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Abstract

To date, a group signature construction which is efficient, scalable, allows dynamic adversar-
ial joins, and proven secure in a formal model has not been suggested. In this work we give the
first such construction in the random oracle model. The demonstration of an efficient construction
proven secure in a formal model that captures all intuitive security properties of a certain primitive
is a basic goal in cryptographic design. To this end we adapt a formal model for group signatures
capturing all the basic requirements that have been identified as desirable in the area and we con-
struct an efficient scheme and prove its security. Our construction is based on the Strong-RSA
assumption (as in the work of Ateniese et al.). In our system, due to the requirements of provable
security in a formal model, we give novel constructions as well as innovative extensions of the un-
derlying mathematical requirements and properties. Our task, in fact, requires the investigation of
some basic number-theoretic techniques for arguing security over the group of quadratic residues
modulo a composite when its factorization is known. Along the way we discover that in the basic
construction, anonymity does not depend on factoring-based assumptions, which, in turn, allows
the natural separation of user join management and anonymity revocation authorities. Anonymity
can, in turn, be shown even against an adversary controlling the join manager.
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1 Introduction

The notion of group signature is a central anonymity primitive that allows users to have anonymous
non-repudiable credentials. The primitive was introduced by Chaum and Van Heyst [13] and it involves
a group of users, each holding a membership certificate that allows a user to issue a publicly verifiable
signature which hides the identity of the signer within the group. The public-verification procedure
employs only the public-key of the group. Furthermore, in a case of any dispute or abuse, it is possible
for the group manager (GM) to “open” an individual signature and reveal the identity of its originator.

Constructing an efficient and scalable group signature has been a research target for many years
since its introduction with quite a slow progress, see e.g., [14, 12, 10, 11, 8, 27, 3, 2, 9, 24, 7]. In many
of the early works the signature size was related to the group size. The first construction that appeared
to provide sufficient heuristic security and efficiency properties and where user joins are performed by
a manager that is not trusted to know their keys, was the scalable scheme of Ateniese, Camenisch, Joye
and Tsudik [2]. It provided constant signature size and resistance to attacks by coalitions of users. This
scheme was based on a novel use of the DDH assumption combined with the Strong-RSA assumption
over groups of intractable order.

Recently, Bellare, Micciancio and Warinschi [4], noticing that the work of [2] claims a collection of
individual intuitive security properties, advocated the need for a formal model for arguing the security
of group signature. This basic observation is in line with the development of solid security notions
in modern cryptography, where a formal model that captures the properties of a primitive is defined
and a scheme implementation is formally proven (in some model) to satisfy the security definitions.
They also offered a model of a relaxed group signature primitive and a generic construction in that
model. Generic constructions are inefficient and many times are simpler than efficient constructions
(that are based on specific number theoretic problems). This is due to the fact that generic constructions
can employ (as a black box) the available heavy and powerful machinery of general zero-knowledge
protocols and general secure multi-party computations. Thus, generic constructions typically serve
only as plausibility results for the existence of a cryptographic primitive, cf. [20]. The relaxation
in the model of [4] amounts to replacing the dynamic adversarial join protocols of [2] where users
get individual keys with a trusted party that generates and distributes keys securely (relevant in some
settings but perhaps unlikely in others).

The above state of affairs ([2, 4]) indicates that there exists a gap in the long progression of research
efforts regarding the group signature primitive. This gap is typical in cryptography and is formed by
a difference between prohibitively expensive constructions secure in a formal sense on the one hand,
and efficient more ad-hoc constructions with intuitive claims on the other. In many cases, as indicated
above, it is easier to come up with provably secure generic inefficient constructions or to design efficient
ad-hoc constructions. It is often much harder to construct an efficient implementation that is proven
secure within a formal model (that convincingly captures all desired intuitive security properties). To
summarize the above, it is apparent that the following question remained open by earlier works:

Design an efficient group signature with dynamic joins (and no trusted parties) which is
provably secure within a formal model.

One of our contributions is solving the above open question by, both, adapting a new model for
group signatures (based on the model of traceable signatures of [23]), which follows the paradigm of
[22] for the security of signature schemes, as well as providing an efficient provably secure construction
(in the sense of the scheme of [2]), and a comprehensive security proof.

These contributions reveal many subtleties regarding the exact construction parameters, and in
particular issues regarding what intractability assumptions are actually necessary for achieving the
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security properties. For example, the anonymity property in our treatment is totally disassociated from
any factoring related assumption. We note that, methodologically, in order to reveal such issues, a
complete proof is needed following a concrete model. This has not been done in the realm of (efficient)
group signatures and concrete proof and model are unique to our work. (We note that even though we
try to build our constructions on prior assumptions and systems as much as possible, we need to modify
them extensively as required by the constraints imposed by following formal model and arguments).

Our investigation also reveals delicate issues regarding the proper formal modeling of the group
signature primitive with regards to the work of [4]. For example, the need of formalizing security
against attacks by any internal or external entity that is active in the scheme (i.e., no trusted parties).
Lack of such treatment, while proper for the non-dynamic setting of [4], is insufficient for proving the
security of schemes that follow the line of work of [2] (i.e., where there are no trusted key generators).

Our Contributions. Below, we outline what this work achieves in more details.
1. MODELING. To model schemes like the scheme of [2] with dynamic (yet sequential) joins and no
trusted parties we adapt the model of [23] which is the first formal model in the area of group signing
without added trusted parties. In particular, our model has the three types of attacks that involve the GM
and the users similarly to [23]. We extend the model to allow adversarial opening of signatures (see the
next paragraph). All the attacks are modeled as games between the adversaries and a party called the
interface. The interface represents the system in a real environment and simulates the behavior of the
system (a probabilistic polynomial time simulator) in the security proof. The attacker gets oracle query
capabilities to probe the state of the system and is also challenged with an attack task. We note that this
follows the basic approach of [22] for modeling security of digital signatures, yet in the complicated
system with various parties, a few attacks which can co-exist are possible, and needed to be described
as part of the system security.
2. ADVERSARIAL OPENING IN EFFICIENT SCHEMES. As mentioned above, our formal model ex-
tends the security requirements given by the list of security properties of [2] by allowing the adversary
to request that the system opens signatures of its choice. In the work of [2], opening of signatures
was implicitly assumed to be an internal operation of the GM. We note that such stronger adversarial
capability was put forth for the first time in the formal model of [4]. For achieving an efficient scheme
with adversarial opening we needed to develop novel cryptographic constructs. (Note that adversarial
opening can also be applied to strengthen the notion of traceable signatures).
3. STRONGER ANONYMITY PROPERTY. In the scheme of [2] anonymity is claimed against an ad-
versary that is not allowed to corrupt the GM. This is a natural choice since in their scheme the GM
holds the trapdoor which provides the opening capability, namely an ElGamal key. The GM also holds
the trapdoor that is required to enroll users to the group, namely the factorization of an RSA-modulus.
However, pragmatically, there is no need to combine the GM function that manages group members
and allow them to join the group (which in real life can be run by e.g., a commercial company) with the
opening authority function (which in real life can be run by a government entity). To manage members
the GM who is the “Join Manager” still needs to know the factorization. The opening authority, on
the other hand, must know the ElGamal key. This split of functions (separation of authorities) is not a
relaxation of group signatures but rather a constraining of the primitive. One should observe that the
introduction of such additional functionalities in a primitive potentially leads to new attacks and to a
change in the security model. Indeed in the separated authorities setting, we must allow the anonymity
adversary to corrupt the GM as well.
4. NUMBER-THEORETIC RESULTS AND CRYPTOGRAPHIC PRIMITIVES. The last two contributions
above required building cryptographic primitives over the set of quadratic residues modulo n = pq that
remain secure when the factorization (into two strong primes) p, q is known to the adversary.

4



To this end, we investigate the Decisional Diffie Hellman Assumption over the quadratic residues
modulo n and we prove that it appears to be hard even if the adversary knows the factorization. In
particular, we prove that any adversary that knows the factorization p, q and solves the DDH problem
over the quadratic residues modulo a composite n = pq, can be turned into a DDH-distinguisher for
quadratic-residues modulo a prime number. This result is of independent interest since it suggests that
the DDH over QR(n) does not depend to the factorization problem at all.

Also, the present work requires a cca2 (chosen ciphertext attack) secure encryption mechanism that
operates over the quadratic residues modulo n so that (i) encryption should not use the factorization of
n, (i.e., the factorization need not be a part of the public-key), but on the other hand (ii) the factorization
is known to the attacker. In this work we derive such a primitive in the form of an ElGamal variant
following the general approach of twin encryption, cf. [29, 16, 19] which is cca2 secure under the
DDH assumption in the Random Oracle model (note that our efficient group signature requires the
random oracle anyway since it is derived from the Fiat-Shamir transform, cf. [18, 1]).

5. EFFICIENT CONSTRUCTION. We provide an efficient construction of a group signature that is
proven secure in our model. While, we would like to note that our scheme is motivated by [2] (and
originally we tried to rely on it as much as possible), our scheme, nevertheless, possesses many subtle
and important differences. These differences enable the proof of security of our scheme whereas the
scheme presented by [2] claims security in heuristic arguments that are not complete and, in particular,
cannot be proven secure in our model: There are many reasons for this, e.g., the scheme of [2] lacks
an appropriate cca2 secure identity embedding mechanism. Moreover, our efficient construction can
support formally (if so desired), the separation of group management and opening capability – some-
thing not apparent in the prior scheme of [2]. Finally, we note that a syntactically degenerated version
of our construction (that retains its efficiency) can be proven secure in the model of [4] (and is, in fact,
a non-dynamic group signature scheme of the type they have suggested).

An interesting technical result with respect to anonymity compared to previous work is highlighted
in our investigation. Anonymity was argued in the work of [2] to be based on the decisional Diffie-
Hellman Assumption over Quadratic Residues modulo a composite and given that the GM was assumed
to be uncorrupted, the key-issuing trapdoor (the factorization of the modulus) was not meant to be
known to the adversary. As argued above, we prove that anonymity still holds when the adversary is
given the factorization trapdoor. Thus, we disassociate anonymity from the factoring problem. Taking
this result independently it also implies the separability between the opening authority and the group
manager. In addition, we note that many other technical and subtle details are different in our provable
scheme from prior designs.

An extended abstract of the present paper appeared in [26].
Organization. In section 2 we present some background, useful tools and the intractability assump-
tions. In section 3 we investigate the behavior of the DDH assumption over the quadratic residues
modulo a composite which is multiple of two strong primes, when the factorization is known to the
distinguisher. In section 4 we discuss the kind of cca2 security that will be required in our setting
(over QR(n) but with known factorization) and we present an efficient and provably secure construc-
tion based on the ElGamal twin-encryption paradigm. In section 5 we present our security model and
definitions and in section 6 we give our construction and its proofs of correctness and security. In sec-
tion 7 we present group signatures with separated authorities (i.e., the Group Manager (GM) and the
Opening Authority (OA)).
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2 Preliminaries

NOTATIONS. We will write PPT for probabilistic polynomial-time. If D1 and D2 are two probability
distributions defined over the same support that is parameterized by ν we will write distA(D1,D2)
to denote the computational distance |Probx←D1 [A(x) = 1] − Probx←D2 [A(x) = 1]|. Note that
typically distA will be expressed as a function of ν. Similarly, we will write dist(D1,D2) to denote
the maximum distance among all PPT predicates A. Note that the statistical distance of the distribu-
tions D1,D2, namely 1

2

∑
x |ProbD1 [x] − ProbD2 [x]| might be much larger than the computational

distance.
If n is any number, we will denote by [n] the set {1, . . . , bnc}. If we write a ≡n b for two integers

a, b we mean that n divides a− b or equivalently that a, b are the same element within Zn. A function
f : IN → R will be called negligible if for all c > 0 there exists a νc such that for all ν ≥ νc,
f(ν) < ν−c. In this case we will write f(ν) = negl(ν). PPT will stand for “probabilistic polynomial
time.” Throughout the paper (unless noted otherwise) we will work over the group of quadratic residues
modulo n, denoted by QR(n), where n = pq and p = 2p′ + 1 and q = 2q′ + 1 and p, q, p′, q′ prime
numbers. All operations are to be interpreted as modulo n (unless noted otherwise). In general we
will use the letter ν to denote the security parameter (i.e., this value will be polynomially related to the
sizes of all quantities involved). Next we define the cryptographic intractability assumptions that will
be relevant in proving the security properties of our constructions.

The first assumption is the Strong-RSA assumption. It is similar in nature to the assumption of the
difficulty of finding e-th roots of arbitrary elements in Z∗n with the difference that the exponent e is not
fixed (i.e., it is not part of the instance).

Definition 1 Strong-RSA. Given a composite n (as described above), and z ∈ QR(n), it is infeasible
to find u ∈ Z∗n and e > 1 such that ue = z(modn), in time polynomial in ν.

Note that the variant we employ above restricts the input z to be a quadratic residue. This variant
of Strong-RSA has been discussed before, cf. [15], and by restricting the exponent solutions to be only
odd numbers we have that (i) it cannot be easier than the standard unrestricted Strong-RSA problem,
but also (ii) it enjoys a random-self reducibility property (see [15]).

The second assumption that we employ is the Decisional Diffie-Hellman Assumption (see e.g., [6]
for a survey). We state it below for a general group G and later on in definition 5 we will specialize this
definition to two specific groups.
Decisional Diffie-Hellman Given a description of a cyclic (sub)group G that includes a generator g,
a DDH distinguisher A is a polynomial in ν time PPT that distinguishes the family of triples of the
form 〈gx, gy, gz〉 from the family of triples of the form 〈gx, gy, gxy〉, where x, y, z ∈R #G. The DDH
assumption suggests that this advantage is a negligible function in ν.

Finally, we will employ the discrete-logarithm assumption over the quadratic residues modulo n
with known factorization (note that the discrete-logarithm problem is assumed to be hard even when
the factorization is known, assuming of course that the factors of n are large primes p, q and where
p− 1 and q − 1 are non-smooth).

Definition 2 Range-bounded Discrete-Logarithm with known factorization. Given two values a, b that
belong to the set of quadratic residues modulo n with known factorization n = pq, so that there is an
x ∈ Λ ⊆ [p′q′] : ax = b, p, q are safe primes, #Λ = Θ(nε) for a given constant ε > 0, it is infeasible
to find in time polynomial in ν the integer x so that ax = b(modn).
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3 DDH over QR(n) with known Factorization

Our constructions will require the investigation of the number-theoretic results presented in this sec-
tion that albeit entirely elementary they have not being observed in the literature to the best of our
knowledge. In particular we will show that DDH over QR(n) does not depend on the hardness of
factoring.

Let n be a composite, n = pq with p = 2p′ + 1 and q = 2q′ + 1 (p, q, p′, q′ primes). Recall that
elements of Z∗n are in a 1-1 correspondence with the set Z∗p × Z∗q . Indeed, given 〈b, c〉 ∈ Z∗p × Z∗q ,
consider the system of equations x ≡ b(modp) and x ≡ c(modq). Using Chinese remaindering we
can construct a solution of the above system since gcd(p, q) = 1 and the solution will be unique
inside Z∗n. Alternatively for any a ∈ Z∗n we can find the corresponding pair 〈b, c〉 in Z∗p × Z∗q by
computing b = a(modp) and c = a(modq) (note that gcd(a, n) = 1 implies that b 6≡ 0(modp) and
c 6≡ 0(modq). The mapping ρ from Z∗p × Z∗q to Z∗n is called the Chinese remaindering mapping.
Observe that ρ preserves quadratic residuosity: ρ(QR(p)×QR(q)) = QR(n).

The following two lemmas will be useful in the sequel. They show (1) how the Chinese remainder-
ing mapping behaves when given inputs expressed as powers inside the two groupsQR(p) andQR(q),
and (2) how discrete-logarithms over QR(n) can be decomposed.

Lemma 3 Let g1, g2 be generators of the groupsQR(p) andQR(q) respectively, where the groups are
defined as above. Then, if β = ρ(gx1

1 , gx2
2 ), where ρ is the Chinese remaindering mapping, it holds that

β = αq
′x1+p′x2(modn) where α = ρ(g(q′)−1

1 , g
(p′)−1

2 ) is a generator of QR(n).

Proof. First we show that α is a generator of QR(n). Assume without loss of generality that p′ > q′.
Then it holds that q′ ∈ Z∗p′ and as a result q′ is an invertible element of Z∗p′ . It follows that g′1 =

g
(q′)−1

1 is well defined and is a generator of QR(p) (since g1 is a generator of QR(p)). Furthermore
p′(modq′) ∈ Z∗q′ since it cannot be the case that p′ ≡q′ 0 as this would mean that either p′ = q′ or p′ is

not prime. It follows that p′ has an inverse modulo q′ and as a result g′2 = g
(p′)−1

2 is well defined and is
a generator of QR(q) (since g2 is a generator of QR(q)). Finally we remark that if g1, g2 are randomly
selected generators ofQR(p), QR(q) respectively, it holds that g′1, g

′
2 are uniformly distributed over all

generators.
Since α = ρ(g′1, g

′
2), it follows that α ≡p g′1(p) and α ≡q g′2(q). It is easy to see that α must be

a generator unless the order of α inside Z∗n is divisible by either p′ or q′; but this can only happen if
α ≡p 1 or α ≡q 1 something not possible unless either g′1 ≡p 1 or g′2 ≡q 1. This case is excluded given
that g′1, g

′
2 are generators of their respective groups QR(p) and QR(q). This completes the argument

that α is a generator of QR(n).
Now, since β = ρ(gx1

1 , gx2
2 ) it follows that β ≡ gx1

1 (p) and β ≡ gx2
2 (q); Using this fact together

with the properties of α we have:

αq
′x1+p′x2 ≡p αq

′x1 ≡p (g(q′)−1

1 )q
′x1 ≡p gx1

1

αq
′x1+p′x2 ≡q αp

′x2 ≡p (g(p′)−1

2 )p
′x2 ≡p gx2

2

Due to the uniqueness of the Chinese remaindering solution inside Z∗n it follows that β = αq
′x1+p′x2( mod

n) is the solution of the system. ut

Lemma 4 Fix a generator α of QR(n) and an integer t ∈ IN. The mapping τα : Zp′ ×Zq′ → QR(n),
with τα(x1, x2) = α(q′)tx1+(p′)tx2 is a bijection. The inverse mapping τ−1

α is defined as τ−1
α (αx) =

〈(q′)−tx mod p′, (p′)−tx mod q′〉.
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Proof. Let 〈x1, x2〉, 〈x′1, x′2〉 ∈ Zp′ × Zq′ be two tuples with τ(x1, x2) = τ(x′1, x
′
2). It follows that

(q′)tx1+(p′)tx2 ≡order(α) (q′)tx′1+(p′)tx′2; since α is a generator, p′q′ | (q′)t(x1−x′1)+(p′)t(x2−x′2),
from which we have p′ | (q′)t(x1 − x′1) which implies p′ | x1 − x′1, i.e., x1 = x′1. In a similar fashion
we show that x2 = x′2. The onto property follows immediately from the number of elements of the
domain and the range.

Regarding the inverse, define q∗, p∗ to be integers in Zp′ ,Zq′ respectively, so that q∗(q′)t ≡p′ 1 and
p∗(p′)t ≡q′ 1. Moreover let y1 = q∗x mod p′ and y2 = p∗x mod q′. Let π1, π2 be integers so that
q∗x = π1p

′+y1 and p∗x = π2q
′+y2. We will show that (q′)ty1 +(p′)ty2 ≡p′q′ x which will complete

the proof.
In order for p′q′ to divide (q′)ty1+(p′)ty2−x it should hold that both p′, q′ divide (q′)ty1+(p′)ty2−

x. Indeed, p′ divides (q′)ty1+(p′)ty2−x since (q′)ty1+(p′)ty2−x = (q′)t(q∗x−π1p
′)+p′y2−x ≡p′

(q′)tq∗x− x ≡p′ 0. In a similar fashion we show that q′ divides (q′)ty1 + (p′)ty2 − x. From these two
facts it follows immediately that τ(τ−1(αx)) = τ(〈y1, y2〉) = αx. ut

Let desc(1ν) be a PPT algorithm, called a group descriptor, that on input 1ν it outputs a description
of a cyclic group G denoted by d̃G. Depending on the group, d̃G may have many entries; in our setting
it will include a generator of G, denoted by d̃G.gen and the order of G denoted by d̃G.ord. We require
that 2ν−1 ≤ d̃G.ord < 2ν , i.e., the order of G is a ν-bit number with the first bit set. Additionally
d̃G contains the necessary information that is required to implement multiplication over G. We will be
interested in the following two group descriptors:

• descp: Given 1ν find a ν-bit prime p′ > 2ν−1 for which it holds that p = 2p′ + 1 and p is
also prime. Let g be any non-trivial quadratic residue modulo p. We set QR(p) to be the group
of quadratic residues modulo p (which in this case is of order p′ and is generated by g). The
descriptor descp returns 〈g, p, p′〉 and it holds that if d̃← descp(1ν), d̃.ord = p′ and d̃.gen = g.

• descc: Given ν find two distinct primes p′, q′ of bit-length ν/2 so that p′q′ is a ν-bit number
that is greater than 2ν−1 and so that there exist primes p, q such that p = 2p′ + 1 and q =
2q′ + 1. The descriptor descc returns 〈α, n, p, q, p′, q′〉 and it holds that if d̃ ← descc(1ν),
d̃.ord = p′q′ and d̃.gen = α. The implementation of descc that we will employ is the following:
execute descp twice, to obtain d̃1 = 〈g1, p, p′〉 and d̃2 = 〈g2, q, q′〉 with p 6= q, and set d̃ =
〈g, n = pq, p, q, p′, q′〉 where α = ρ(g(q′)−1

1 , g
(p′)−1

2 ). For such a description d̃ we will call the
descriptions d̃1 and d̃2, the prime coordinates of d̃. Note that in the (unlikely) event p = q the
procedure is repeated.

Definition 5 A Decisional Diffie Hellman (DDH) distinguisher for a group descriptor desc is a PPT
algorithm A with range the set {0, 1}; the advantage of the distinguisher is defined as follows:

AdvDDHdesc,A(ν) = distA(Ddesc
ν ,Rdesc

ν )

where Ddesc
ν contains elements of the form 〈d̃, gx, gy, gx·y〉 where d̃ ← desc(1ν), g = d̃.gen and

x, y ←R [d̃.ord], and Rdesc
ν contains elements of the form 〈d̃, gx, gy, gz〉 where d̃ ← desc(1ν), g =

d̃.gen and x, y, z ←R [d̃.ord]. Finally we define the overall advantage quantified over all distinguishers
as follows: AdvDDHdesc (ν) = maxPPT A AdvDDHdesc,A(ν).

The main result of this section is the theorem below that shows that the DDH over QR(n) with
known factorization is essentially no easier than the DDH over the prime coordinates of QR(n). The
proof of the theorem is based on the construction of a mapping of DDH triples drawn from the two
prime coordinate groups of QR(n) into DDH triples of QR(n) that is shown in the following lemma:
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Lemma 6 Let d̃ ← descc(1ν) with d̃1, d̃2 ← descp(1ν/2), its two prime coordinates, such that d̃1 =
〈g1, p, p′〉 and d̃2 = 〈g2, q, q′〉. Consider a mapping ρ∗ defined as follows:

ρ∗(〈d̃1, A1, B1, C1〉, 〈d̃2, A2, B2, C2〉)

=df

{ 〈d̃, ρ(A1, A2), ρ(B1, B2), ρ((C1)q
′
, (C2)p

′
)〉

⊥

so that the⊥ output is given if and only if d̃1.ord = d̃2.ord. Then it holds, that ρ∗ satisfies the properties
(i) dist(ρ∗(Ddescp

ν/2 ,Ddescp

ν/2 ),Ddescc
ν ) ≤ 3 log 2·ν

2ν/2
and (ii) dist(ρ∗(Rdescp

ν/2 ,Rdescp

ν/2 ),Rdescc
ν ) ≤ 3 log 2·ν

2ν/2
.

Proof. Observe that if A1 = gx1
1 , B1 = gy11 , C1 = gx1y1

1 and A2 = gx2
2 , B2 = gy22 , C2 = gx2y2

1 , based
on the properties of the mapping ρ shown in lemma 3 it follows that

ρ(A1, A2) = αq
′x1+p′x2 and ρ(B1, B2) = αq

′y1+p′y2

ρ((C1)q
′
, (C2)p

′
) = α(q′)2x1y1+(p′)2x2y2

Now we show that if 〈A1, B1, C1〉 is a DDH triple from d̃1, and 〈A2, B2, C2〉 is a DDH triple from d̃2

then 〈A,B,C〉 is a DDH triple from d̃ that has d̃1 and d̃2 as its two prime coordinates:

αlogα A logαB = α(q′x1+p′x2)(q′y1+p′y2)

= α(q′)2x1y1+(p′)2x2y2+p′q′(x1y2+x2y1)

≡n α(q′)2x1y1+(p′)2x2y2 = C

From the above and lemma 4 and standard results on the distribution of primes we can deduce easily that
dist(ρ∗(Ddescp

ν/2 ,Ddescp

ν/2 ),Ddescc
ν ) ≤ 3 log 2·ν

2ν/2
, i.e., the two distributions are statistically indistinguishable.

We conclude that the distribution defined by ρ∗ when applied to two distributions of DDH triples from
Ddescp

ν/2 over the respective groups is statistically close to the distribution Ddescc
ν . This completes the

proof for property (i) of the lemma. Regarding property (ii), observe that if A1 = gx1
1 , B1 = gy11 , C1 =

gz11 and A2 = gx2
2 , B2 = gy22 , C2 = gz21 , based on the properties of the mapping ρ shown in lemma 3 it

follows that
ρ(A1, A2) = αq

′x1+p′x2 and ρ(B1, B2) = αq
′y1+p′y2

ρ((C1)q
′
, (C2)p

′
) = α(q′)2z1+(p′)2z2

and thus, using lemma 4, dist(ρ∗(Rdescp

ν/2 ,Rdescp

ν/2 ),Rdescc
ν ) ≤ 3 log 2·ν

2ν/2
, i.e., the two distributions are

statistically indistinguishable. ut

The lemma is used for the proof of the theorem below:

Theorem 7 AdvDDHdescc
(ν) ≤ 2AdvDDHdescp

(ν/2) + (6 log 2 · ν)/2ν/2.

Proof. Let A be any DDH-distinguisher for descc. Using property (i) of lemma 6, we have that

distA(Ddescc
ν , ρ∗(Ddescp

ν/2 ,Ddescp

ν/2 )) ≤ 3 log 2 · ν
2ν/2

and given that
distA(ρ∗(Ddescp

ν/2 ,Ddescp

ν/2 ), ρ∗(Rdescp

ν/2 ,Ddescp

ν/2 )) ≤

≤ AdvDDHdescp
(ν/2)

9



we obtain
(Fact 1) distA(Ddescc

ν , ρ∗(Rdescp

ν/2 ,Ddescp

ν/2 )) ≤

≤ AdvDDHdescp
(ν/2) +

3 log 2 · ν
2ν/2

Now using property (ii) of lemma 6 we have that

distA(Rdescc
ν , ρ∗(Rdescp

ν/2 ,Rdescp

ν/2 )) ≤ 3 log 2 · ν
2ν/2

and given that
distA(ρ∗(Rdescp

ν/2 ,Ddescp

ν/2 ), ρ∗(Rdescp

ν/2 ,Rdescp

ν/2 )) ≤

≤ AdvDDHdescp
(ν/2)

we obtain
(Fact 2) distA(ρ∗(Rdescp

ν/2 ,Ddescp

ν/2 ),Rdescc
ν ) =

= AdvDDHdescp
(ν/2) +

3 log 2 · ν
2ν/2

Finally by applying the triangle inequality to facts 1 and 2 above, we obtain:

AdvDDHA,descc
(ν) = distA(Ddescc

ν ,Rdescc
ν ) ≤

≤ 2 · AdvDDHdescp
(ν/2) +

6 log 2 · ν
2ν/2

Since the above holds for an arbitrary choice of A the statement of the theorem follows. ut

We proceed to state explicitly the two variants of the DDH assumption:

Definition 8 The following are two Decisional Diffie Hellman Assumptions:
• The DDH assumption over quadratic residues modulo a safe prime (DDH-Prime) asserts that:
AdvDDHdescp

(ν) = negl(ν).
• The DDH assumption over quadratic residues modulo a safe composite with known Factorization
(DDH-Comp-KF) asserts that: AdvDDHdescc

(ν) = negl(ν).

We conclude the section with the following theorem (where =⇒ stands for logical implication):

Theorem 9 DDH-Prime =⇒ DDH-Comp-KF.

Proof. An immediate corollary of theorem 7 and the easy fact that if f1, f2 are negligible functions in
ν then 2 · f1(ν) + f2(ν) is also a negligible function.

ut
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4 PK-Encryption over QR(n) with split n

Our constructions will require a special identity embedding mechanism that is cca2 secure; such a
mechanism is presented in this section.

A public-key encryption scheme comprises three procedures 〈Gen, Enc, Dec〉. The syntax of these
procedures is as follows: Gen(1ν) returns a pair 〈pk, sk〉 that constitutes the public-key and secret-key
of the scheme respectively. The probabilistic encryption function Enc takes as input the parameter 1ν ,
a public-key pk and a message m and returns a ciphertext ψ. The decryption function Dec takes as
input a secret-key sk and a ciphertext ψ and returns either the corresponding plaintext m, or the special
failure symbol ⊥. The correctness of a public-key encryption scheme requires that for any 〈pk, sk〉,
Dec(sk, Enc(1ν , pk,m)) = m with very high probability in the security parameter ν (preferably al-
ways). There are various notions of security for public-key encryption, cf. [21, 29, 31, 17]; below
we will be interested in the so-called CPA and cca2 security in the indistinguishability sense. For
completeness we define these notions below:

A cca2 adversary A against a public-key encryption scheme 〈Gen, Enc, Dec〉 is a PPT predicate
with range in {0, 1} that is thought to operate in the following game:

The cca2 Game GAcca2 for security parameter ν (denoted by GAcca2(1
ν)):

1. 〈pk, sk〉 ← Gen(1ν);
2. 〈aux,m0,m1〉 ← ADec(sk,·)(choose, 1ν , pk)
3. Choose b←R {0, 1};
4. Set ψ∗ ← Enc(1ν , pk,mb);
5. Set Dec¬ψ

∗
(sk, x) to be “if x 6= ψ∗ then return Dec(s, x) else return ⊥”;

6. b∗ ← ADec¬ψ
∗
[sk,·](guess, aux, ψ∗);

7. if b = b∗ return > else return ⊥;
A CPA adversary A operates as above but is denied access to the Dec oracles in steps 2 and 6 in

the above game. The corresponding restricted game is called GAcpa.

Definition 10 For X ∈ {cca2, cpa}, A public-key encryption scheme satisfies X-security if for any PPT
predicate A it holds that 2Prob[GAX (1ν) = >]− 1 = negl(ν).

Now consider the following cryptosystem 〈Genqr, Encqr, Decqr〉:

• The key-generator Genqr on input 1ν samples the description d̃ = 〈g, n, p, q, p′, q′〉 ← descc(1ν),
selects a value x←R [p′q′] and outputs pk = 〈g, n, p, q, h = gx〉 and sk = x.

• The encryption function Encqr operates as follows: given M ∈ QR(n), it selects r ←R [bn/4c]
and returns the pair 〈gr mod n, hrM mod n〉.

• The decryption operation Decqr is given 〈G,H〉 and returns G−xH(modn).

Note that this cryptosystem is an ElGamal variant over quadratic residues modulo a composite,
so that (i) the factorization is available to the adversary, but: (ii) the factorization is not necessary for
encryption.

Theorem 11 The cryptosystem 〈Genqr, Encqr, Decqr〉 described above satisfies CPA-security under
the assumption DDH-Compo-KF, and thus under the assumption DDH-Prime (theorem 9).
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Proof. The proof of CPA-security for the ElGamal variant we define is very similar to the proof of CPA-
security for regular ElGamal encryption as formulated by [33], and we omit it (in fact the simplification
of this proof was one reason for introducing DDH-Compo-KF in the first place). ut

We remark that ElGamal variants over composite order groups have been considered before, e.g.,
[28]; in the setup that was considered the adversary was denied the factorization and security proper-
ties of the cryptosystem were associated with the factoring assumption. Our variant above, on the other
hand, shows that the semantic security (in the sense of CPA-security) of the composite modulus ElGa-
mal variant we define still holds under the standard prime-order Decisional Diffie-Hellman assumption
DDH-Prime.

Now let us turn our attention to achieving cca2 security in the above setting. To achieve this
goal we will employ the double encryption approach. Double encryption has been employed as a
tool to obtain chosen-ciphertext security originally in [29]. Based on double encryption the so called
“twin-conversion” has been formalized in [19]: it transforms a CPA-secure cryptosystem into a cca2-
cryptosystem by employing proofs of language membership that are “simulation-sound” , cf. [32].

In the remaining of the section we will present a transformation of the ElGamal variant we presented
above in the general spirit of the twin-transform. For various technical reasons we cannot employ the
transform in a generic fashion and below we will provide a direct stand-alone argumentation for the
security of the construction. We start by presenting the cryptosystem:

• Gen′qr samples 〈g, n, p, q, p′, q′〉 ← descc(1ν), selects x1, x2 ←R [p′q′] and returns the pk′ =
〈g, n, p, q, y1 = gx1 , y2 = gx2〉 and the secret-key sk′ = 〈x1, x2〉.

• The encryption Enc′qr: in order to encrypt a messagem, we form the two ciphertexts 〈gr1 , yr11 m〉
and 〈gr2 , yr22 m〉 with r1, r2 ← [bn/4c] and we attach a proof of language membership for the
language:

Lqr = {〈n, g, y1, y2, 〈gr1 , yr21 m〉, 〈g
r2 , yr22 m〉〉

| r1, r2 ∈ [bn/4c],m ∈ QR(n)}

Note that we want to preserve the property that encryption does not use the factorization of n. In
order to prove language membership of a tuple 〈n, g, y1, y2, 〈G1, Y1〉, 〈G2, Y2〉〉 to Lqr we will
use a proof of language membership defined below in definition 12.

It follows that the output of Enc′qr is of the form 〈G1, Y1, G2, Y2, π〉, where π is the non-
interactive proof of language membership in Lqr.

• The decryption Dec′qr, operates as follows: first it checks the proof π, and if the check fails it
returns⊥, otherwise it applies x1 toG1 and returns (Y1 ·G−x1

1 )2 mod n. Note that the decryption
does not return M but rather M2 mod n. We will explain the reason for this choice later on in
the construction of the group signature.

Definition 12 The proof of language membership for Lqr. Suppose that the values r1, r2 ∈ [bn/4c].
The interaction between the prover and the verifier is as follows: the prover selects t1, t2 ∈ [−2k+lbn/4c,
. . . , 2k+lbn/4c] and transmits to the verifier the valuesB1 = gt1 , B2 = gt2 , B3 = yt11 /y

t2
2 . The verifier

selects a challenge c ∈ {0, 1}k, and subsequently the prover computes si = ti − c · ri for i = 1, 2
and transmits to the verifier the values s1, s2. The verification check is the following: gs1(G1)c =? B1,
gs2(G2)c =? B2 and (ys11 /y

s2
2 )(Y1/Y2)c =? B3. In order to make the proof non-interactive using a

hash function H : {0, 1}∗ → {0, 1}k we perform the following: the non-interactive proof π in the
description of Enc′qr will have the form

〈c = H(n, g, y1, y2, G1, Y1, G2, Y2, B1, B2, B3), s1, s2〉

12



and the verification step that is part of Dec′qr, operates as follows: given the non-interactive proof
π = 〈c, s1, s2〉, the check is implemented as:

c =? H
(
n, g, y1, y2, G1, Y1, G2, Y2, g

s1Gc1, g
s2Gc2,

ys11 Y
c
1

ys22 Y
c
2

)
The set of proofs π constructed as above for a given ciphertext will be denoted by

nizkH[n, g, y1, y2, 〈G1, Y1〉, 〈G2, Y2〉]

Given the description of constructing the non-interactive proof of knowledge it is easy to verify that
valid encryptions of messages m will never result in the decryption function Dec′qr returning ⊥. The
introduction of π though along with each ciphertext introduces a possible security concern since the
random coins used for encryption are employed in the construction of π. To settle this issue we willfirst
present the following technical lemma:

Lemma 13 Consider a fixed x ∈ [L,R] withm = R−L and the random variables t ∈R [−2k+lm, 2k+lm],
c ∈R {0, 1}k. The statistical distance of the random variable ŝ = t−c(x−L) from the random variable
s ∈R [−2k+lm, 2k+lm] is less than 2−l.

Proof. We will denote by Da the distribution of the random variable s and by Db the distribution of
ŝ = t− c(x− L). Assume that the support of the two random variables is Z.

• Regarding Da observe that a certain s0 in [−2k+lm, 2k+lm] has probability of being selected
equal to 1

1+2k+l+1m
(uniform probability distribution). Any s0 6∈ [−2k+lm, 2k+lm] has proba-

bility 0.

• Regarding Db observe that a certain s0 has the following probabilities of being selected:

1. For each s0 ∈ [−2k+lm, 2k+lm− (2k − 1)m] and for each of the 2k different c0 ∈ {0, 1}k
we can find a unique t0 such that s0 = t0 − c0x, as a result the probability of obtaining the
given s0 according to Db is 2k

2k(1+2k+l+1m)
= 1

1+2k+l+1m
.

2. For s0 ∈ [−2k+lm− (2k − 1)m,−2k+lm− 1] or s0 ∈ [2k+lm− (2k − 1)m+ 1, 2k+lm]
the probability of obtaining s0 according to Db lies in the real interval [0, 1

2k+l+1m+1
].

3. For the remaining s0 < −2k+lm− (2k − 1)m and s0 > 2k+lm the probability of selecting
them according to Db is equal to 0.

It is clear from the above that the absolute difference between the probability of a certain s0 accord-
ing to Db and Da is 0 for the integer ranges of cases 1 and 3 above. The distributions Da and Db will
accumulate some statistical distance though due to their different behavior for values s0 that belong to
the integer range specified in item 2. In this case, for a specific s0, distribution Da assigns probabil-
ity either 0 or 1

2k+l+1m+1
whereas distribution Db assigns probability that belongs in the real interval

[0, 1
2k+l+1m+1

]. Clearly, in the worst case for each specific s0 the absolute difference will be 1
2k+l+1m+1

.
The number of elements s0 of case 2, are 2 · (2k − 1)m thus it follows that the statistical distance of
the distributions Da and Db cannot be greater than (2k − 1)m/(2k+l+1m + 1) < 2−l−1 < 2−l. This
completes the proof. ut
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Now consider the following algorithm S: given n, g, y1, y2, 〈G1, Y1〉, 〈G2, Y2〉 and parameters k, l
it selects a random c ∈ {0, 1}k and random s1, s2 ∈ [−2k+lbn/4c, 2k+lbn/4c] and then produces the
values:

B1 = gs1Gc1, B2 = gs2Gc2, B3 = (ys11 /y
s2
2 )(Y1/Y2)c, c, s1, s2

In the following proposition we will establish that in the random oracle model an adversary is
incapable of taking any significant advantage of the extra information provided by the attachment of π
to a ciphertext.

Proposition 14 Consider the following two experiments executed with any probabilistic polynomial-
time adversary AH that has access to a random oracleH and operates in two stages: in the first stage
it receives a public-key of the encryption scheme 〈Gen′qr, Enc′qr, Dec′qr〉 and it outputs two plaintexts
m0,m1; in the second stage it receives an encryption of mb under Enc′qr, where b is a random bit and
produces a single bit output. The experiments are defined as follows:

• (Experiment 1.) Simulate AH so that queries to H are answered on-the-fly by generating the
table ofH. WhenA outputs m0,m1, encrypt mb using Enc′qr and finish the simulation ofAH by
returning the output of A.

• (Experiment 2.) Proceed as in experiment 1, with the following modification: the proof π in the
encryption of Enc′qr is substituted by a string π = (c, s1, s2) where c, s1, s2 are obtained from an
output 〈B1, B2, B3, c, s1, s2〉 of a simulation of S. The table ofH is modified so that

〈X = (n, g, y1, y2, G1, Y1, G2, Y2, B1, B2, B3), c〉

is an entry of the table. If no such modification is possible (i.e., an entry X exists already in the
table ofH) the experiment fails.

Let Exp1 (resp. Exp2) be the event that experiment 1 (resp. 2) returns 1. It holds that |Prob[Exp1]−
Prob[Exp2]| ≤ qH · 2−2k +2−l+1 where qH is the random oracle queries allowed toA during its first
stage, assuming that p′q′ > 2k.

Proof. First observe that the probability space over which the two experiments are defined is essentially
identical: the only difference is that experiment 1 selects t1, t2 where experiment 2 selects s1, s2 (the
domain in either case is identical). Consider now the following event Bad that refers to the first stage of
the adversary and is defined as the event that the adversary produces a query to the random oracleH that
is equal to (n, g, y1, y2, G1, Y1, G2, Y2, B1, B2, B3), where G1, Y1, G2, Y2 is the ciphertext produced
after A terminates the first stage. It is easier to compare the two games as long as ¬Bad happens.
Indeed in this case it is easy to see that the statistical distance between the two games is at most
2 · 2−l = 2−l+1 based on lemma 13. It follows that we can bound the statistical distance between the
two games by Prob[Bad] + 2−l+1. Now observe that the values G1, G2 are unknown to the adversary
as they are selected on the fly after the stage 1 terminates. Given that p′q′ > 2k it follows that the
probability that A makes a single query to H and fixes G1, G2 is less than 2−2k. The statement of the
theorem follows easily. ut

The above proposition ensures that it was not harmful to attach a proof π along with our ciphertext
since π carries a negligible amount of information about the random coin tosses used to encrypt M or
about the message itself (at least in the random oracle model). Of course it is still not apparent whether
the attachment of π to any ciphertext can be of any use for proving cca2 security. We establish the
connection in the following proposition that we show that an adversary is incapable of producing a twin
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ciphertext and a string π that can convince the decryption test to not return ⊥ when the twin ciphertext
is inconsistent (i.e., each ciphertext encrypts different plaintexts). It follows that as long as a decryption
oracle deems the ciphertext as valid this means that both siblings in the twin ciphertext encrypt the same
message.

Proposition 15 Consider the following probabilistic polynomial-time adversary AH that has access
to a random oracle H and operates as follows: it receives a public-key of the encryption scheme
〈Gen′qr, Enc′qr, Dec′qr〉 and the factorization of n. A outputs a ciphertext ψ = 〈G1,H1, G2,H2, π〉.
Consider the event Cheat to be the event that Dec′qr(ψ) 6= ⊥ and (Y1 ·G−x1)2 6= (Y2 ·G−x2)2( mod n).
Suppose that Prob[Cheat] > 2−k; then it holds that Prob[Cheat] ≤ 2

√
2 · qH · 2−k/2 where qH is the

number of queries A poses toH, assuming that p′, q′ > 2k.

Proof. Consider all ciphertexts ψ to be of the form ρ1, c, ρ2 where ρ1 = 〈n, g, y1, y2, G1, Y1, G2, Y2,
gs1Gc1, g

s2Gc2, (y
s1
1 Y

c
1 )/(ys22 Y

c
2 )〉 and ρ2 = 〈s1, s2〉. Let Q be a predicate operating over a ciphertext

such that Q(ρ1, c, ρ2) = > if and only if the event Cheat as defined in the theorem’s statement is
satisfied.

It follows that based on lemma 30 there is an algorithm that succeeds in producing two ciphertexts
with the same first value (the ρ1) and different challenges c 6= c′. We call the success probability of
this the event Imp. From lemma 30 we obtain that Pro[Imp] ≥ Prob[Cheat]2/(4qH)− (qH + 1)2−k.

Consider now the setting when Imp happens. We have the following: gs1−s
∗
1 = Gc

∗−c
1 , gs2−s

∗
2 =

Gc
∗−c

2 , and ys1−s
∗
1

1 /y
s2−s∗2
2 = (Y1/Y2)c

∗−c. Now recall that c, c∗ < 2k < p′, q′ thus it holds that
c∗ − c is an invertible element in Zp′q′ . From this we know that there exists an integer t such that
t = (c∗ − c)−1 mod p′q′. For such integer t we can rewrite G1 = σ1g

r1 and G2 = σ2g
r2 where

r1 = (s1 − s∗1)t mod p′q′ and r2 = (s2 − s∗2)t mod p′q′, and σ1, σ2 ∈ Z∗n are elements of order
2. In a similar fashion we rewrite yr11 /y

r2
2 = Y1/Y2σ where σ is also ane element of order 2 inside

Z∗n. From the above it follows that if Y2 = yr22 m, i.e., G2, Y2 is a ciphertext encrypting m then
we have that G1, Y1 is a ciphertext encrypting σ · m. This contradicts the fact that (Y1 · G−x1)2 6=
(Y2 · G−x2)2(modn). It follows that Prob[Imp] = 0. Given that Prob[Imp] = 0 we have that
Prob[Cheat]2 ≤ 4qH(qH + 1)2−k. From this we obtain that Prob[Cheat] ≤ 2

√
2 · qH · 2−k/2. ut

Theorem 16 The cryptosystem Gen′qr, Enc
′
qr, Dec

′
qr satisfies cca2 security in the indistinguishability

sense under the DDH-Comp-KF in the Random-Oracle model.

Proof. We will show how to transform any cca2 adversary AH against the “twin” cryptosystem
Gen′qr, Enc

′
qr, Dec

′
qr to a CPA adversary B in the standard model against the cryptosystem 〈Genqr,

Encqr, Decqr〉. The CPA adversaryB receives as input the public-key pk. Then it sets pk1 = pk and pre-
pares pk2 by selecting x2 from the appropriate domain. In this way the twin public-key pk′ = 〈pk1, pk2〉
is formed. Then B starts the simulation of A giving pk′. Whenever A submits a query to the random
oracle H, B uses the on-the-fly generated table for H to answer consistently. Whenever A submits a
twin ciphertext for decryption to its decryption oracle, B parses the ciphertext as 〈G1, Y1, G2, Y2, π〉,
verifies the non-interactive proof π, and if the proof is valid it responds by (G−x2

2 Y2)2 (contrary to the
standard cca2 simulation where the answer (G−x1

1 Y1)2 is given instead).
When A provides the two challenge plaintexts m0,m1, B forwards them to its own challenge

oracle to obtain the challenge ciphertext G∗1, Y
∗
1 . Then, B computes G∗2, Y

∗
2 at random from the un-

derlying group and produces a simulated proof π∗ by inserting the appropriate value into the ran-
dom oracle table H (if this is not possible then B simply fails). Observe that the challenge ciphertext
ψ∗ = 〈G∗1, Y ∗1 , G∗2, Y ∗2 , π∗〉 is not valid (i.e., the two components encrypt different plaintexts). B pro-
ceeds with the simulation of A by providing the challenge ciphertext and continues the simulation of

15



A. The simulation of the decryption oracle for A in the second stage is similar to the first stage with
the following difference: if a ciphertext query of the form 〈G′1, Y ′1 , G′2, Y ′2 , π′〉 6= ψ∗ is such that π′ is
a valid proof and 〈G′1, Y ′1〉 = 〈G∗1, Y ∗1 〉 then B fails; in other cases whenever π′ is a valid proof then
B replies as in the first stage of the simulation. Finally B terminates by returning the output that A
returns. Clearly B is a CPA adversary for 〈Genqr, Encqr, Decqr〉.

We will show that the success probability of B is close by a negligible fraction to the success proba-
bility ofAH. We will establish this by observing the following sequence of games. First consider game
G0 to be the standard indistinguishability cca2 game thatAH plays and wins with some probability of
success.

Consider the following modification to game G0 that results in game G1. Instead of answering the
decryption queries ofA as (G−x1

1 Y1)2 we answer them by (G−x2
2 Y2)2. Clearly the distance between the

two games would be bounded by Prob[Bad0] where Bad0 is the event that the adversary A produces
a valid non-interactive proof π for a twin ciphertext 〈G1, Y1, G2, Y2, π〉 that satisfies (G−x1

1 Y1)2 6=
(G−x2

2 Y2)2(modn). It is easy to bound the probability of the event Bad0 using proposition 15: based
on the statement of the proposition we know that this happens with probability c · qH2−k/2 where
c is a small constant and thus distance between game G0 and game G1 is negligible (assuming that
qHqdec2−k/2 is negligible, where qdec is the number of decryption oracle queries). Note that game G1

does not employ the secret key of x1 at all.
Next we modify game G1 into game G2 in the generation of the challenge ciphertext: instead of

preparing the challenge ciphertext according to the specifications we produce a fake proof by inserting
the appropriate value into the table ofH and using the simulator S in the same way that this is performed
in proposition 14. Now observe the following: the only difference between game G1 and game G2 is
in the way that the non-interactive proof π∗ in the challenge ciphertext is computed. Observe now that
games G1 and G2 define the two experiments of proposition 14 and thus it follows that the statistical
distance between G1 and G2 isat most 2−2kqH + 2−l+1.

Finally we perform the following modfication to G2 to obtain a game G3: we modify again the
challenge ciphertext so that G2, Y2 are selected at random from QR(n). It is easy to see that this
modification can incur a distance between the games G2 and game G3 that is bounded by the best
possible advantage a polynomial-time distinguisher may have against DDH-Comp-KF. Finally observe
that G3 is identical to the operation of B as defined above. Given that B is a CPA indistinguishability
attacker against a cryptosystem that is secure under DDH-Comp-KF we conclude the proof.

ut

Remark. Having completed the presentation of the cryptosystem Gen′qr, Enc
′
qr, Dec

′
qr a number of

observations are in place (that will be of importance later in the construction of the group signature):

1. The encryption and decryption functions do not require the factorization of n.

2. The factorization n is made available to the adversary.

3. The decryption does not invert the encryption operation entirely as it returns the square of the
encrypted plaintext. While the availability of the factorization can recover the plaintext, such
recover will be unnecessary in the group signature construction that we will present.

5 Group Signatures: Model and Definitions

The parties that are involved in a group signature scheme are the Group Manager (GM) and the users.
In the definition below we give a formal syntax of the five procedures the primitive is based on.
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Our formalization is geared towards schemes as the scheme of [2] where users are joining the
system by executing a join-dialog with the GM (and not any other trusted entity or tamper-proof element
exists). Naturally, this formalization can capture also the case where a third party creates the user
signing keys privately and distributes them through private channels and with trusted parties, however
we do not deal with this simpler case in our model.

Definition 17 A group signature scheme is a digital signature scheme that comprises the following five
procedures;

SETUP: On input a security parameter 1ν , this probabilistic algorithm outputs the group public
key Y (including all system parameters) and the secret key S for the GM. Moreover SETUP initializes
a public-state string St with two components Stusers = ∅ (a set data structure) and Sttrans = ε (a
string data structure).

JOIN: A protocol between the GM and a user that results in the user becoming a new group member.
The user’s output is a membership certificate and a membership secret. We denote the i-th user’s mem-
bership certificate by certi and the corresponding membership secret by seci. Since JOIN is a protocol,
it is made out of two interactive Turing Machines (ITM) Juser, JGM. Only Juser has a private output
tape. An execution of the protocol is denoted as [Juser(1ν ,Y), JGM(1ν , St,Y,S)] and has two “out-
put” components: the private output of the user, 〈i, certi, seci〉 ← U[Juser(1ν ,Y), JGM(1ν , St,Y,S)]
and the public transcript, 〈i, transcripti〉 ← T[ Juser(1ν ,Y), JGM(1ν , St,Y,S)]. After a successful
execution of JOIN the following (public) updates are made to the state: Stusers = Stusers ∪ {i} and
Sttrans = Sttrans|| 〈i, transcripti〉.

SIGN: A probabilistic algorithm that given a group’s public-key, a membership certificate, a mem-
bership secret, and a messagem outputs a signature for the messagem. We write SIGN(Y, certi, seci,m)
to denote the application of the signing algorithm.

VERIFY: An algorithm for establishing the validity of an alleged group signature of a message with
respect to a group public-key. If σ is a signature on a message m, then we have VERIFY(Y,m, σ) ∈
{>,⊥}.

OPEN: An algorithm that, given a message, a valid group signature on it, a group public-key, the
GM’s secret-key and the public-state it determines the identity of the signer. In particular OPEN(m,σ,
Y,S, St) ∈ Stusers ∪ {⊥}.

Note: the identity of the user that gets the i-th user’s membership certificate is assumed to be authenti-
cated and thus associated with i.
Notation. We will write 〈i, certi, seci〉 �Y 〈i, transcripti〉 to denote the relationship between the
private output of Juser and the public-transcript when the protocol is executed based on the group
public-key Y and a state St (note that we omit St in the subscript for convenience). Moreover, any
given cert, based on a public-key Y , has a corresponding sec; we will also denote this relationship
by cert �Y sec (overloading the notation). We remark that �Y in both cases, will be considered a
polynomial-time relationship in the parameter ν.

Given a 〈Y,S〉 ← SETUP(1ν), a public-state St is called well-formed if it is effectively produced
by a Turing machine M that has unlimited access to a JGM oracle (following the public state update
procedures as in definition 17). A well-formed state St′ is said to extend state St, if it is effectively
produced by a Turing machine as above but with the public-state initially set to St instead of 〈∅, ε〉.
Correctness. The correctness of a group signature scheme is broken down in four individual proper-
ties: (i) user tagging soundness mandates that users are assigned a unique tag (depending on order of
joining) by the JOIN protocol; (ii) join soundness mandates that the private output tape of Juser after
a successful execution of the JOIN dialog contains a valid membership certificate and membership se-
cret; (iii) signing soundness mandates that the group signature scheme behaves like a digital signature;
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(iv) opening soundness mandates that the OPEN algorithm succeeds in identifying the originator of any
signature generated according to specifications. Formally,

Definition 18 A group signature is correct if the following statements hold with very high probability
over the coin tosses of all procedures. Let 〈Y,S〉 ← SETUP(1ν).

• User tagging soundness. In every well formed public-state St it holds that the cardinality of the
set Stusers equals the number of transcripts in the string Sttrans.

• Join soundness. If 〈i, certi, seci〉 ← U[ Juser(1ν ,Y), JGM(1ν , St,Y,S)] then it holds that certi �Y
seci.

• Signing soundness. For any cert �Y sec, and any message m,

VERIFY(Y,m, SIGN(Y, cert, sec,m)) = >

• Opening soundness. For any certificate certi and secret seci, transcript transcripti and well-
formed public-state St s.t. 〈i, certi, seci〉 �Y 〈i, transcripti〉, if St′ is a well-formed public-
state that extends St with 〈i, transcripti〉 ∈ St′trans, then for any message m, and any σ ←
SIGN(Y, certi, seci,m) it holds that OPEN(m,σ,Y,S, St′) = i.

Security. Below we present the general model for security. A number of oracles are specified. Through
these oracles the adversary may interact with an Interface that represents the system in the real world,
and simulates its operation (i.e., a simulator) in the security proof. This allows us to model adver-
saries with capabilities (modeled by subsets of the oracles) and attack goals in mind, in the spirit of
[22]. However, since we deal with a “privacy primitive” we have to deal with a number of goals
of mutually distrusting and mutually attacking parties, thus we need more than one adversarial sce-
nario. The interface I is an ITM that employs a data structure called state stateI and is initialized
as 〈St,Y,S〉 ← SETUP(1ν). The interface accepts the types of queries listed below. We remark that
during an attack the adversary interacts with the interface and the oracles in a stateful fashion and the
interface performs a number of bookkeeping operations that involve stateI as explained below.

• Qpub and Qkey: the interface looks up stateI and returns the public-and secret-key respectively.

• Qa−join: the interface initiates a protocol dialog simulating JGM. The user created from this in-
teraction (if it is successfully terminated) will be entered in Stusers and the transcript in Sttrans
following the updating rules of definition 17. Additionally the user will be marked as Ua (adver-
sarially controlled).

• Qb−join: the interface initiates a protocol dialog simulating Juser. The user created from this
interaction (if successfully terminated) will be entered in Stusers and the transcript into Sttrans
as described in the update procedure of definition 17. Additionally, the user will be marked as
U b. Upon successful termination the resulting membership certificate and membership secret
(i.e., the whole output of the user protocol including the user name tag) will be appended in a
private area of stateI .

Following the above we note that the adversary when executing the Qb−join query will be effec-
tively required by the interface to choose a unique and properly defined tag for the current user
(according to definition 17). This is not a restriction since this can be enforced in practice by
having the user checking the public user name database during normal protocol executions. Note

18



that even when assuming an adversarial GM the user name database Stusers is not entirely ad-
versarially controlled; indeed, if Stusers is compromised then clearly no group signature scheme
can have any form of identification robustness.

• Qread,Qwrite: these two queries allow to the adversary to read and write respectively stateI .
The query Qread returns the whole stateI excluding the public and secret-key as well as the
private area of stateI that is used for theQb−join queries. The queryQwrite is allowed to perform
arbitrary changes as long as it does not remove/corrupt elements from Stusers, Sttrans (but e.g.,
insertion to these structures is allowed).

• Qsign(i,m): given that i ∈ U b the interface simulates a signature on m by looking up the mem-
bership certificate and membership secret available in the private area of stateI and returns a
corresponding signature.

• Qopen(σ): the interface applies the opening algorithm to the given signature σ using the current
St. If S is a set of signatures we denote by Q¬Sopen the operation of the opening oracle when
queries for signatures in S are declined.

We remark that the interface I maintains a history of all queries posed to the above oracles (if these
queries accepted an input); for instance, we use the notation histI(Qsign) to denote the history of all
signature queries.

Security Modeling. We next define our security model, which involves three attack scenarios and
corresponding security definitions. These security properties are based on our modeling of Traceable
Signatures, [23], and are ported from the traceable signature setting to the group signature setting,
augmenting them with adversarial opening capability. In particular, we use the same terminology for
the attacks to facilitate the comparison between these two primitives.

The first security property relates to an adversary that wishes to misidentify itself. In a misidenti-
fication attack the adversary is allowed to join the system through Qa−join queries and open signatures
at will; finally he produces a forged group signature (cf. an existential adaptive chosen message at-
tack, [22]) that does not open into one of the users he controls (actually without loss of generality the
adversary controls all users of the system; thus the adversary wins if the opening algorithm returns ⊥).

The Misidentification-Attack Game GAmis (denoted by GAmis(1
ν)):

1. stateI = 〈St,Y,S〉 ← SETUP(1ν);
2. 〈m,σ〉 ← AI[Qpub,Qa−join,Qread,Qopen](1ν)
3. i = OPEN(m,σ,Y,S, St)
4. If (VERIFY(Y,m, σ) = >) ∧ (i 6∈ Ua) then return > else return ⊥.

Our second security property relates to a framing type of attack. Here the whole system conspires
against the user. The adversary is in control not only of coalitions of users but of the GM itself. It is
allowed to introduce “good” users into the system by issuingQb−join queries to the interface and obtain
signatures from them. Finally the adversary produces a signature that opens to one of the “good” users.
Note that the adversary can take advantage of Qwrite to create dummy users if it so wishes.

The Framing-Attack Game GAfra (denoted by GAfra(1
ν)):

1. stateI = 〈St,Y,S〉 ← SETUP(1ν);
2. 〈m,σ〉 ← AI[Qpub,Qkey,Qb−join,Qread,Qwrite,Qsign](1ν)
3. i = OPEN(m,σ,Y,S, St)
4. If (VERIFY(Y,m, σ) = >) ∧ (i ∈ U b) ∧ ((i,m) 6∈ histI(Qsign)) then return > else

return ⊥.
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Finally we model anonymity. In an anonymity-attack the adversary operates in two stages play and
guess. In the play stage the adversary is allowed to join the system through Qa−join queries, as well
open signatures through Qopen queries. The adversary terminates the play stage by providing a pair of
membership certificates/secrets (that were possibly obtained through Qa−join queries). The adversary
obtains a “challenge signature” using one of the two membership certificate/secrets it provided at ran-
dom, and then proceeds in the guess stage that operates identically to the play stage with the exception
that the adversary is not allowed to open the challenge signature. Note that this attack is similar to a
cca2 attack when an individual group signature is considered an identity concealing ciphertext.

The Anonymity-attack Game GAanon (denoted by GAanon(1
ν)):

1. stateI = 〈St,Y,S〉 ← SETUP(1ν);
2. 〈aux,m, cert1, sec1, cert2, sec2, 〉 ← AI[Qpub,Qa−join,Qread,Qopen](play, 1ν)
3. if ¬((cert1 �Y sec1) ∧ (cert2 �Y sec2)) then terminate and return ⊥;
4. Choose b←R {1, 2};
5. σ ← SIGN(Y, certb, secb,m);

6. b∗ ← AI[Qpub,Qa−join,Qread,Q
¬{σ}
open ](guess, aux);

7. if b = b∗ return > else return ⊥;

Definition 19 A group signature scheme is secure if for all PPT A it holds that (i) Prob[GAmis(1
ν) =

>] = negl(ν) (ii) Prob[GAfra(1
ν) = >] = negl(ν) and (iii) 2Prob[GAanon(1

ν) = >]− 1 = negl(ν).

Capturing the intuitive security properties put forth by [2]. Given the above security model is
relatively straightforward to see that the informal security properties that were put forth by [2] are
captured by the above three security properties. In particular, (1) Unforgeability: an adversary that
given the public-key forges a signature, will either produce a signature that opens to ⊥ or a signature
that opens to one of the users; such an attack is prevented by both misidentification and framing security
above; (2) Anonymity, is captured by the anonymity security property above, (3) Unlinkability, is also
captured by the anonymity security property, (4) Exculpability is captured by framing security (since the
secret-key of the GM is released to the adversary), (5) Traceability, is ensured by misidentification (a
signer cannot produce a signature that opens to ⊥) and framing security (a signer cannot frame another
user). (6) Coalition resistance is built-in into our security properties since w.r.t. misidentification we
allow the adversary to adaptively build a coalition of malicious users, whereas in the case of framing
attack the adversary has the GM’s key (and as a result it can build a coalition if it wishes it).

We remark that independently of the present work (which originally appeared in [25]), [5] presented
a group signature formal model that captures the dynamic group case as the present paper does. We note
that the construction presented in that paper is a feasibility result rather than a practical construction
since it employs generic zero-knowledge techniques. That work also explicitly design the underlying
authenticated channel (assumed here and in prior schemes) with public key infrastructure.

6 Building a Secure Group Signature

The public-parameters of the group signature are a composite modulus n of ν bits, such that n = pq
with p = 2p′ + 1 and q = 2q′ + 1 (where p, q, p′, q′ are primes), as well as a sequence of elements
inside QR(n) denoted by a0, a, g, y and parameters k, l.

The membership certificates are of the form 〈A, e〉 so that A ∈ QR(n) and e is a prime number
in Γ. The membership secret is a value x ∈ Λ such that a0a

x = Ae. Note that Γ = [γ0, γ1],Λ =
[λ0, λ1] are integer ranges within {1, . . . , p′q′} such that the following two conditions are satisfied: (i)
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2k+l+2 ·(λ1−λ0+γ1−γ0)+λ1+2ν/2−1−O(log ν) < γ0 (ii) (γ0)2 > 2k+l+2 ·(γ1−γ0)+γ1. In particular
we may select the values as follows: let ν be the number of bits for which an RSA safe composite
modulus is considered to be hard to factor; then we set Λ = [λ0, λ1] = [2ν/2−4 − 2ν/2−k−l−7, 2ν/2−4]
and Γ = [γ0, γ1] = [2ν/2−2, 2ν/2−2 + 2ν/2−k−l−7].

Before we advance to the description of the construction we will prove the following basic lemma
that shows that given a set of certificates, under the Strong-RSA assumption, it is hard to produce one
additional certificate, even if the produced certificate is allowed to be slightly “malformed.” We note
that a weaker formulation of the lemma below is part of the exposition of [2] (note that such weaker
formulation seems insufficient for the proof of security).

Lemma 20 Let n be an RSA modulus and k, l ∈ Z as above and a, a0 ∈ QR(n) be two random
quadratic residues. Also, for i = 1, . . . ,K, let 〈Ai, ei, xi〉 be such that Aeii = a0a

xi(modn) ei ∈
Γ ∩ Prime, xi ∈ Λ, where Γ = [γ0, γ1] and Λ = [λ0, λ1] are integer ranges as defined above. Let
A be an PPT such that given n, a, a0, {〈Ai, ei, xi〉}Ki=1 it returns a tuple 〈A, e, x〉 such that Ae =
±a0a

x(modn), 〈A, e, x〉 6∈ {〈Ai, ei, xi〉}Ki=1 and x ∈ [λ0 − 2k+l+2(λ1 − λ0), λ1 + 2k+l+2(λ1 − λ0)]
and e ∈ [γ0 − 2k+l+2(γ1 − γ0), γ1 + 2k+l+2(γ1 − γ0)] ∩Odd. Then the Strong-RSA assumption fails.

Proof. Let z, n be a challenge for the Strong-RSA problem. Consider first the following PPT B1:
B1, selects random elements xi ∈R Λ and ei ∈R Γ ∩ Prime. Then it sets a0 = zre1...eK and

a = ze1...eK where r ∈R [0, 2ν/2−1−O(log ν)], ei ∈R Γ ∩ Prime, and xi ∈R Λ. Next B1 computes
Ai = (a0ai)1/ei(modn) (observe that the factorization of n is not needed). As proved in [23], as-
suming the hardness of factoring, the selection of r ∈R [0, 2ν/2−1−O(log ν)] is sufficient to make ar0
indistinguishable from a random element of QR(n) if a0 is a generator of QR(n) (and in fact a0 is
with overwhelming probability). This ensures that the public-key (as well as the valuesAi) are selected
in a manner indistinguishable to the main protocol.
B1 proceeds to simulate A to obtain the value A, e, x with the stated range constraints. If it holds

that gcd(e, e1 . . . eK) > 1 then B1 aborts. Otherwise, B1 proceeds as follows: first, denote by ρ =
e1 . . . eK(x + r). B1 computes δ = gcd(e, ρ) = gcd(e, x + r). Observe that due to the properties of
ranges Γ,Λ it holds necessarily that δ < e.

It follows that B1 can compute A, e, ρ so that Ae ± zρ, e is odd and δ = gcd(e, ρ) < e. We show
how to solve the given String-RSA instance given such values below. If δ = 1, B1 computes α, β such
that αe+ βρ = 1 and it follows that z = zeαzρβ = zeα(±Ae)β = ±(zαAβ)e = (±zαAβ)e where the
last equality holds since e is odd. Obviously B1 can recover a solution to the strong-RSA challenge by
using A,α, β in this case (δ = 1).

In case δ > 1 B1 will proceed as follows: let δ̃ = gcd(δ, 2p′q′) (recall 2p′q′ is the exponent of
Z∗n). If δ̃ = p′q′ a multiple of φ(n) can be easily obtained from δ and thus the factorization of n
can be recovered. On the other hand if δ̃ = 1 it holds that A

e
δ = ±z

ρ
δ from which we can solve the

Strong-RSA problem as described in the previous paragraph.
Next, we consider the case that δ̃ = p′. This means that δ = p′ · s, i.e., B1 can compute a multiple

of p′. It follows that if b ∈R Z∗n with probability 1/2 it will hold that bδ = 1 mod p, and thus we can
see that gcd(bδ mod n− 1, n) will reveal a factor of n. Note that the case δ̃ = q′ is of course identical.
Finally observe that the case δ̃ = 2 would mean that δ is even and thus e is even as well something
that has been excluded in the theorem’s statement. This completes the description and analysis of B1

that solves the given Strong-RSA instance with non-negligible probability as long as A finds a new
certificate with non-negligible probability conditioned on the fact that gcd(e, e1 . . . eK) = 1.

Now we describe a second algorithm called B2: B2, selects random elements xi ∈R Λ and ei ∈R
Γ ∩ Prime. It also selects j at random from 1, . . . ,K. Then it sets Aj = z

r
e1...eK
ej and a = z

e1...eK
ej
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where r ∈R [0, 2ν/2−1−O(log ν)], ei ∈R Γ∩Prime, and xi ∈R Λ. Next B1 computes a0 = A
ej
j /a

xj and
for i = 1, . . . ,K, i 6= j, Ai = (a0ai)1/ei(modn) (observe that the factorization of n is not needed).
As shown in [23] the selection of r ∈R [0, 2ν/2−1−O(log ν)] is sufficient to make the two elements a0, a
indistinguishable from random in QR(n) (under the hardness of factoring).

Given the above values B2 proceeds to simulate A and obtains values A, e, x that satisfy the the-
orem’s constraints. A computes δ = gcd(e, ej) and if δ = 1 it aborts. Otherwise observe that due to
the fact that ej is a prime it holds that δ = ej . It follows that e = ẽej and we can write Ae = a0a

x as

Aẽej = ±z
e1...eK
ej

(r+x−xj). Let δ = gcd(ẽej , e1...eKej
(r + x − xj)). First observe that due to the range

properties that relate to Γ it is impossible to have that some ei with i 6= j divides ẽ (this would make
e = ẽej too large). Thus it holds that δ = gcd(ẽej , r + x− xj). Moreover, again due to the properties
of Λ and Γ we have that ej > r+x−xj thus δ < ej ≤ e. It follows that if ρ = e1...eK

ej
(r+x−xj), B2

can compute values A, e, ρ such that Ae = ±zρ with e an odd number and so that δ = gcd(e, ρ) < e.
It follows that B2 can solve the Strong-RSA instance in a similar fashion as B1.

Now consider the following Strong-RSA solver that employs both B1,B2: B flips a coin and simu-
lates either B1 or B2. It is easy to see that ifA is successful with non-negligible probability then B will
produce a solution to the given Strong-RSA instance with non-negligible probability. ut

6.1 The Construction

In this section we provide our construction for the group signature scheme. Note that the construction
makes use of a hash functionH that is modeled as a random oracle.

SETUP: On input a security parameter ν, this probabilistic algorithm first samples a group de-
scription for 〈g, n, p, q, p′, q′〉 ← descc(1ν). Then, it selects x, x̂ ←R Z∗p′q′ , a0, a, h ←R QR(n)
and publishes the group public key Y =df 〈n, a0, a, g, h, y = gx, ŷ = gx̂〉 and the secret key is set
to S =df 〈p, q, x, x̂〉. The procedure also selects the parameters k, l ∈ IN as polynomially related
functions in ν. The ranges Γ,Λ are also defined as in the beginning of the section.

JOIN: A protocol between the GM and a user that allows the joint computation of a membership
certificate 〈Ai, ei〉 so that only the user obtains the membership secret xi. We give the functionality
of the protocol using a trusted party T : first JTuser(1

ν ,Y) sends “go” to the trusted party T , who in
turn selects xi ←R Λ and writes to the GM’s communication tape the value Ci = axi mod n and
writes to the user’s private tape the value xi. JTGM(1ν ,Y,S) reads Ci from the communication tape
with T , it selects a prime ei ←R Γ − {p′, q′} and computes Ai = (a0a)1/ei(modn); finally it writes
〈i, Ai, ei〉 in the communication tape where i is the next available user tag (a counter is employed) and
terminates. JTuser reads 〈i, Ai, ei〉 from the communication tape and writes 〈i, Ai, ei, xi〉 in its private
output tape. As shown in the “non-adaptive drawings of random powers” protocol of [23] it is possible
to derive an efficient protocol Juser, JGM that does not employ a trusted party and achieves the above
ideal functionality. We remark that the GM is accepting join protocols only in a sequential fashion.

In the above description, certi = 〈A, e〉, seci = x, transcripti = 〈i, C,A, e〉. If transcript =
〈it, Ct, At, et〉 and cert = 〈Ac, ec〉, sec = xc, the relationship cert �Y sec is true iffAecc = a0a

xc( mod
n), and the relationship 〈i, transcript〉 �Y 〈i, cert, sec〉 is true iff it = i, At = Ac, et = ec and
cert �Y sec.

SIGN: The signing algorithm is based on a proof of knowledge that is preceded by the values
〈T1, T2, T̂1, T̂2, T3, T4〉 defined as follows when invoked by the i-th user:

r, r̂, r̃ ←R bn/4c : T1 = Aiy
r,

T2 = gr, T̂1 = Aiŷ
r̂, T̂2 = gr̂, T3 = geihr̃

22



To complete the description of the signature, we need a proof of knowledge for the variables
r, r̂, ei, xi, s

′, s′′, so that they satisfy the following relations: T2 = gr, T̂2 = gr̂, T1/T̂1 = yr/ŷr̂, T3 =
geihr, T e2 = gs

′
, a0a

xiys
′
= T ei1 , T3 = g(g2)s

′′
hr.

This proof ensures that T1, T2, T̂1, T̂2 is a “twin” ElGamal encryption of a value A that if raised to
an odd integer ei, it can be split by the prover in the form a0a

xi . The signature on a message M will be
formed by employing the Fiat-Shamir transform over the proof of knowledge. The proof of knowledge
itself is an extension of the protocol of definition 12 and we describe it in detail in definition 21 below.

VERIFY: given a signature σ = 〈T1, T2, T̂1, T̂2, T3, c, s1, s2, s3, s4, s5, s6, s7〉 the verification algo-
rithm will apply the verification algorithm of the non-interactive proof of knowledge.

OPEN: The opening procedure given a signature σ is as follows:

1. Verify σ using the public verification procedure VERIFY.

2. Parse σ to recover the values T1, T2.

3. Compute A = (T1T
−x
2 )2 mod n.

4. Match A to the square of some user’s first component of the membership certificate 〈Ai, ei〉 (as
available in the database Sttrans maintained during the JOIN protocols).

5. If either steps 1 or 3 or 5 fail, return ⊥, else return the user found in step 5.

Remark. In order to ensure non-repudiation in the opening procedure it will be useful that each user
signs his Ci value based on a PKI. Then, based on the PKI, the GM will be capable of proving that a
signature opens to a certain user in a non-repudiable fashion. It is also possible for the GM to issue
a proof that it performs the decryption correctly. We chose not to include these functionalities into
the formal model of group signatures for the sake of keeping the model simple (note that they can be
modularly added easily).

Definition 21 The group signature proof of knowledge. We describe it as an interactive protocol first
between a prover and a verifier. Both prover and verifier have input the public parameters as well as
T1 = Aiy

r, T2 = gr, T̂1 = Aiŷ
r̂, T̂2 = gr̂, T3 = geihr̃, and the prover has additional input the values

r, r̂, r̃, ei, xi. The prover computes also the values s′ = ei · r, s′′ = (ei−1)/2. The interaction between
the prover and the verifier is as follows: the prover selects tr, tr̂, tr̃ ∈R [−2k+lbn/4c, 2k+lbn/4c]
tei ∈R [−2k+l∆γ, 2k+l∆γ], where ∆γ = γ1 − γ0, txi ∈R [−2k+l∆λ, 2k+l∆λ], where ∆λ = λ1 −
λ0, ts′ ∈R [−2k+l∆τ, 2k+l∆τ ], where ∆τ = τ1 − τ0 and τ1 = γ1, τ0 = b(γ0 − 1)/2c, ts′′ ∈R
[−2k+l∆µ, 2k+l∆µ], where ∆µ = µ1 − µ0 and µ1 = γ1 · bn/4c, µ0 = 0.

The prover transmits to the verifier the values B1 = gtr , B2 = gtr̂ , B3 = ytr1 /y
tr̂
2 , B4 = gteihtr̃ ,

B5 = (T−1
2 )teigts′ , B6 = atxiyts′ (T−1

1 )tei , B7 = (g2)ts′′hr̃. The verifier responds by a challenge
c ∈ {0, 1}k, and subsequently the prover computes sr = tr−c·r, sr̂ = tr̂−c·r̂, sr̃ = tr̃−c·r̃, sei = tei−
c·(ei−γ0), sxi = txi−c·(xi−λ0), ss′ = ts′−c·s′, ss′′ = ts′′−c·(s′′−τ0) (all over Z) and transmits to
the verifier the values sr, sr̂, sr̃, sei , sxi , ss′ , ss′′ . The verification check is as follows: gsr(T2)c =? B1,
gsr̂(T̂2)c =? B2 and (ysr/ŷsr̂)(T1/T̂1)c =? B3, gseihsr̃(T3g

−γ0)c =? B4, (T−1
2 )seigss′ (T γ02 )c =?

B5, asxiyss′ (T−1
1 )sei (a−1

0 )c(a−λ0T γ01 )c =? B6, (g2)ss′′hsr̃(T3g
−1)c(g2τ0)−c =? B7. To produce a

signature out of the above proof of knowledge we use the Fiat-Shamir heuristics as follows: suppose
that H : {0, 1}∗ → {0, 1}k is a hash function. To compute a signature σ for a message M , the
signer will compute the B1, . . . , B7 values as above and then compute the signature as follows: σ =
〈c, s1, . . . , s7〉, where

c = H(M,n, g, a, a0, g, h, y, ŷ, T1, T2, T̂1, T̂2, T3, B1, . . . , B7)
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and 〈s1, s2, s3, s4, s5, s6, s7〉 = 〈sr, sr̂, sr̃, sei , sxi , ss′ , ss′′〉. The verification on the signature on the
other hand requires the computation of all the lefthand-sides of the verification equations performed by
the verifier and the comparison with the hash c. Moreover the verifier will verify the range restrictions
s4 ∈? [−2k+l∆γ − (2k − 1)∆γ, 2k+l∆γ], s5 ∈? [−2k+l∆λ− (2k − 1)∆λ, 2k+l∆λ].

Lemma 22 (1) Suppose A is a PPT that given the public-parameters of the system n, g, a, a0, h, y, ŷ
produces T1, T2, T̂1, T̂2, T3 and two accepting conversations of the proof of knowledge with the same
first move but different second moves. Then, it holds that we can either solve the Strong-RSA problem
or extract witnesses r, r̂, r̃, e, x′, s′, s′′ so that (i) x ∈ [λ0 − 2k+l+2∆λ, λ1 + 2k+l+2∆λ] and e ∈
[γ0 − 2k+l+2∆γ, γ1 + 2k+l+2∆γ]. (ii) T2 = ±gr, T̂2 = ±gr̂, T1/T̂1 = ±yr/ŷr̂, T3 = ±gehr, T e2 =
±gs′ , a0a

xys
′
= ±T e1 , T3 = ±g(g2)s

′′
hr.

(2) Suppose A is a PPT that given the public-parameters of the system n, g, a, a0, h, y, ŷ as well
as the factorization of n, produces T1, T2, T̂1, T̂2, T3 and two accepting conversations of the proof of
knowledge with the same first move but different second moves. Then, it holds that we can extract
witnesses r, r̂, r̃, e, x′, s′, s′′ so that T2 = b1g

r, T̂2 = b2g
r̂, T1/T̂1 = σ3y

r/ŷr̂, T3 = b4g
ehr, T e2 =

b5g
s′ , a0a

xys
′
= b6T

e
1 , T3 = b7g(g2)s

′′
hr, where b1, . . . , b7 are order 2 elements in Z∗n.

Proof. First consider part (1). Let B1, . . . , B7, c, s1, . . . , s7, c
∗, s∗1, . . . , s

∗
7 to be the two accepting

conversations with the same first move. Based on the verification equations we have the following:
first, gsrT c2 = gs

∗
rT c

∗
2 from which we have that gsr−s

∗
r = T c

∗−c
2 . Using a standard argument we

conclude that either c∗ − c divides sr − s∗r or we can turn A into a Strong-RSA solver. Thus we

conclude that T2 = σg
sr−s∗r
c∗−c where σ ∈ Z∗n and is a k-bit order element. Given that k < p′, q′ we have

that σ is an order 2 elements and we conclude that under the hardness of factoring it must hold that
σ = ±1. We set r = sr−s∗r

c∗−c . In a similar fashion we conclude that gr̂ = T̂2 where r̂ = sr̂−s∗r̂
c∗−c .

Then, we proceed to ysr/ŷsr̂(T1/T̂1)c = ys
∗
r/ŷs

∗
r̂ (T1/T̂1)c

∗
from which we obtain: ysr−s

∗
r/ŷsr̂−s

∗
r̂ =

(T1/T̂1)c
∗−c. Based on the previous calculations we have that y

sr−s∗r
c∗−c /ŷ

sr̂−s
∗
r̂

c∗−c = σ · T1/T̂1 where σ
is a k-bit order element within Z∗n. As before we can ensure based on the hardness of factoring that
σ = ±1. We conclude that T1/T̂1 = ±yr/ŷr̂.

We proceed then to the relation of B4, gseihsr̃(T3g
−γ0)c = gs

∗
eihs

∗
r̃ (T3g

−γ0)c
∗

which implies
that, gsei−s

∗
eihsr̃−s

∗
r̃ = (T3g

−γ0)c
∗−c. It follows that under the Strong-RSA assumption we have that

g
sei−s

∗
ei

c∗−c h
sr̃−s

∗
r̃

c∗−c = σ ·T3g
−γ0 from which we obtain that gehr̃ = ±T3g

−γ0 (assuming factoring is hard)
where e =

sei−s
∗
ei

c∗−c + γ0 and r̃ = sr̃−s∗r̃
c∗−c . Note that by the verification of the ranges of sei , s

∗
ei we have

that e satisfies the stated range constraints. Specifically, due to the fact that sei , s
∗
ei ∈ [−2k+l∆γ −

(2k − 1)∆γ, 2k+l∆γ] we obtain that sei − s∗ei ∈ [−2k+l+1∆γ − 2(2k − 1)∆γ, 2k+l+1∆γ] and as a
result we have that : e ∈ [γ0 − 2k+l+1∆γ − 2(2k − 1)∆γ, γ0 + 2k+l+1∆γ] which is a subset of the
range [γ0 − 2k+l+2∆γ, γ1 + 2k+l+2∆γ].

For the relation of B5, from which we have (T−1
2 )seigss′ (T γ02 )c = (T−1

2 )s
∗
eigs

∗
s′ (T γ02 )c

∗
which

implies that (T−1
2 )sei−s

∗
eigss′−s

∗
s′ = (T γ02 )c

∗−c; conditioning on the previous calculations we have that

gss′−s
∗
s′ = (T

sei−s
∗
ei

c∗−c +γ0
2 )c

∗−c from which we obtain under the Strong-RSA assumption that c∗−cmust
divided ss′ − s∗s′ as well and setting s′ = ss′ − s∗s′ we have that gs

′
= ±T ei2 .

For the relation of B6 from which we have

asxiyss′ (T−1
1 )sei (a−1

0 )c(a−λ0T γ01 )c =

= as
∗
xiys

∗
s′ (T−1

1 )s
∗
ei (a−1

0 )c
∗
(a−λ0T γ01 )c

∗
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which implies asxi−s
∗
xiyss′−s

∗
s′ (T−1

1 )sei−s
∗
ei = (a−1

0 )c
∗−c(a−λ0T γ01 )c

∗−c. From this equality and con-
ditioning on our previous extraction we obtain that asxi−s

∗
xi = (y−s

′
a−1

0 a−λ0T ei1 )c
∗−c from which we

obtain that under the Strong-RSA it must be that c∗ − c divides sxi − s∗xi as well and thus if we set

xi =
sxi−s

∗
xi

c∗−c +λ0 we obtain a0a
xi = ±T ei1 /y

s′ . Note that xi ∈ [λ0−2k+l+2∆λ, λ1 +2k+l+2∆λ]. Fi-
nally, from the relation of B7 we have (g2)ss′′hsr̃(T3g

−1)c(g2τ0)−c = (g2)s
∗
s′′hs

∗
r̃ (T3g

−1)c
∗
(g2τ0)−c

∗

which implies (g2)ss′′−s
∗
s′′hsr̃−s

∗
r̃ = (T3g

−1)c
∗−c(g−2τ0)c

∗−c. Conditioning on previous extractions
we rewrite this as (g2)ss′′−s

∗
s′′ = (h−r̃T3g

−1g−2τ0)c
∗−c from which we obtain that under the Strong-

RSA assumption it must be that c∗ − c divides ss′′ − s∗s′′ and if we set s′′ =
ss′′−s∗s′′
c∗−c + τ0 we have that

T3 = ±g2s′′+1hr̃.
Regarding part (2) we proceed as in case (1) with the following modifications: when confronted

with an equation of the form gsr−s
∗
r = T c

∗−c we use the fact that c, c∗ < 2k < p′, q′ to argue that
c∗ − c is invertible in Z∗p′q′ and thus we can compute (c∗ − c)−1 mod p′q′. Given this we set r =
(sr − s∗r)(c∗ − c)−1(modp′q′) as the reconstructed witness and by raising both sides of the equation
to (c∗ − c)−1 we have that gr = b · T where b2 = 1(modn). Using this idea the proof of the second
part of the lemma is completed easily following the same plan as in part (1). ut

6.2 Correctness and Security of the Construction

Theorem 23 The group signature 〈SETUP, JOIN, SIGN, VERIFY, OPEN〉 defined above is correct.

Proof. Regarding user tagging soundness, it follows immediately since the GM maintains a counter
for i that is incremented after each successful join. Regarding join soundness, it follows immediately
since by construction the user obtains 〈i, A, e, x〉 so that certi = 〈A, e〉 and seci = x that satisfy
the relationship certi � seci, which is Ae = a0a

x(modn). Regarding signing soundness, observe
that a user that holds the membership certificate 〈A, e〉 and the membership secret x, if she follows
the specifications in the construction of the values T1, T2, T̂1, T̂2, T3 she will know a witness for the
discrete logarithm relation she is required to prove by setting s′ = er and s′′ = e−1

2 . Based on the
completeness (which can be shown easily based on definition 21) of the proof of knowledge she can
create a valid signature. Finally, regarding the opening soundness, observe that for any valid signature,
the OPEN algorithm will recover the value A = (T1(T2)−x)2 which is equal to the square of the first
component of the membership certificate 〈A, e〉 that corresponds to the originator of the signature.
By matching this to the database Sttrans that contains all JOIN transcripts of the form 〈C,A, e〉 the
identity of the user (the number i) will be revealed, as long as every user is assigned a unique square
A component. The probability that the JOIN dialog assigns to a user the same square A component is
negligible. Indeed, if two users are assigned the same square A-value in their certificate, it must be the
case that (a0C)1/e = σ(a0C

′)1/e
′
where σ is an order 2 element of Z∗n for a random choice of e, e′ from

the space Γ− {p′, q′} and a random choice of C,C ′. In this case it must hold that (a0C)e
′
= (a0C

′)e

which is a negligible probability event, since C,C ′ are uniformly distributed over QR(n) and both
f(a) = ae(modn), f ′(a) = ae

′
(modn) are bijections over QR(n) (also recall that e, e′ are prime

numbers). ut

The proof of security of our scheme is naturally more involved and will be broken down into three
theorems one for each security property.

Theorem 24 (Security against misidentification attacks) For any PPTA it holds that Prob[GAmis(1
ν) =

>] = negl(ν) assuming the Strong-RSA assumption (definition 1) in the random oracle model.
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Proof. We will assume the Strong-RSA assumption and show that the existence of a PPT misidentifica-
tion attacker that succeeds with non-negligible advantage leads to a contradiction. We will use lemma
20 as a main tool for refuting the Strong-RSA. Let n, a, a0 ∈ QR(n), Γ,Λ be as specified in the claim
and let 〈xi, ei, Ai〉 be K tuples such that Aeii = a0a

xi(modn) (following the specifications of lemma
20).

Below we describe a procedure PH,R that employs the misidentification adversary AH and has
access to the two oracles as defined in lemma 30 (note that we will not need to employ the oracle
R in this proof). Prior to the beginning of the simulation, P computes two tuples Y,S as follows:
Y := 〈n, a0, a, g, h, y, ŷ〉 where h←R QR(n), x, x̂←R [bn/4c], y = gx, ŷ = gx̂, and S := 〈x, x̂〉. In
the simulation of A by P , the queries of A are answered as follows:
• Qpub query: P returns Y . Observe that this answer to the Qpub query is indistinguishable from

the answer in the actual misidentification attack game.
• Qa−join query: based on the simulation properties of the non-adaptive drawings of random pow-

ers protocol that we employ during the JOIN protocol, we can assume that A simply submits go
to the trusted party in order to obtain its certificate. P will simulate such trusted party and supply
to the i-th JOIN instantiation the certificate 〈xi, ei, Ai〉 that P has as input.

• Qopen query: such queries are answered following the OPEN algorithm; note that P possesses
both decryption keys x, x̂.

• H queries are answered by simply forwarding them to the P’s ownH oracle.

In the above fashion the simulation of A is completed and A produces a group signature T1, T2,
T̂1, T̂2, T3, c, s1, . . . , s7 that opens to none of the adversarially controlled users (i.e., it opens to ⊥).
Specifically this means that (T−x2 T1)2 6∈ A2

1, . . . , A
2
K . If we call A = T−x2 T1 then we have that

A 6= ±Ai mod n for all i = 1, . . . ,K.
Based now on lemma 30 and the soundness property of the employed proof of knowledge (lemma

22) we can obtain a PPT P ′ that under the Strong-RSA assumption, it succeeds in constructing a
witness for the proof of knowledge employed in a group signature. The witness yields the values
r, r̂, r̃, e, s′, x′, s′′ such that a0a

x′ys
′
= ±T e1 , T3 = ±gehr̃, T3 = ±g(g2)s

′′
hr̃, T e2 = ±gs′ , T2 = ±gr.

Based on these equalities we obtain that 2s′ = 2e·r (in particular, if this equality does not hold it is easy
to factor n). As a result T 2e

1 = (a0a
x′ye·r)2. From these relations we obtain that (T−x2 T1)2e = (a0a

x′
1 )2

i.e. the decryption of the ciphertext T1, T2 (squared) is an e-th root of the value a0a
x′
1 (also squared).

As a result, if A = T−x2 T1 mod n it follows that Ae = ±a0a
x′ . Note that the range constraints

that are required for lemma 20 are ensured by the soundness of the proof of knowledge. Finally we
argue that e is indeed odd. Observe that T 2

3 = g2(2s′′+1)h2r̃ and also T 2
3 = g2eh2r̃. From this we

obtain that g2(2s′′+1) = g2e. Given that g generates QR(n), a p′q′ order subgroup of Z∗n, it follows
that e = 2s′′ + 1 mod p′q′. From the above it follows that e = 2s′′ + 1 which implies that e is an odd
number (otherwise 2s′′ + 1 − e would be a multiple of p′q′ from which information we can factor n).
We conclude by observing that the conditions of lemma 20 are all satisfied and thus the Strong-RSA
assumption is violated.

ut

Theorem 25 (Security against framing attacks) For any PPT A it holds that Prob[GAfra(1
ν) = >] =

negl(ν) assuming that the Discrete-logarithm problem is hard over theQR(n) with known factorization
(cf. definition 2), in the random oracle model.

Proof. Let 〈n, p, q, a,A〉 be an instance of the discrete-logarithm problem over QR(n) with known
factorization p, q with p = 2p′ + 1 and q = 2q′ + 1 (p′, q′ primes) where ν is the number of bits of n.
Let A be any framing adversary that has access to the random oracleH.
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Below we will detail a procedure P that operates on 〈n, p, q, g, A〉 and has access to a random
oracleH and to an oracle reprogramming processR (cf. lemma 30).

Prior to the beginning of the simulation, P computes two tuples Y,S as follows: first it selects
a j ∈ {1, . . . ,K} at random to be used later; then, it computes, Y := 〈n, a0, a, g, h, y, ŷ〉 where
g, h←R QR(n), x, x̂←R [p′q′], a0 = ar0 where r0 ∈R [p′q′], y = gx, ŷ = gx̂, and S := 〈p, q, x, x̂〉.
PR,H will simulate AH. In the simulation of A by P , the queries of A are answered as follows:
• Qpub or Qkey query: P returns Y or S respectively. Observe that this answer to the Qpub query

is the indistinguishable from the answer in the actual framing attack game.
• Qb−join query: P upon receiving such a query it should initiate a JOIN protocol dialog with the

adversary. Suppose that this is the i-th instantiation of the query. If i 6= j, P selects xi ←R Λ
and submits to the adversary the value Ci = axi . This must be done using the simulatability
of the drawing of random powers protocol as demonstrated in [23]. On the other hand, in case
i = j, it sets Cj = A. Subsequently the adversary replies by 〈i, Ai, ei〉 so that Aeii = a0Ci and
the protocol dialog terminates. P stores the values 〈i, ri, Ai, ei〉 as part of its internal state.

• Qsign query: such a query includes the tuple 〈i,M〉, where i corresponds to one of the users that
were introduced throughQb−join queries. Note that P cannot answer this query by following the
protocol due to the fact that P does not know the membership secret seci of the i-th user. In order
to answer the query, P first forms T1, T2, T̂1, T̂2, T3 as in the description of the actual scheme.
This is possible since no knowledge of xi = loga(A

ei
i /a0) is required in the formation of these

values. To complete the signature, the proof of knowledge (c, s1, . . . , s7) for the discrete-log
relation set must be simulated. The proof of knowledge will be simulated by selecting a challenge
c at random from {0, 1}k as well as s1, . . . , s7 from their respective domains and then forming
the B1, . . . , B7 values to satisfy the verification equations of definition 21. No knowledge of any
witness is required for this calculation. Finally, P will need to reprogram the oracle H so that
the simulation is consistent and tuple 〈c, s1, . . . , s7〉 together with T1, T2, T̂1, T̂2, T3 becomes a
signature of M . This is done by invoking the reprogramming oracleR. Note that the entropy of
the reprogramming query satisfies the requirements of lemma 30. Based on lemma 13 it follows
that the statistical distance between the real signature and a simulated one as above is negligible.

• H queries are answered by forwarding them to P’s ownH oracle.

In the above fashion the simulation of A is completed and A produces a group signature

〈T1, T2, T̂1, T̂2, T3, c, s1, . . . , s7〉

that opens to one of the honest users. Specifically this means that (T−x2 T1)2 ∈ A2
1, . . . , A

2
K . If we

define A′ = T−x2 T1 then we have that (A′)2 = (Ai0)
2 mod n for some i0 ∈ {1, . . . ,K} where K

is the number of users that A created through the Qb−join queries. If i0 = j then P fails otherwise it
continues.

Similarly to the proof of theorem 25, it holds that P satisfies the requirements of lemma 30, and
based on it we can produce an algorithm P ′ that produces two distinct proofs of knowledge with
the same first move (and of course with the same header T1, T2, T̂1, T̂2, T3). Based on part (2) of
lemma 22 we can reconstruct the witnesses for the proof of knowledge. In particular we obtain the
values r, r̂, r̃, e, x′, s′, s′′ such that T2 = b1g

r, T̂2 = b2g
r̂, T1/T̂1 = σ3y

r/ŷr̂, T3 = b4g
ehr, T e2 =

b5g
s′ , a0a

xys
′
= b6T

e
1 , T3 = b7g(g2)s

′′
hr where b1, . . . , b7 are order 2 elements in Z∗n. From this we

obtain the following: (1) T 2e
2 = g2s′ which in combination to T 2

2 = g2r suggests that g2er = g2s′

from which we obtain that er = s′(modp′q′). As a result T 2e
1 = (a0a

xyre)2 or equivalently that
(T1y

−r)2e = (a0a
x)2. Now given that y = gx we obtain that (T1T

−x
2 )2e = (a0a

x)2 or equivalently
that (A′)2e = (a0a

x)2.
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Now recall that (A′)2 = (Ai0)
2 and Ai0 = (a0A)1/ei0 . These equations imply that

(a0a
x)2/e = (a0A)2/ei0

which is equivalent to a(r0+x)ei0 = ar0eAe since a0, a, A ∈ QR(n) and as a resultA = a(r0+x)ei0/e−r0 ,
i.e., we can compute the discrete-logarithm of A base a. ut

ut

Theorem 26 (Security against anonymity-attacks) For any PPT A it holds that 2Prob[GAanon(1
ν) =

>]− 1 = negl(ν) assuming the DDH-Compo-KF in the random oracle model.

Proof. Let A be an adversary for the anonymity-attack game GAanon. We will describe a transformation
of this adversary to a CPA adversary against the cryptosystem 〈Genqr, Encqr, Decqr〉 following the
same strategy as theorem 16.

First, following a similar argument as that of proposition 14 we can show that any procedure B
that has access to a random oracle H and produces two certificates 〈sec0, cert0, sec1, cert1〉 and then
receives a group signature on an arbitrary message under either of the two membership certificates
is incapable of distinguishing between real and simulated signatures. Note that the simulation of the
signature is produced based on lemma 13 in a standard fashion (selecting the s1, . . . , s7 from their
respective domains and computing the B1, . . . , B7 values in the way that they are specified in the
verification equations of definition 12. In particular the statistical distance between the two games is at
most qH2−2k + 7 · 2−l.

Next, considerLsig be the language of all valid signature “headers”, i.e., the setLsig = {〈T1, T2, T̂1,

T̂2, T3〉 | ∃r, r̂, ei, xi, s′, s′′ : T2 = gr, T̂2 = gr̂, T1/T̂1 = yr/ŷr̂, T3 = geihr, T ei2 = gs
′
, a0a

xiys
′
=

T ei1 , T3 = g(g2)s
′′
hr}. Following a similar argument as that of proposition 15 we can show that any

procedure B that has access to a random oracle H and produces a group signature that does not open
to ⊥ and has a header 〈T1, T2, T̂1, T̂2, T3〉 that does not belong to the language Lsig, has probability of
success that is bounded by 2

√
2qH2−k/2.

Given the above two results we continue with a similar argument as that of theorem 16. Let G0 be
the attack game GAanon that is played between the adversary A and the interface. The first three oracles
used by A, Qpub,Qa−join,Qread are all easily simulatable, given the factorization of n and we will
not alter their simulation throughout the proof arguments. The fourth oracle used by A is Qopen; the
simulation of Qopen will be modified appropriately in the following arguments.

Define G1, a slightly modified game where allQopen queries are simulated by using the x̂ = logg ŷ
key as opposed to the x = logg y.

Clearly the games G0, G1 are identical unless the adversary produces some group signature σ for
which it holds that (T1T

−x
2 )2 6= (T̂1T̂

−x
2 )2 and at the same time OPEN(σ) 6= ⊥. But then observe that

such σ will have a header 〈T1, T2, T̂1, T̂2, T3〉 6∈ Lsig and as a result the probability of such an event
would be bounded by 2

√
2qopenqH2−k/2 where qopen is the number of Qopen queries.

Consider now the following modification to game G1 that results in game G2: we modify the
challenge oracle so that the proof of knowledge used for the signature it is simulated as opposed to
computed properly (i.e., without the knowledge of the witnesses). The statistical distance between the
two games can be at most qH2−2k + 7 · 2l as argued above.

We now produce the final modification to game G2 to obtain game G3: we again modify the
challenge oracle so that the values T̂1, T̂2 are selected at random from QR(n). This modification
violates the consistency of the “twin” ciphertexts T1, T2 and T̂1, T̂2 but has no impact on the proof of
security which is simulated per the modification of game G2. It follows that if there is any significant
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statistical distance between the two games we can transform the two games into a distinguisher for
DDH-Comp-KF.

Now observe that in game G3 we do not employ the key x = logg(y) and moreover the challenge
oracle produces entirely simulatable data except for the ciphertext T1, T2 that with probability 1/2
encrypts either the A1 or A2 depending on which user the challenge oracle is to issue a signature on
behalf of. This suggests that we can turnA into a PPT cpa attacker B against the cryptosystem 〈Genqr,
Encqr, Decqr〉 that will have the same success probability as game G3. Given that DDH-Compo-KF is
assumed we conclude that B (and thus G3) will have success probability that is different from 1/2 only
by a negligible fraction. Putting these arguments together using the triangular inequality we obtain that
the advantage of A in the GAanon game is negligible under the DDH-Compo-KF.

ut

7 Separability: Anonymity vs. the GM

In a group signature with separated authorities we differentiate between the GM, who is responsible for
group membership operations and an Opening Authority (OA), who is responsible for the revocation
of anonymity (opening a signature). This separation is relevant to practice, since group management
should be typically considered an ISP operation whereas revocation of anonymity must be performed
by some (possible external) third-party authority (which can even be distributed). This authority sep-
arability is natural and is not designed to assure that certain processes are tamper-proof; note that it is
a different (weaker) notion of separability compared to what [11] considered (who considered the full
disassociation of all involved parties). The extension of the present formal model to stronger notions
of separability, cf. [27], is possible. Nevertheless in this case we are interested in what can be achieved
without incurring any additional cost at our basic construction. Stronger notions of separability can be
achieved nevertheless at additional costs (both in terms of communication and computation).

The syntax of a group signature with authority separability is similar to the group signature syntax
as presented in definition 17 with the modifications:

Definition 27 A group signature scheme with authority separability is a digital signature scheme com-
prising the following six procedures; the parties involved are the GM, the opening authority and the
users.

SETUPGM: On input a security parameter 1ν , this probabilistic algorithm outputs the group public
key YGM (including necessary system parameters) and the secret key SGM for the GM. SETUPGM also
initializes a public-state string St with two components Stusers = ∅ and Sttrans = ε.

SETUPOA: On input a security parameter 1ν , and the public-key YGM, this probabilistic algorithm
generates the public and secret-key of the opening authority denoted by YOA and SOA.

We will denote the concatenation of YOA and YGM by Y .
JOIN: The JOIN protocol is identical to that of definition 17 with the only exception JGM requires

only the secret key of the GM, SGM.
SIGN: identical to definition 17.
VERIFY: identical to definition 17.
OPEN: the opening algorithm is the same as in definition 17 with the exception that only the opening

authority’s secret-key SOA is required.

Note that above we consider that the setup procedure for the OA acts on the public-key of the GM.
While our construction below will take advantage of this syntactic condition, it is not hard in general to
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avoid it at the expense of extending the length of the signature by a constant amount (and thus separate
the GM and OA even in the setup phase).

Correctness. Given the above minor syntactic differences, the correctness of a group-signature with
separated authorities is defined in the same way as definition 18 by taking into account the above
modifications that correspond to the fact that JGM requires only SGM and OPEN requires only SOA.

Security. The security properties of a group-signature with separated authorities must remain the same
so that any secure group signature with separated authorities must also be a secure group signature (by
collapsing the GM and the OA into a single entity).

Moreover in the separated authority setting (1) the anonymity-attack can be made stronger by
adding the adversarial capability of corrupting the GM. (2) the misidentification attack can be made
stronger by adding the adversarial capability of corrupting the OA.

Regarding the security modeling, in the queries that can be posed to the interface, the query Qkey

will be substituted with two distinct queriesQkeyGM andQkeyOA with the obvious results. The definition
of the three attacks will remain unaltered with the following syntactic modifications:

(i) in a misidentification-attack the adversary will have additionally at its disposal the queryQkeyOA

(i.e., the adversary can corrupt the OA). Note that this will obviate the Qopen oracle in the defi-
nition of the property.

(ii) in a framing-attack the adversary will have at its disposal both the queries QkeyGM and QkeyOA

(i.e., the adversary can corrupt both the GM and the OA)

(iii) in an anonymity attack, the adversary will be given additional access to the QkeyGM,Qwrite

queries in both phases of the attack game. This will obviate the Qa−join oracle in the defini-
tion of the property.

The above three modifications are straightforward and thus we will not list the security properties
again in this section. The modified games will be denoted by GAfra−sep, G

A
mis−sep, G

A
anon−sep.

Definition 28 A group signature scheme with separated authorities is secure if for all PPT A it holds
that (i) Prob[GAin−sep(1

ν) = >] = negl(ν) as well as (ii) Prob[GAout−sep(1
ν) = >] = negl(ν) and

(iii) 2Prob[GAanon−sep(1
ν) = >]− 1 = negl(ν).

Note that any scheme secure under the above definition is also a secure group signature under
definition 19.

Construction. The design of a group signature with separated authorities can be based directly on our
construction of section 6 with the following modification: the SETUPGM procedure will produce YGM =
〈n, a0, a, g, h〉with SGM = 〈p, q〉, whereas the SETUPOA will produceYOA = 〈y, ŷ〉with SOA = 〈x, x̂〉.
In all other respects the scheme will proceed in the same fashion. It is straightforward to split the SETUP
procedure to the two authorities, with the condition (as specified in definition 27) that the GM should
go first so that the value n is made available; afterwards the OA can select the values y, ŷ ∈ QR(n)
with known logg y and logg ŷ and publish the two additional elements to form the combined public key
Y = 〈n, a0, a, g, y, ŷ〉. To allow the differentiation we specify YGM = 〈n, a0, a, g, h〉, SGM = 〈p, q〉,
YOA = 〈y, ŷ〉, and SOA = 〈logg y, logg ŷ〉. The design remains unaltered otherwise.

In our security proofs of section 6.2 we took special care to describe the proofs in a way that the
extension to separated authorities will follow immediately. Taking advantage of this, the following
theorem follows easily:
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Theorem 29 The group signature with separated authorities presented above is correct and secure;
in particular: (i) it is secure against misidentification-attacks under the Strong-RSA assumption in the
RO model. (ii) it is secure against framing-attacks under the Discrete-Log hardness assumption over
QR(n) with known factorization and the RO model. (iii) it is secure against anonymity-attacks under
DDH-Compo-KF in the RO model.

Proof. The proof is based directly on the proofs of theorems 24, 25 and 26. ut
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A Generalized Forking Lemma

Below we present a generalized lemma that is useful in proving the security of complex signature
schemes (like the ones in the present paper) in the random oracle model. The lemma is a generalized
variant of Pointcheval and Stern’s “forking-lemma”, cf. [30]. One of the dissimilarities to this previous
work is the existence of oracle reprogramming queries that substitute signing queries. The lemma as
stated below has no direct cryptographic interpretation and this is the main advantage of the formulation
as we want to apply it in more complex settings compared to the digital signature setting of [30].

Lemma 30 (Generalized Forking Lemma). Consider a probabilistic PPT P , a PPT predicate Q and
a hash-function H with range {0, 1}k assumed to be a random oracle. The predicate Q satisfies the
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property Q(x) = > =⇒ (x = 〈ρ1, c, ρ2〉) ∧ (c = H(ρ1)). R is a process that given 〈t, c〉 it “repro-
grams” H so that H(t) = c provided that t was not queried to H before. P is allowed to ask queries
on H and on R. Moreover, it is assumed that P behaves in such a way so that queries 〈t, c〉 submitted
by P toR adhere to the following conditions:

• The component c is uniformly distributed over {0, 1}k.
• The component t follows a probability distribution so that the probability of the occurrence of a

specific t0 is bounded by 2/2k (i.e., the min-entropy of t is at least k − 1).

Assume now that PH,R(param) returns output x with a probability α > 2−k such that x satisfies
the following: (i) Q(x) = > and (ii) if x = 〈ρ1, c, ρ2〉 it holds that 〈ρ1, c〉 was not queried toR. Then,
there exists a PPTP ′ so that if y ← P ′(param) it holds with probability at least α2/4q−(q·s+1)·2−k+1

that: (i) y = 〈ρ1, c, ρ2, c
′, ρ′2〉 (ii) Q(〈ρ1, c, ρ2〉) = >, (iii) Q(〈ρ1, c

′, ρ2〉) = >, (iv) c 6= c′, Here q is
the number ofH-queries performed byP , and s is the number ofR queries. The probabilities are taken
over the choices for H, the random coin tosses of P and the random choice of the public-parameters
param.

Proof. First assume that no queries to R are made whatsoever by P . Let Ω be the probability space
for the simulation of P , i.e., each string in Ω fixes the coin tosses for P as well as all answers of the
random oracle H to the queries posed by P (note that we only define H for the queries that are posed
by P).

Let SuccP ⊆ Ω be the event that P simulated on ω ∈ SuccP terminates outputting x such that
Q(x) = >. Let Quei ⊆ Ω, for i = 0, . . . , q be the event that P produces some x such that Q(x) = >
where x = 〈ρ1, c, ρ2〉 and ρ1 was the i-th query submitted to the oracleH by P; if i = 0 then no query
on ρ1 was ever submitted to H. We remark that Prob[SuccP ∩ Que0] ≤ 2−k and thus SuccP must
overlap with some of the events Que1, . . . ,Queq.

Consider now the probability space Ω2 and the following algorithm P ′ operating over this space:
given (ω, ω′) ∈ Ω2, P ′ simulatesP over ω; whenP terminates and as long as some event Quei happens
with i > 0 then P ′ replays P from the point of the i-th query using the appropriate suffix from coins
of the string ω′ (note that ω′ will also redefine the random oracleH).

We define the event SuccP′ ⊆ Ω2 to be the event that both simulations of P ′ terminate successfully,
i.e., P simulated on ω terminates in a SuccP event and at the same time it holds that Quei for some
i > 0; in addition SuccP and Quei hold also true for the second simulation that follows mergei(ω, ω′)
(where this function merges the prefix of ω and the suffix of ω′ just at the point that the value of the
i-th query toH is requested by P; merge is also defined for i = 0).

Consider Que′i,j ⊆ Ω2 to be the event that P if simulated on ω terminates so that the event Quei
is true and P if simulated on mergei(ω, ω′) then the event Quej is true. The events Que′i,j for i, j
constitute a partition of Ω2. Based on this we obtain that

Prob[SuccP′] =
∑
i,j

Prob[SuccP′ | Que′i,j ]Prob[Que′i,j ]

Let αi,j = Prob[SuccP′ | Que′i,j ] and βi,j = Prob[Que′i,j ] It is easy to see that by definition it
holds that αi,j = 0 whenever i 6= j or when i = 0 and thus the above equation gets simplified to
Prob[SuccP′] =

∑q
i=1 αi,iβi,i.

Next we proceed to bound the probability αi,i i.e., the probability of the event SuccP′ in the con-
ditional space Que′i,i. This conditional space contains the set of all coin tosses (ω, ω′) that make P
terminate the i-th query in both simulations. Let αi = Prob[SuccP | Quei,i′ ]. Note that αi =
Prob[SuccP | Quei] (since SuccP depends only on the first simulation).
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Let Ω<i be the prefix set of Ω up to the i-th query to H, we define Ω<i = {[ω]<i | ω ∈ Ω}. For
any ω̂ ∈ Ω<i we define Queω̂,ij = {ω′ ∈ Ω | mergei(ω, ω′) ∈ Quej} where ω is the bitstring that is 0
everywhere except [ω]<i = ω̂; below we will use this as a convention, i.e., ω̂ will stand for [ω]<i.

Now we define the event SSuccPi ⊆ Ω: SSuccPi ⊆ SuccP ∩ Quei such that ω ∈ SSsuccPi if and
only if

#{ω′ | mergei(ω, ω′) ∈ SuccP ∩ Quei}
#Queω̂,ii

≥ αi
2

Next we prove that Prob[SSuccPi | Quei] ≥ αi/2. Indeed assume for the sake of contradiction
that the opposite holds true, i.e., #SSuccPi < si/2 where si = #(SuccP ∩ Quei). Based on this we
have that #SSuccPi > si/2. Also let qi = #Quei.

Now observe that for each ω ∈ SSuccPi it holds that less than αi · qω̂i /(2#Ω<i) where qω̂i =
#Queω̂,ii elements of SuccP∩Quei share the same “head” with ω. The set of all possible heads is Ω<i.
It follows that the set of all elements of SuccP ∩ Quei that shares the same head with some element of
SSuccPi has cardinality less than αi ·

∑
ŵ∈Ω<i

qω̂i /(2#Ω<i). Observe that trivially SSuccPi is a subset
of this set and as a result #SSuccPi ≤ αi ·

∑
ŵ∈Ω<i

qω̂i /(2#Ω<i). From this we obtain that it must be
si/2 < si/qi ·

∑
ŵ∈Ω<i

qω̂i /(2#Ω<i) which implies
∑

ŵ∈Ω<i
qω̂i > qi ·#Ω<i which is easily seen to

be a contradiction. It follows that Prob[SSuccPi | Quei] ≥ αi/2.
From the above result it can be easily seen that αi,i ≥ α2

i /4 and as a result

Prob[SuccP′] ≥ 1
4

q∑
i=1

α2
i βi,i

Next we focus on the βi,i probability and its relation to βi = Prob[Quei]. Let Headi(ω̂) ⊆ Ω be
the event that for a given ω it holds that ω<i = ω̂; clearly {Headi(ω̂)}ω̂∈Ω<i is a partition of Ω. Now
observe that Quei =

∑
ω̂∈Ω<i

Quei ∩ Headi(ω̂) and Que′i,i = #Ω<i ·
∑

ω̂∈Ω<i
(Quei ∩ Headi(ω̂))2. It

follows that:

βi,i =
#Ω<i ·

∑
ω̂∈Ω<i

(Quei ∩ Headi(ω̂))2

(#Ω)2

Next we use the inequality:
∑

λ∈Λ α
2
λ ≥ (

∑
λ∈Λ αλ)

2/#Λ to obtain from the above that βi,i ≥ β2
i .

Applying this inequality to the bound for the probability of SuccP′ we have:

Prob[SuccP′] ≥ 1
4

q∑
i=1

(αiβi)2 ≥
1
4q

(
q∑
i=1

αiβi)2

Recall now that
∑q

i=0 αiβi = Prob[SuccP] and as a result

Prob[SuccP′] ≥ 1
4q

(Prob[SuccP]− α0Prob[Que0])2

To complete the proof observe that α0 ≤ 2−k and as a result

Prob[SuccP′] ≥ 1
4q

(Prob[SuccP]− 2−k)2

Now define RewS to be the event of Ω2 such that SuccP happens and c 6= c′. It is easy to verify
that Prob[RewS] ≥ Prob[SuccP]2/4q − 2−k+1.
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Next we consider the setting where R queries are allowed. It holds now that the procedure P is
not considered to be successful if it outputs a reprogrammed string ρ1, c, ρ2. This does not affect the
analysis above. However there is the possibility of jamming the the oracleR by reprogramming a query
that has been asked before. The probability of jamming can be bounded as follows: each time a query
is made a fresh t value is selected that has min-entropy k− 1. This means that the probability that t has
been asked already is q` · 2−k+1 where q` is the number of queries that have been asked toH oracle till
the `-th query to R. It follows that the probability of jamming is at most 2−k+1

∑s
`=1 q`. In the worse

case we will have q` = q for all ` = 1, . . . , s and we will obtain 2−k+1q · s as the upper bound. Based
on all the above we conclude that Prob[RewS] ≥ (Prob[SuccP])2/4q − (q · s+ 1) · 2−k+1.

ut
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