor x; # 7/ then game 3 aborts. In the other case, observeAfYat: A¢. It follows

that, A = z¢1-¢x  We compute) = ged(é,e1 ... ex) anda, f such thaty = aé + ey ... ex.
In the case that has a non-trivial common divisor with the order@f(n) we can factor and
thus solve the given Strong RSA instance. In the other case it holds,

p = o5 BTG 2 of (T8 2 (22485

which yields a solution to the given Strong RSA instance undessé. But this in turn means
thateé dividese; ... ex which implies that either (if = e; which is not possible since in this
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case the two representatiofd;, e; : z;, x7) and (A, ¢é : i,3') are the same or (i} = ejej
which is also not possible since in this c@sg I" (due to sphere selection property S1).

Game 4.

1. Selectey,...,zx, 2, ..., 2% € Aandey,...,ex €T.
elA.AeK . B ,
2. Selectj g {1,...,K}andseu = z % (modn), ag = A}’ /(a"b") andb = a” where
A; = a" andr,r’ are random integers ikl. As in game 3, we argue thag, a, b are indistin-
guishable from random elements@fRR(n).

. i el ! Y EL O
3. Computed; — "I T TEGY (hodn), forall i = 1,..., — 1,j+1,... K.
Observe thatl;" = aga®ib®i foralli = 1,..., K, It follows that(A;, e; : z;, z;) are discrete-log
representations of arbitrary powers foe 1,..., K.

4. SimulateM by providing theK discrete-log representations of arbitrary powers computed above
and let(A, é : &, ') denote the output of1 which is a discrete-log representation of an arbitrary
power (distinct from(A;, e; : z;, z}) fori = 1,..., K).

5. If it holds thatgcd(é, e;) # e; then the game aborts (note thagihas a non-trivial common
divisor with some ofey, ..., ex game 4 will abort with probability onlyi /K). In any other
casegcd(é,ej) = e; (due to the fact that; is a prime number) and as a result there exists an
integert such thaé = te;.

Next we check whethef — z; + /(2" — 27) # 0 and in this case we proceed as follows:

Let Z = A!/A;. It cannot be the case that= 1; indeed ifZ = 1 this means that’ = A; or
equivalently thatd® = A%’ which implies tha®b® = a®b% anda® % (@ =%) — 1. From
this we obtain thaty = & — z; + /(' — 2}) = 0 since is a positive integer (due to sphere
selection property S1) that is smaller than the order of the group (the ordy cdise that this
may happen is in the case thahas a non-trivial common divisor with the order of the group
QR(n) from which we can facton).

At e Aé Ty’
Zej . (A )6] B A . apa b N aﬁc—xj—&—r/(i/—:p;) . a’y
= [ — = —=——= =
Aj Aj] aoaijxj

Leté := y2=<, it follows that 2% = €. Suppose thaf := ged(e;, |€]); it is easy to see that
d = ged(ey, |]) sincee; is relatively prime with%. Due to the sphere selection property S3
it follows thate; > |y| and sincee; is a prime number, it holds that= 1. It follows then that
we can findn, 8 € Z such thatl = ae; + 3¢ and as a result = 2*%+5% = (22 Z8)¢ |t follows
thatu := 2*ZP ande := e; is a solution for the Strong-RSA instan¢e, z).

As a result, using\ we can construct a probabilistic algorithm for Strong-RSA by playing the
above two games. W is the success probability g§1, it is easy to see that the above algorithm will
solve the Strong-RSA problem with success probability at leA2# . a
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6 Non-adaptive Drawings of Random Powers

Consider the following game between two players A, B: player A wishes tetsei@ndom powes”
so thatr €5 S(2¢,2) wherea € QR(n) with n = pg = (2p' +1)(2¢' + 1). Player B wants to ensure
that the valuer is selected “non-adaptively” from its respective domain. The outputipations of
the game is that player A returnsand that player B returng®. Player B is assumed to know the
factorization ofn. In this section we will carefully model and implement a protocol for achietting
two-player functionality. The reader is referred to [14] for a gendistussion of modeling secure
two-party computations.

In the ideal world the above game is played by two Interactive TM's (ITM'g, By and the help of
a trusted third party ITM following the specifications below. We note that we use a special symbol
to denote failure (or unwillingness to participate); if an ITM terminates with ahgroutput other than
1 we say that it accepts; in the other case we say it rejects. From all thiblposays to implement
Ay, By one is considered to be the honest one; this will be marked/asB{’ and is also specified
below.

0. The modulus: is available to all parties and its factorization is knownRg. The sphere
S(2¢,2#) is also public and fixed.

1. A sends a messagefgo, L} toT. A transmitsgo.
2. By sends a message fgo, L} to 7. B¥ transmitsgo.

3. If T receivesgo from both parties, it selects € S(2f, 2#) and returnse to Ag; otherwiseT’
transmitsL to both parties.

4. Ay selects a valu€’ € Z¥ and transmits eithef’ or L to 7. A¥ transmitsC' = a® mod n.

5. T verifies thata” = C(modn) and if this is the case it transmis to both players. Otherwise,
(or in the cased transmitted | in step 4),T transmits L to both players.B}! terminates by
returningC or L in the case of receiving. from T'. Similarly A}’ terminates by returning, or
L in the case of receiving fromT'.

Let Imp =4¢ (Ao, Bo) be two ITM’s that implement the above protocol with the help of the ITM
T. We define byOUT'{'" (init4(v)) andOUT " (init(v)) be the output probability distributions of
the two players. Note thabit4 () contains the initialization string of player A which contains the
modulusn, and the description of the sphe$¢2¢, 2#); similarly initz(v) is defined asnit 4 () with
the addition of the factorization of. Below we will use the notatiofDEAL'™T (in4,inp) to denote
the pair(OUT'}'" (in4), OUTHT (ing)). Finally, we denote bym the pair(A}, BL).

The goal of a protocol for non-adaptive drawing of random powsetise simulation of the trusted
third party by the two players. Ldin = (A;, B;) be a two-player system of interactive TM’s that
implement the above game without interacting with the trusted third garfys above we will denote
by OUT'}{‘1 (in4) the output probability distributiod;, and likewise 1‘0|OUT53”‘1 (inp). Also we denote
by REAL"“(z’nA, inp) the concatenation of these two distributions.

Definition 13 (Correctness) An implementatidm = (A;, B;) for non-adaptive drawings of random
powers iscorrectif the following is true:

REAL™ (in4, ing) ~ IDEAL™F (in4, ing)
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whereing « init4(v) anding « initg(v). Intuitively the above definition means that the imple-
mentationim should achieve essentially the same output functionality for the two players &etd
honest implementation.

Defining security is naturally a bit trickier as the two players may misbehavigaily when
executing the prescribed protocol implementation= (A;, By).

Definition 14 (Security) An implementatiohm = (A;, B;) for non-adaptive drawings of random
powers issecurdf the following is true:

VA* JAL REALATB (in 4, ing) ~ IDEALASBS) (in 4, ing)

VB! 3B; REALAVBY (iny. ing) ~ IDEALYAYB) (iny, ing)

wherein 4 < init4(v) andinpg < initp(v). Intuitively the above definition means that no matter what
adversarial strategy is followed by either player it holds that it can be tiemsed to the ideal world
setting without affecting the output distribution.

Having defined the goals, we now take on the task of designing an implementatisithout a
trusted third party; below we denote by =4 #5(2¢,2%) = 2¢+1 — 1.

1. The two players read their inputs and initiate a protocol dialog.

2. Player A selects €r Zg;,7 €g {0,...,n% — 1} and transmits to player B the valdg =
g*h"(modn) andCy = 3" (modn).

3. Player A engages with player B to a proof of knowledge for the disdogteelation set—1, 0, z,
7,0) and(0, —1, 0, 0, 7) over the object§’;, Cs, g, h, y. Observe that the relation set is triangular.

»

Player B selectg € Z, and transmitg to A.

Player A computes’ = Z + j(modsn) and transmits to player B the val@g = a*'.

6. Player A engages with player B to a proof of knowledge for the diséogteelation set—1, 0, «, 3,7, 0, 0),
(0,-1,0,0,0,0,0,7), (0,0,—1,0,0,0, a, 0) over the object€; g7, Cy, C3,g,9™, h,a,y (0b-
serve again, that the relation set is triangular).

7. Player A engages with player B to a tight interval proof & ensuring thalog, Cs € Z;,
(treatingZ,; as an integer range); this is done as described in [5].

8. Player A outputs: := 2/ + 2¢ — 2# + 1 and Player B output§’ := Ca2 ~2"+1,

o

Theorem 15 The above protocol implementation for non-adaptive drawing of randawers is cor-
rect and secure, per definitions 13 and 14, under the Strong-RSPBRdassumptions.

Proof. Regarding correctness note that if both players follow the protocol,themselected from the
uniform distribution ovetS(2¢, 2*); following the protocol steps both parties will obtain the output as
specified in the ideal implementation.

Next, we deal with the first equation of definition 14 (essentially the securitglayer B). LetA}
be any ITM for player A in the real protocol execution. We need to caosain ITM Aj as an ideal
world transformation ofd} so that the first equation is satisfied.

A operates as follows: it simulate up to the point that] initiates the protocol dialog; in this
caseA; transmits thego message td’ and receives the value € S(2¢,2#). On the other hand, if
A7 never initiates the protocol dialog; transmitsL to 7. Subsequently4{ continues the simulation
of A7. Aj stores the value€';, C; as transmitted byl}; then, it selects two challenges, c so that
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c €r {0,1}* andc* € {0, 1}% — {c}, and simulates!? till step 3 is completed so that the challenge
c* is supplied. Thendj rewindsAj to the step thatl} waits the challenge in the proof of knowledge of
step 3 and4; gives toA7] the challenge. Based on the soundness property of the proof of knowledge
of step 3,4 is capable of reconstructing and 7 (the witnesses). Subsequently it computés=

r — (2 -2 +1) (as an integer) and sefs= =’ — #(modsn); then it transmitgj to A3. A% replies by

C3 and the proofs of knowledge of step 5 and steplp verifies the proofs of knowledge that they are
correct and in this case, it transm$§ to 7'; in any other caselj transmitsl to 7". Aj continues the
simulation of A} and terminates by outputting the output4.

Let us first consider the distribution3! = OUT (""" (in4) and0® = OUT 1"

clear thatD! andO" are indistinguishable as;; executes a perfect simulation &f.

Now we consider the distributior@! = OUTgT’B”(z’nB) and0® = OUTfBAg’Béﬂ(z’nB).
0

The probability distribution®)! andO° can be thought of, as mappings from a sequence of coin
tosses to an element ¢JR(n) U {L}. Coins’ for j = 1,0 is the set of all possible coin tosses
respectively. Ifb € Coins’, it holds thatO?(b) € QR(n) U {L}. Now letk; be the number of coin
tosses required for selecting the challeng@&ofn the step 3 of the execution of the protocol in the real
world. Letk, be the number of coin tosses that the adversgryequires to complete the final step in
the proof proof of step 3 in the real world execution.

Letb € Coins', andO'(b) = C € QR(n). Now observe thab can be mapped to a set of
(2F1 — 1)2*2 coin tosse®’ € Coins’ in a straightforward manner; the only point that is interesting is
the fact that the coin tossesBfinsided’ must be computed based on the coin tossd$;dbr selecting
7 and the baseg logarithm of the value”;. Now observe that the coin tossethat leadB; to accept
despite the fact thad} does not construct the valueg, Cs, Cs properly (and as a result in this case
v, BL will reject) constitute a negligible fraction of all possible coin tosses. In @hgracase observe
that it will hold thatO!(b) = O°(t') € QR(n). Observe that this mapping can be reversed; indeed,
given anyb’ € Coins’ with O'(b) = C we can construct a string of coin tosseg Coins' so that
O'(b) = C. In this case, the coin tosses frdithat correspond t@ will determine the coin tosses
of b required to set the coin tossesiplising, again, the basgelogarithm of the value”;. Regarding
the case ofL, observe that i is a sequence of coin tosses for which(b) = L then definitely
O%(t') = L, whereb’ € Coins” is any of the corresponding coin tosse$.t®n other hand it’ is such
thatO'(¢') = L and it holds thaD®(b) # L for the corresponding coin tossks Coins! then this
means that} cheats in some of the proofs of knowledge in steps 6, 7; this can happeaniytfor a
negligible fraction of coin tosses. The resgit ~ O° follows.

Suppose now thaB} be an ITM playing the role oB3; in a real protocol execution (acting as an
adversary). We will desigi3; as an adaptation @B in the ideal world. The ITMB; operates as
follows: in step 1 (of the real world simulation)s; provides toB; the valuesC;, C as random ele-
ments of@ R(n) (this is indistinguishable from real-world executions based on the DDHws$n);
then in step 35; provides toB;] a simulated protocol transcript for the proof of knowledge of step 3
(employing the zero-knowledge property). In step33, receives fromB] the valuey and ignores it.
When B; receives the valu€' from the trusted part{’, B} computesCs = Ca~2+2"~1; By gives
to B} the valueC's when simulating step 4. Otherwise, T transmitted a failure messagBg will
selectCs at random fron) R(n) for the simulation of step 4. SubsequentB}; simulates the proofs
of knowledge of steps 5 and 6 and gives thenBfo Finally B continues the simulation a8} and
returns the same output.

(A1,BY)

Next we consider the distribution§)' = OUT """/ (in4) andO° = OUTgAf’BE;)(mA). The
0
indistinguishability ofO' and O is simple to see: it is clear th&l® is the uniform distribution over

(ing). Itis
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elements:® with x €5 S(2¢, 2#); the same will hold true in the case of a real execution betwéen
and Bj (this holds true, independently of wh&f does, as it cannot bias the probability distribution
of the output of4; since the reduction modulpwill allow the random variablé cancel any possible
bias introduced bys7).

Finally, we consider the distribution®’ = OUT' """ (ing) and 00 = OUTY P (i),
Recall that we assume that the challengesB@fshoula be honest (all our zero-kn(z)wledge proofs
canonical). This means that the simulations performedpwvhile adaptingB; in the ideal world
are indistinguishable from the ones supplied by plagein real protocol executions. It follows that
the protocol views of3] in real executions are indistinguishable compared to the corresponding vie
in the simulation performed by; when B} is adapted to the ideal world; thus the two probability
distributionsO! andO° will be indistinguishable. O

7 Traceable Signatures and Identification

A traceable signature scheme is comprised of nine protocol proceshitgs Join, Sign, Verify, Open,
Reveal, Trace, Claim, Claim_Verify) that are executed by the active participants of the system, which
are identified by the Group Manager (GM), a set of users and othetrusted third parties called
tracers. A traceable identification scheme is defined in a similar fashion withffaeedce that the
Sign and Verify procedures are substituted by laentify protocol and theClaim and Claim_Verify
procedures are substituted bZkiming protocol.

Setup (executed by the GM). For a given security parametethe GM produces a publicly-known
stringpkg ., and some private stringkg  to be used for user key generation.

Join (a protocol between a new user and the GM). In the course of the ptatecGM employs the
secret-key stringkgrq. The outcome of the protocol results in a membership certificate that
becomes known to the new user. The whidén protocol transcript is stored by the GM in a database
that will be denoted byranscripts. This is a private database and each Join transcript contains also all
the coin tosses that were used by the GM during the execution.

Identify (traceable identification) It is an interactive proof system between apend a verifier with

the user playing the role of the prover and the verifier played by anytmsied third party. The
Identify protocol is a proof of knowledge of a membership certificate;. We restrict the protocol to
operate in 3 rounds, with the verifier selecting a random challenge obppate length in the second
round.

Sign andVerify. The signing and verification algorithms are derived fromIthentify protocol using

the Fiat-Shamir heuristics [13] (including the message into hash).

Open (invoked by the Trustee) A p.p.t. TM which, given a signature (or an ideatitin protocol
transcript), the secret-keskg ¢ and access to the database of all the transcripts of the Join protocols,
it outputs the identity of the signer and a proof that the opening algorithm xezsited properly.

Reveal (invoked by the GM) A p.p.t. TM which, given the Join transcript for a usédr outputs the
tracing trapdoor for the usémdenoted bytrace;.

Trace (invoked by designated parties, called tracers). A p.p.t. TM which, giveignatures (or a
Identify transcript) and the tracing trapdoor of a certain user, checksviis signed by the user.

Claiming. It is an interactive proof system between a prover and a verifieraxtherrole of the prover
is played by the user and the role of the verifier is played by the claim retidibaClaiming protocol
is a proof of knowledge that binds to a givietentify protocol transcript (or signature) and employs the
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membership certificateert; of the user. As in the case tifentify protocol we restricClaiming to be
a 3-round protocol so that in round 2 the verifier selects a random nballef appropriate length.

Claim and Claim_Verify. It is the non-interactive version of thélaiming protocol employing the
Fiat-Shamir heuristics [13].

Given the inter-relationship between traceable identification and traceghégres for simplicity
we will define correctness for the signature version of the scheme (teatyke identification will be
correct provided that the corresponding signature scheme is cemete that the correctness condition
for identification deals with only the honest verifier case, thus it is safeytdhsd the identification
scheme is correct if the corresponding signature scheme is correct).

Definition 16 (Correctness for a traceable scheme) traceable signature scheme with security pa-
rameterv is correct if the following four conditions are satisfied (with overwhelming probability)in
LetSign,, be the signing mechanism of ugéland Claimy, its corresponding claiming mechanism.

(1) Sign-Correctness:lt should hold that for allM, Verify (M, pkg a4, Signy, (M)) = true.

(2) Open-Correctness:For all M, Open(skgay, transcripts, Sign;,(M)) = U.

(3) Trace-Correctness:For anyM, it should hold thaflrace(Reveal (i, transcripts), Sign;,(M))
= true; on the other hand for any < Sign;,, (M) withi{’ # U it should hold thafTrace(Reveal
(U, transcripts), o) = false.

(4) Claim-Correctness: The Claim and Claim_Verify satisfy the following property: for all
M, o — Signy (M) it holds thatClaim_Verify(M, o, Claimy (M, o)) = true.

7.1 Security Model for Traceable Schemes

In this section we formalize the security model for traceable signature ssh@fme&laim security we
will define the notion of an interfacg for a traceable scheme which is a PTM that simulates the opera-
tion of the system. The purpose behind the definitiofl &fto capture all possible adversarial activities
against a traceable scheme in an intuitive way. We will deal with the secuttityedfiteractive version
of a traceable scheme, i.e., a traceable identification scheme. We modetoritysgsing canonical
3-move proofs of knowledge and passive impersonation-type of attaighdification security in this
type of model facilitates the employment of the Fiat-Shamir transform for pgosignature security;
thus, proving security for the interactive version will be sufficient fiesuring security of the traceable
signature in the random oracle model (see [1]).

We model the security of a traceable identification scheme as an interactioeenetive adversary
A and an entity called thimterface The interface maintains a (private) state denotedtbye; (or
simply state) and communicates with the adversary over a handful of pre-speqifieny actionghat
allow the adversary to learn information abatdtes; these queries are specified below. The initial
state of the interface is set $oate; = (skgaq, pkga). The interface also employs an “internal user
counter” denoted by which is initialized to 0. Moreover three sets are initializéd, U*, U® to (.
Note thatstates is also assumed to contaif?, U, U® andn. Finally the interface employs two other
strings denoted and initialized as followsanscripts = ¢ andSigs = e. The various query action
specifications are listed below:

e (Qpub). The interface returns the string, pkg,,). This allows to an adversary to learn the
public-information of the system, i.e., the number of users and the public-fayriation.

e (Qwey). The interface returnskgg; this query action allows to the adversary to corrupt the
group-manager.
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(Qp—join)- The interface simulates thiein protocol inprivate increases the user counby 1,
and setstate := statez||(n, transcript,,, cert,). It also addsn into UP and setsranscripts :=
transcripts||(n, transcript,).

This query action allows to the adversary to introduce a new user to tharsyftat is not
adversarially controlled).

e (Qa_join). The interface initiates an activioin dialog with the adversary; the interface in-
creases the user coumtby 1, and assumes the role of the GM where the adversary is assum-
ing the role of the prospective user. If the dialog terminates successfe@lyntarface sets
statez := statez||(n, transcript,, L). It finally addsn into the setU“ and transcripts :=
transcripts||(n, transcript,, ).

This query action allows to the adversary it introduce an adversariallirailed user to the
system. The adversary has the chance to interact with the GM during thiealwoript.

e (Q:i_join). This query is identical to &,_j.in query with the difference that the interface at the
end transmitgert, to the adversary and addsto U®. The queryQ;_j., is weaker than the
query Q,_join @and we include it in the modelling for technical reasons. See lemma 21.

e (Qy_join). The interface initiates an activdoin dialog with the adversary; the interface in-
creases the user countby 1 and assumes the role of the prospective user and the adver-
sary is assuming the role of the GM. If the dialog terminates successfully thdandesets
stater := statez]|(n, L, cert,). It also adds into U°.

This query allows the adversary to introduce users to the system actingMs a

e (Qi4,17). The interface parsasater and if it discovers an entry of the forfy, -, cert;) it produces
an ldentify protocol transcript using the certificatert; and selecting the verifier challenge at
random; if no such entry is discovered oriE U? the interface returnd.. Finally, if o is the
protocol transcript the interface s&igs = Sigs|| (i, o).

e (Qreveal, 7). The interface returns the output Réveal (i, transcripts). Sometimes we will write
QA | to restrict the interface from revealing users4n Note thatReveal(i, transcripts) = L
in case usef does not exist of € U®?.

Given the above definition of an interface we proceed to characterizeatioelis security properties
that a traceable scheme should satisfy. We will use the notafiorQy, . . . , Q,] to denote the opera-
tion of the interface with (initial) state that responds to the query actio@s, . . ., 9, (a subset of the
guery actions defined above). In general we assume that the integfa@s one query at a time: this
applies to the querieQ, _j.in and Q_join that require interaction with the adversary (i.e., the interface
does not allow the adversary to cascade such queries). For somabteaimentification scheme we
will denote byiP andiV the prover and verifier algorithms for theentify 3-move protocol as well as
by cP andcV the prover and verifier algorithms of ti@aiming 3-move protocol.

Our definition of security, stated below, is based on the definitions of the theened security
properties in the coming subsections.

Definition 17 Atraceable scheme is said to $ecureprovided that it satisfies security against misiden-
tification, anonymity and framing attacks.

7.1.1 Misidentification Attacks.

In a misidentification attack against a traceable scheme the adversary iscattoaentrol a number
of users of the system (in an adaptive fashion). The adversary isl&seed to observe the operation
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stater = (pkgaq, skga) < Setup(1¥);
Expﬁis(V) 2| {d, p1) — AI[StateIaqubvgpfjoinygafjoinygid7Qreveal](first’ 1v);
¢ = {0,1}";
p2 — A(second, d, p1, ¢);
it iV(pkgaq, p15c,p2) =true and
i f Open(skg, transcripts, p1) & U“
or AjeyaTrace(Reveal(i, transcripts), p1) =f al se
then output 1
el se output O

Figure 2: The misidentification experiment

statez = (pkgaq, Skga) < Setup(1¥);

Expﬁ]on(y) | {d,ig,i1) — AI[Stat617qubyQp—joimQa—join:Qid7Qrevea|](p|ay’ 1¥);

if dgor di;do not belong in UPreturn L.

b+« {0,1}.

parse statezand find the entry (i, transcript; ,cert;,).

si nul at e the Identify protocol for cert; to obtain {p,c,p2).
by — AI[StateI7qub,Qp—joimQa—joiind7Q:e\(/ig|’i1)]<gueSS’ 17,d, {p1, c, p2));

if b=b.then returnlelse returno.

Figure 3: The anonymity attack experiment

of the system in the way that users are added and they produce identifitratiscripts. Finally the
adversary is required to produce an identification transcript that satesfieer one of the following
properties: (a): the adversarial identification transcript does nat tipany of the users controlled by
the adversary, or (b): the adversarial identification transcript doEsate to any of the users controlled
by the adversary. We will formalize this attack using the experiment prasentigure 2.

We will say that a traceable identification scheme satisfies security againsentiahtion if for
any PPTA, it holds thatProb[ExpA. (v) = 1] = negl(v).

7.1.2 Anonymity Attacks

An anonymity attack is best understood in terms of the following experimenishdayed with the
adversary4 who is assumed to operate in two phases caglled andguess. In the play phase, the
adversary interacts with the interface, introduces users in the systersegbautis two target users he
does not control; then receives an identification transcript that gonets to one of the two at random;
in theguess stage the adversary tries to guess which of the two produced the identifitatiscript.
We remark that we allow the adversary to participate in the system also asa(irtac one of the
clerks that assist in the tracing functionality). The experiment is presénfeglire 3.

A traceability scheme is said to satisfy anonymity if for any attackétrholds that
‘PrOb[EXpﬁon(V) = 1] - %‘ = negl(v).

7.1.3 Framing Attacks

A user may be framed or two different ways: the authorities and othes usgy construct a signature
that opens or trace to an innocent user, or they may claim a signatureahgenerated by the user as
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statez = (pkgay, Skga) «— Setup(1¥);
Expﬁa(V) . <S, d, P1> — AI[StateI,qumley,Qb—join,Qid](ﬁrst’ 1V);
¢ = {0,1}";
p2 — A(second, d, p1, ¢);
it iV(pkgaq, p1,c,p2) =true and
i f Open(skgay, transcripts, p1) € U?
or 3i € U? : Trace(Reveal(skg s, transcripts, i), p1) =t r ue
then output 1
else if sis such that (i,s) € Sigsandic U?
and cV(s,p1,c,p2) = truet hen out put 1
el se output O

Figure 4: The framing attack experiment

their own. We capture these two framing notions with the experiment descniligdre 4 (we remark
that “exculpability” of group signatures [2] is integrated in this experiment).

A traceable scheme satisfies security against framing provided thatfpramabilistic polynomial-
time A it holds thatProb[Exps, (v) = 1] = negl(v).

7.1.4 Comments

() In modeling misidentification and anonymity attacks we do not allow the adyatgaubmit “open”
queries to the interface. This models the fact that opening a signature iearalroperation performed
by the GM. On the contrary, this is not assumed for the tracing operatiore e model it as a
distributed operation whose results are made available to distributed agahthia aReveal oracle
guery is available to the adversary). Allowing opening oracles to be paneadversarial control is
possible, but will require our encryptions and commitments to be of the clogseartext secure type.
(i) Framing and misidentification were identified as separate attacks in our m@éelcould have
collapsed them into a single attack that we can express formally. Howeedgekthat the goals of
the two attacks are different and they represent two different wayshigh the adversary interacts
with the system. As we will show later, the security proofs against them retliffament intractability
assumptions, which constitutes supporting evidence for our intuition.

8 Design of a Traceable Scheme

8.1 The Construction

Parameters The parameters of the scheme are R with ¢ > 1, kK € N as well as three spheres
A, M, T satisfying the properties presented in 5; the functiésm supposed to satisfy the condition of
lemma 9. Below we will denote by*, andI'* the inner spheres of, M andI" w.r.t. the parameters
€, k, (see section 4.2).

Setup The GM generates two primes, ¢’ with p = 2p’ + 1, ¢ = 24’ + 1 also primes. The modulus
is set ton = pq. The sphereg\, M, T" are embedded int¢0, ...,p'q’ — 1}. Also the GM selects
a,ap,b,g,h €g QR(n) of orderp’q’. The secret-keykg, Of the GM is set tg, ¢. The public-key of
the system is subsequently septq; , := (n,a, ao, b,y, g, h).

Join (a protocol executed by a new user and the GM). The prospectiveandeghe GM execute the
protocol for non-adaptive drawing a random powee A* overb (see section 6) with the user playing
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the role of player A and the GM playing the role of player B; upon sucoéssmpletion of the protocol
the user obtains and the GM obtains the valug = b*:.

Subsequently the GM selects a random prignec T'* andz; € A* and then computed; =
(Cia””iao)efl(modn) and sends to the user the values, e;, z;). The user forms the membership
certificate asert; := (4, e;,x;,2}). Observe thatA;,e; : z;,z}) is a discrete-log representation of
an arbitrary power irf) R(n) (see section 5); furthermore observe that the portion of the certificate
is known to the GM and will be used as the user’s tracing trapdoor.

Identify . To identify herself a user first computes the values,
= A", To=g", Ty =g, Ty=g"* Ts =", Tp = g"", Tr = g"

wherer, k, k' €g M. Subsequently the user proceeds to execute the proof of knowledge fil-
lowing triangular discrete-log relation set defined over the objecksy, ag, a, b, Ty, Ty ', T3, Ty,
Ts, Ts, T7 and the free variables atez’ € A¥ e € T% r, 1/

g h )™ Ty Tn y ()™ a b a T3 Ty Tp

To=¢g": r 0 1 000 0 000 0 0 0
T3=¢h": e+ 0 0 0O O 0O 00 O -1 0 0
Ts=g": B 0 e 000 0 00 0 0 0 0
w=T: 00 0 =« 0 0 0 00 0 0 -1 0
™w=T: 00 0 0 2 0 0 00 0 0 0 -1
apa®by" =T¢: 0 0 0 0 0K e =z 1 0 0 0

Observe that the above proof of knowledge ensures that the VRIUEs T3, Ty, 15, Ty, Tr are properly
formed and “contain” a valid certificate. In particular the above proofomy enforces the certificate
condition A" = apa®ib®i but also the fact that; € T andz;, x; € A.

Open. (invoked by the GM) Given &entify transcript(p1, ¢, p2) and all Join transcripts the GM does
the following: it parse9; for the sequencel’, T, T3, Ty, T5, Ts, T7) and computes the valué =
(T>)~*T). Then it searches the membership certificatése;) (available from the Join transcripts) to
discover the index such thatd = A;; the index; identifies the signer of the message.

Reveal (invoked by the GM) Given the Join transcript of thth user the GM parses the Join transcript
to recover the tracing trapdootace; := ;.

Trace. (invoked by any agent/clerk) Given the valuece; and aridentify protocol transcriptp: , ¢, p2)
the agent parses the sequen@g, s, T3, Ty, T, Ts, T7) from p1; subsequently it checks whether
Ty = Ty; if this is the case the agent concludes that usierthe originator of the givemdentify
protocol transcript.

Claiming. (invoked by the user) Given ddentify protocol transcript that was generated by user
and contains the sequen¢g,, T», T3, T4, T5, Ts, T7), the user can claim that he is the originator as
follows: he initiates a proof of knowledge of the discrete-loglpfbaseT (which is a discrete-log
relation set, see section 4). If the proof is directed to a specific entity tlod pan be targeted to the
receiver using a designated verifier proof, see [16]; such pafde easily coupled to our proofs of
knowledge for discrete-log relation sets.

9 Security and Correctness of the Protocol
In this section we prove that our construction is correct and secucediag to definitions 16 and 17.

Theorem 18 The traceable scheme of section 8.1 is correct.
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Proof. Sign-correctness follows immediately from the completeness of the zewldaige proof that
is employed for the signing algorithm.

Open-correctness follows from the fact that any signature- Sign,, (M) contains the values
T, T, that constitute an EIGamal encryption ov@R(n) of the valueA;, of the user's membership
certificate( Ay, ey, zy, x7,). With overwhelming probability this certificate is unique for each user, and
thus the comparison with thioin protocoltranscripts database will allow the recovery of the identity
of the useiA.

Regarding Trace-correctness observe Reakal (U, transcripts) = xy Where(Ay, ey, y, ) 1S
the membership certificate of ugér now observe that any < Sign;,(M) contains the values,, Ts
that satisfy the propertyy = 7:“; thus it holds thaflrace(x/, o) = true. On the other hand, for any
other usetd’ # U it holds with overwhelming probability tha, # xy, and thus ifo — Sign;,/ (M)
it holds that the value$}, T insideo satisfy the conditiody = ¢**w andTs = ¢*; sincexy #
they cannot satisfy the conditidfy = 7;“.

Finally, regarding Claim-correctness, observe thatGlaén;, algorithm produces a non-interactive
proof of knowledge for the discrete-logarithm of the vallie baseT; inside the signature «
Sign,,(M); based on the completeness property of this proof of knowledge thectioess follows. O

Theorem 19 The traceable scheme of section 8.1 is secure according to definition 17.

In particular it satisfies (i) security against misidentification attacks basethe Strong-RSA and
the DDH assumptions; (ii) security against anonymity attacks based on B¢ &sumption; (iii)
security against framing attacks based on the discrete-logarithm problem(pR(n) when the fac-
torization ofn is known.

The exposition of the proof of the above theorem will be spread in the follpthree subsections,
one for each of the security properties. We will start with some basic lemmiawithibe useful in the
main security proofs.

Lemma 20 Letpkgy = (n,g,a0,a,b,y, g, h) be the public-key in the scheme of section 8.1. There
exists a PPTS;q that takes as inpupkg,, and a tuple(4,e,z,2') € QR(n) x I' x A x A (not
necessarily satisfying the conditiotf = aga®b*") that is capable of simulating the valid identification
transcripts generated by a single usewrith membership certificated;, e; : x;, «}), for which it holds
e; = e,x; = z,z;, = x (but potentiallyA; # A).

In particular the distance betweey and realldentify protocol transcripts of the uséris at most
2AdvPPH (1) 4 € wheree is the statistical distance of the simulatSrof the 3-move zero-knowledge
proof of knowledge used inside tlgentify protocol.

Proof. S;q operates as follows: first it sets,
T =Ay", To=g", T3 =g°h", Ty = g%, Ts = g* Ts = ¢"% Ty = g*

for r,k, k' €r M. Then, based on properties of the proof of knowledge we know tha¢ tve
ists a simulatosS for the proof of knowledge of the discrete-log relation-set that cpoeds to the
Identify 3-move proof of knowledge. Thusy simulatesS over the objecty, h, y, ag, a, b, T1, Ts,
Ty, Ty, Ts, T, T

Also let S be a simulator operating &, but using?] €r QR(n) instead of7}.

Suppose now that there exists a distinguisher of between valid protoosttijts and the output
of Si4.
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Let (G, X,Y, Z) be a challenge for the DDH assumption. Consider the following algor&tim
It sets7] := AZ, Ty == X,¢ = G,y := Y and it simulatesS on the inputn, ¢’, ag,a,b,vy’, g,
h,Ae,x,2'. If G,X,Y, Z is valid DDH tuple then observe that the output&f is identically dis-
tributed to the output af;y. On the other hand if7, X, Y, Z is a random tuple then the output®f is
identically distributed to the output &fx.

It follows that the probability distributions a4 andSy have statistical distance at madstv??H (v).

Now consider the distributio® of all valid protocol transcripts generated by a single uséfe
modify theldentify protocol of the usei to use the simulato$ of the 3-move proof of knowledge of
a discrete-log relation set instead. Based on theorem 10 it is easy to s#eetheodified probability
distributionD’ of all valid protocol transcripts generated by a single useitl be statistically indistin-
guishable from the distributio® (it will distancee in particular). Next we modify thé®’ further so
that the valuél is substituted by the valug| selected at random frod) R(n); the modified ditribu-
tion will be denoted byD”. It is easy to see that the distancedf from D’ is at mostAdv? P (v).
Finally observe that the distributidR” is identical to the distribution generated 8y. The proof of
the theorem follows easily. a

Lemma 21 For any probabilistic polynomial-time algorithid that interacts with the interface as de-
fined in section 7.]Probstatez<_Setup(lu)[AZ[statez,...,Qa,jo;n,...] = ATlstater, . Qujoins]] = 1 — negl(v).

Proof. The proof is based on the security properties of the Join protocol whilségure implemen-
tation of a non-adaptive drawing of a random power as describedioisé&c In particular due to the
security from the player B’s side we can simulateso that the values’ that .4 obtains from each
instantiation of aQ,_j.in Protocol can be chosen externally by a trusted party. According toeheor
15 this does not affect the private output functionality. a

9.1 Security against Misidentification

Theorem 22 The traceable scheme of section 8.1 satisfies security against misidéntifisased on
the strong-RSA assumption and the DDH assumption Qve(n).

Proof. We remark that for simplicity we will suppress the use of inner sphere notaiwh use the
notationA andI" instead ofAj, andI'j, (this does not affect the argumentation of the proof in any way).
Let A be an adversary that violates security against misidentification. It folloais th

Prob[Expit,(v) = 1]

is a non-negligible function imv. We will use A to construct an algorithm that solves the one-more
representation problem. First, l&t be the number of users that are controlled by the adversary (i.e.,
introduced in system using,_join)-

Now observe that based on lemma 21 there exists an advetstrgt has the same functionality as
A but whenever he executék, _j.in he obtains the value’ through querying an external trusted-third
party.

Let n be a composite modulus with unknown factorization according to the specifisadfoour
protocol and{(A;,e; : a;j,:z:;)}le be an instance of the one-more representation problem over the
basesag, a,b. Below we describe an algorithifi that usesA’ to solve the one-more discrete-log
representation problem.

First, B selectsy, g, h values as specified in the description of the protocol and ety =
(n,a,ap,b,y,g,h). Subsequentlyd simulates the adversa (first, 1”) playing the role of an appro-
priately modified interface as described below:
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e If A’ submits(Q,,p) to the interface, thef8 supplies ta4 the specified response (the public-key
of the system).

o If A submits(Q,_j.in) to the interface, thels increments the internal user couniday one, and
selectscert; = A,e,z, 2’ € QR(n) x I' x A x A and storegert; in the database by inserting
the string(s, L, cert;). Also, B adds: into the seU?.

o If A’initiates aQ;_join dialog thenB increases th@in dialog counterj by one and the user
counteri by one; A’ asks the pair of values, 2’ that will be used as part of the certificatB.
supplies the input values;, z;. Then.A submits toB the valueaga™ a®i and B returnsA;, e;
to A. In addition,3 enters in the database the entiy L, cert;) wherecert; = (4;,¢j, x, :c;>.
Finally B addsi into the set/“.

o If Asubmits(Q;q4, %) to the interface, theB looks into the database to recover the corresponding
entry (i, ...) and the stringeert; = (A;, e;, z;, ;) (which observe that it does not necessarily
satisfiesA;’ = apa®b¥i) and thenB simulates aridentify protocol transcript as described in
lemma 20. Note that if ¢ UP, B returns fail to the adversary.

o If A submits(Q,eveal,7) to the interface, the8 looks into the database to recover the corre-
sponding entry(i,...) and the stringeert; = (A;, e;, z;, 2;) and returns to the adversary the
valuez;.

Observe now that the view that’ has of its interaction witl8 is indistinguishable from the inter-
action with the interface in the security definition.

At some pointA’(first, 1”) terminates by returning the valudsp,. Then,B selects two different
¢, ¢ and simulatest’(second, d, p1, ¢) and.A’(second, d, p1, ¢') to obtain two outputs, o).

Observe now that with probabilitfProb[Exp.(v) = 1])2 it holds that the identification pro-
tocol transcripts(ps, ¢, p2) and (p1, c, ph) satisfy the verification functionV. Observe thap; =
(Ty,...,T7,...). Now, using the fact that thielentify protocol transcript is sound we can extract a
witnessz, 2/, w, e, b’ from the two transcripts for which it will hold that, = ¢*, T3 = ¢°h",T§ =
g" apa®b® " = T¢, T =Ty, T = Tg.

Now we have two alternative events: @pen(skr, transcripts, p1) ¢ U® which means that
Ty /TY%" does not equal anyl; for thosei € U*; observe thatd := T1/T,°*¥ has the property
that A° = (Ty/Ty ") = aga®"'y" /y" = apa®b*', as a result we constructed a discrete-log rep-
resentation of an arbitrary powéH, e : z, ') that is different from the ones that were selected by
B.

In the second alternative event we have : Aii} 7« Trace(Reveal(skr, transcripts, i), p1) =f al se.

It follows that (due to lemma 21}« Trace(z;, p1) = f al se or equivalently thafl,* # Ty for all
1€ U*and as aresult # z; forall i € U®.

It turns out that in both of the above cases the algorithia an algorithm that can solve the “one-
more representation” problem, something that based on theorem 12, yieldgarithm against the
Strong-RSA problem. O

9.2 Anonymity

Theorem 23 The traceable scheme of section 8.1 satisfies security against anonttaitysdased on
the DDH assumption ovepR(n).
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In particular we show thatProb[Expzle,(v) = 1] — 3| < n?(2AdvPPH (v) + 3AdvERH (v))
whereAdv.’ P (1) denotes the maximum advantage of any DDH adversary when the segomaent
of the DDH challenge is restricted into the spheyethis can be further relaxed, see the comment at
the end of section 3.

Proof. We remark that for simplicity we will suppress the use of inner sphere notaiwh use the
notationA andTI" instead ofAj, andI'j, (this does not affect the argumentation of the proof in any way).
Let.4 be an anonymity adversary as described in section 7.1.2 with the modificatitre tvants to
violate the anonymity of useisg, i; always for fixediy, i;. We will show that for such adversary it holds

that[Prob[Expzi™ (v) = 1] — 3| = negl(v) (assuming that the advantage of DDH distinguishers is
a negligible function inv). Then, it will follow that even ifA selectsiy, i; adaptively (as stated in the
anonymity definition in 7.1.2) it will hold that the probability of success of theeexpent will remain
negligible since we assume a polynomial number of users. This is so sinceogsible to transform
any adaptive adversary to a non-adaptive ond’ as follows: A’ for fixed i, 11 simulatesA and if A
returns indeed,, 7; as the challenge thed’ proceeds with the simulation as specified, otherwise
selects a random bit and returns this instead.

Observe that based on lemma 21 there exists an adveAsdimat has the same functionality &s
but wheneverd execute<Q,_join, A’ €xecutes the oracl;_ ;. instead (i.e.,A’ obtains the value’
externally). Also leti be the number 08;_j.in queries executed hyl’ (in both theplay andguess
stages).

Now consider the following gamé's:

Let n be a composite modulus with unknown factorization according to the specifisagfcour

construction;G; selects randonxy, ..., zk,21,...,2% € A ande,...,ex € T, and seta =

z¢1-¢K (modn), ag = a” andb = a”" wherer,’ are random integers ih. Then computesd; =
) /o) €L CK . . ) .

L) (modn), forall i = 1,..., K. Observe thatl® = aga®b™ foralli = 1,..., K,

i.e., (A;, e : x;,x;) are discrete-log representations of arbitrary powers ingiién) overay, a, b. Let
Y, g, h, go, N be values as specified in the description of the protocol.

G proceeds to simulate the adversatifplay, 1”) by answering4’s oracle queries to the interface
as follows (in the description beloiy;j are two counters initialized t@).

o If A’ poses the quer@,,,, G returns the public-key of the system as defined above.

o If A’ submits(Q,_j.in) to the interface, theds; increments the internal user counidsy one,
and selectsert; = A, e, z, 2’ € QR(n) xT' x A x A and storesert; in the database by inserting
the string(s, L, cert;). Also, G; addsi into the setU?.

o If A initiates aQ;_join dialog thenG, increases thgin dialog counterj by one and the user
counter: by one; A’ asks the pair of values, 2’ that will be used as part of the certificate.
G'1 supplies the pre-computed values, :1:; Then A submits toG; the valueaoaxa‘ax? and
G, returnsAj, e; to A. In addition, G; enters in the database the entiy L, cert;) where

cert; = (4;, ej, x5, 2}). Finally G, addsi into the seU/*.

e If A’ submits(Qjq, 7) to the interface, the&’; checks whether € UP and in this case it retrieves
from the database the corresponding eniry. .) and the stringert; = (A4;, e;, z;, 2}) (which
observe that it does not necessarily satisfis= apa®b¥i) and theni; simulates andentify
protocol transcript as described in lemma 20.

e If A’ submits the queryQyeveal, i), G1 checks whether & {ig, i1} and in this case it looks into
the database for the corresponding eriry . .) and the stringert; = (A;, e;, x;, x}); finally it

%
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returns to the adversary the valug In this case useris removed fronUU? and entered into the
setU".

When A’ (play, ) terminates(7; receives the value§l, iy, i1); if ig,i1 ¢ UP, G; terminates and
returns0. In the other cas&; selectsh < {0, 1}, retrieves the entryiy, L, cert;,) with cert;, =
(Aiy, €, © zi, x;,). Then it forms the sequence of values:

Tl — Aibyw7 TQ — g’w’ T3 — geibhw7 T4 — gzibk’ T5 — gk Tﬁ — gfz;bk’ T7 :k/

and simulates the proof of knowledge for the discrete-log relation set délémdify protocol. Then
G simulatesA(guess, d, (p1, ¢, p2)) employing the oracle simulations as described above and obtains
the outputb*. Finally G; returnsl if b = b* or 0 otherwise. Observe th&rob[G1(:) = 1] =
Prob[Expf..(v) = 1].

Then consider gamé's that operates as gandeé with the difference that it uses the values in the
simulation of thddentify protocol transcript,

/

Ty = Ay Ri, Ty = Ry, Ts = g Ry™ ", Ty = g"¥, Ty = g Ty = g™ Ty = g
whereR;, Ry €r QR(n).

Itis easy to see thaProb[G1(-) = 1] — Prob[Ga(-) = 1]| < AdvPPH (1),
Next consider gamé&'s that operates a5 but with the modification:

Ty =Ry Ty =Ry Ts = g°sRs, Ty = g"sk, Ty = g* Ty = """ T4 = g¥'

whereRy, Re, R €r QR(n). Itis easy to verify thafProb[G2(-) = 1] — Prob|[Gs(:) = 1]| <
AdvPPH (1),
Now consider the following game calle®, ;, that modifiesG's as follows fori, = {ig} ori, =

{ig,i1}.
o If A’ poses the quer@,,,, G4, returns the public-key of the system as defined above.

o If A’ submits(Q,_join) to the interface, thet; increments the internal user countday one; if
i € i, thenGy,, selectgert; = A, e,z,2' € QR(n) xI'x A x A and storesert; in the database
by inserting the strindi, L, cert;). Now if ¢ € i, thenGy;, selectscert] = (A;,e;, R;, x}) €
QR(n) xI'x QR(n) x A and stores in the database of users the vélue, cert?).In either case,
G4, addsi into the selU?.

o If A’ submits(Q;q, %) to the interface, thet’; checks whether € U? and in this case if ¢ i.
it operates identically téd-3. In the case € i, it retrieves from the database the corresponding
entry (i, ...y and the stringert! = (A;, e;, R;, z;) and then simulates ddentify transcript for
the values

Ty = A®, Ty = g%, Tz = g%h" Ty = RE, Ts = g*, Ts = g%* Ty = g~

Finally, at the challenge phasejife i., G4, constructs thédentify challenge as:

!

Ty=Ry Ty=Ry Ty = Rs, Ty = Ry, Ts = Rs, Tp=g"s" Tr = g"

(in the other casé/,;, operates as gam@s). Now consider the behavior of the gam@s and
Gu,(i)- Itis clear that they are either identical, or in the case 0 it holds that the distance of
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Prob[Gs(-) = 1] andProb[Gy,(-) = 1] can be at mostdv? Y (v), whereAdvP P! denotes the
advantage of any PPT adversary so that the DDH’s second argunrestristed over the sphere
In a similar fashion, the same will hold true for the ganigsy;; andGy g, ;1. i-€., they will have a

distance ofAdvL P (v). Finally observe that in the case@f (;, ;,; the challenge will have the form:

Ti=R Th=Ry Ts = Ry, Ty = Ry, Ts = Rs, Tg=g"s", Tr =g

with Ry, R, R, Ry, Rs random elements @) R(n).
Next we define a sequence of ganigs;, in the same fashion &, ;, . We observe that in the case
of gameGs g, 5,3 it holds that the challenge is as follows:

Ty =Ry Ty =Ry T35 =R3, Ty = R4, T5 = R5, Ts = Rs, 17 = Ry

with Ry, Ra, Rs, R4, R5, Rg, Ry random elements @) R(n). It is easy to see that the distance of
Prob[Gy i} (-) = 1] andProb[Gs ;, ;) = 1] is at mostAdv P (v).

Moreover it is clear that gam@; ;, ;,; does not retain any information aboytand as a result it
is implied thatProb|Gs 1,3 (-) = 1] = 1/2.

Itis easy to see from the above thBirob[ExpZ:i9 (v) = 1]—3| < 2AdvPPH (1) +3AdvE P (v),

which implies thaiProb[ExpZ . (v) = 1] — 1 < n2(2AdvPPHE (v) + 3Adv££f(u)). O

9.3 Security Against Framing

Theorem 24 The traceable scheme of section 8.1 satisfies security against framied thesdiscrete-
logarithm assumption ovep R(n) with known factorization for.

Proof. Let .4 be an adversary against framing as described in section 7.1.3: £epq with known
factorsp, ¢ and a challengé, C € QR(n) for which we want to compute thieg, B. We define the
following algorithm B that employs the adversary. B generates all the elements of the public-key
of the systeny, h, y, ag, a as specified in the protocol for the RSA modulusvith the addition of
challenge as the public-keyB selects a random membgre {1, ..., s} wheres is the total number
Qb—join queries submitted by the adversary (required to>be in a framing attack).B simulates the
adversaryA, by answering its interactions with the interface correctly, with the excepfia,0;join
query for thej-th user that must be handled so that the adversary (playing the role GMhshould
give to the user a certificaté, e so thatd® = aga®C. This requires tha plugsC during the execution
of the Join protocol; this is possible by simulating all the zero-knowledgefpindhe non-adaptive
drawing of random powers executed within the Join protocol; see thebserhen if the adversary
outputs an identification transcript that either opens to giseaces to the userit is clear that we can
rewind the adversary and obtain a witness for that transcript that waltahe logarithm of” base
b, and thus solving the discrete-logarithm problem. The same is true for tbelwasthe adversary
outputs a claim for an identification transcript of ugerB rewinds.4 and obtains the witness for the
claiming which, again, is the discrete-logarithm@baseb. O

10 Applications
In this section we demonstrate the potential of traceable signatures and edeiotifiin providing

conditional anonymity in anonymous systems. The main motivation for our camtisin is the devel-
opment of a generic way to transform any systgthat provides anonymity into a system that provides
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Figure 5: Adding Fairness to any Anonymous System using a traceabisighRGsig

“fair” or conditional anonymity. An anonymity system is comprised of a pofataof units which,
depending on the system'’s function, exchange messages using anenghaouels. An anonymity
system withfairnessallows the identification of the origin of messages, as well as the tracing of all
messages of a suspect unit, if this is mandated by the authorities. Our traasém, illustrated in
figure 5, suggests that all systems’ units form a group and executeithprdtocol of our traceable
sighature scheme prior to the initialization of the system’s operation. Subgggaay message sent
from a unit is signed using the signing algorithm of our scheme; likewiserfpmnaessage received, a
unit verifies the signature and if it fails the message is rejected. This simpdtrgotion is powerful
enough to transform an anonymous system based on a population of uaitsattonymous system
with fairness (conditional anonymity).

To understand the potential of this construction consider the notion of a etixerk: a mix-
network is an anonymous message delivery system that allows to a sersef/us . . , U, to transmit
messages that are delivered to a destination so that the corresponfleach message and sender is
lost. This is achieved by employing a series of servers, called a mix-netthatlishuffles the messages
transmitted by the users. Only the coalition of all servers comprising the mixenet@&n violate the
privacy of this system. Anonymous message delivery will be ensureddemb that at least one server
will be honest (i.e., refuse to collaborate with malicious servers againstittzeyp of the users).

Applying our methodology as above, only properly signed messages wdllldged to enter the
mix-network. After the mixing procedure terminates the anonymity propertiegiofraceable sig-
nature scheme guarantee that the correspondence between sedd®esaages is lost. Nevertheless
based on our traceability properties, the authorities will be capable afrp@rfg the operations:

e Reveal the originator of a specific message (opening).

¢ Reveal all messages sent by the same user (tracing).

Finally through our claiming protocol a user may claim a message as his otirg envenience
of the user (privacy is a good that should be personally managed).

10.1 Application to Auctions

Mix-nets with conditional privacy have many applications. For example, cameuse them to im-
plement an anonymous auction protocol (with open bids). Users submitbideithrough the mix-
network. In the message delivery point the bids are sorted from thedtighewest and the identity of
the highest bidder is revealed by performing the “open” operation of fite&ble signature. Moreover
a user can claim that a certain public bid as his own, if he is asked to; fon@gaan employee of a
company can prove that he submitted a bid by performing the claiming protondhéother hand if
a certain user is found to be misbehaving (e.g., he won an auction anduseddb pay) then all his
current bids must be identified and invalidated: this is possible by employingattiag functionality
of a traceable scheme.
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