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Abstract

We show that in applications that use the Diffie-Hellman (DH) transform but take care
of hashing the DH output (as required, for example, for secure DH-based encryption and key
exchange) the usual requirement to work over a DDH group, i.e., a group in which the Decisional
Diffie-Hellman assumption holds, can be relaxed to only requiring that the DH group contains a
large enough DDH subgroup. In particular, this implies the security of (hashed) Diffie-Hellman
over non-prime order groups such as Z∗

p . Moreover, our results indicate that one can work
directly over Z∗

p without requiring any knowledge of the prime factorization of p−1 and without
even having to find a generator of Z∗

p . These results are obtained via a general characterization
of DDH groups in terms of their DDH subgroups, and a relaxation (called t-DDH) of the DDH
assumption via computational entropy. We also show that, under the short-exponent discrete-
log assumption, the security of the hashed Diffie-Hellman transform is preserved when replacing
full exponents with short exponents.

1 Introduction

The Diffie-Hellman Transform and DDH Assumption. The Diffie-Hellman transform is
one of the best-known and fundamental cryptographic primitives. Its discovery by Whitfield Diffie
and Martin Hellman [DH76] revolutionized the science of cryptography and marked the birth of
Modern Cryptography. Even today, almost 30 years later, the Diffie-Hellman (or DH for short)
transform remains the foundation of some of the most basic and widely used cryptographic tech-
niques. In particular, it underlies the Diffie-Hellman key exchange and the ElGamal encryption
scheme [ElG85], and is used over a large variety of mathematical groups. In its basic form the DH
transform maps a pair of elements ga, gb drawn from a cyclic group G generated by the element g
into the group element gab. (Here we use the exponential notation that originates with multiplica-
tive groups but our treatment, which is generic in nature, applies equally to additive groups such
as Elliptic Curves.) The usefulness of this transform was originally envisioned under the conjec-
ture, known as the Computational Diffie-Hellman (CDH) assumption, that states the infeasibility
of computing the value gab given only the exponentials ga and gb. Namely, the value gab should be
computable only by those knowing one of the exponents a or b. Note that the CDH assumption
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implies the difficulty of computing discrete logarithms over the group G (the converse, however, is
unknown for most practical groups).

Over time it was realized that the CDH assumption is insufficient to guarantee the security
of most DH applications (in particular those mentioned above). For this reason a much stronger
assumption was introduced: the Decisional Diffie-Hellman (DDH) assumption postulates that given
the values ga and gb not only it is computationally hard to derive the value gab but even the
seemingly much easier task of distinguishing gab from random group elements is infeasible [Bra93]
(see [Bon98] for a survey on the DDH assumption). On the basis of this assumption one can consider
the DH transform as a good generator of pseudorandomness as required in key-exchange, encryption
and other cryptographic applications. Hereafter we refer to groups in which the DDH assumption
holds as DDH groups. The need to rely on the DDH disqualifies many natural groups where the
assumption does not hold. For example, any group whose order is divisible by small factors, such
as the classic groups Z∗

p of residues modulo a large prime p; in this case the group’s order, p− 1, is
always divisible by 2 (for random p, p−1 is very likely to have additional small factors). Due to the
perceived need to work over DDH groups it is often recommended in the cryptographic literature
that one work over subgroups of large prime order where the DDH assumption is believed to hold.

The Need for Hashing the Diffie-Hellman Result. Interestingly, the DDH assumption, while
apparently necessary, turns out to be insufficient for guaranteeing the security of some of the most
basic applications of the DH transform. Consider for example the ElGamal encryption scheme:
Given a public key y = ga (for secret a), a message m ∈ G is encrypted by the pair (gb,myb)
where the value b is chosen randomly anew for each encryption. In this case, the DDH assumption
guarantees the semantic security [GM84] of the scheme (against chosen-plaintext attacks) provided
that the plaintexts m are elements of the group G. However, if the message space is different, e.g.
the set of strings of some length smaller than log |G|, then the above encryption scheme becomes
problematic. First of all, you need to encode messages m as group elements in G and that could
be cumbersome. If G is a subgroup of prime order of Z∗

p , a naive (and common) approach would
be to trivially encode m as an integer and perform the multiplication myb modulo p. But now the
scheme is insecure even if the group G does satisfy the DDH assumption. A good illustration of the
potential weaknesses of this straightforward (or “textbook”) application of ElGamal is presented
in [BJN00]. It is shown that if the space of plaintexts consists of random strings of length shorter
than log |G| (e.g., when using public key encryption to encrypt symmetric keys) the above scheme
turns out to be insecure even under a ciphertext-only attack and, as said, even if the group G is
DDH. For example, if the plaintexts to be encrypted are keys of length 64, an attacker that sees a
ciphertext has a significant probability of finding the plaintext with a work factor in the order of
232 operations and comparable memory; for encrypted keys of length 128 the complexity of finding
the key is reduced to 264.

A general and practical approach to solving these serious security weaknesses is to avoid using
the DH value itself to “mask” m via multiplication, but rather to hash the DH value gab to obtain
a pseudorandom key K of suitable length which can then be used to encrypt the message m under
a particular encryption function (in particular, K can be used as a one-time pad). In this case
the hash function is used to extract the (pseudo) randomness present in the DH value. Suitable
hash functions with provable extraction properties are known, for example universal hash functions
[CW79, HILL99]. The above considerations are common to many other applications of the DH
transform, including encryption schemes secure against chosen-ciphertext attacks [CS98] and, most
prominently, the Diffie-Hellman key-exchange protocol (in the latter case one should not use the
DH output as a cryptographic key but rather derive the agreed shared keys via a hashing of the DH
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result); see Section 4.2 for a discussion on how these applications choose a random hash function
out of a given family. For additional examples and justification of the need for hashing the DH
output see [Bon98, NR97, CS98, ABR01]. In the sequel we refer to the combination of the DH
transform with a (universal) hash function as the hashed DH transform.

1.1 Our Results

The Security of the Hashed DH Transform over non-DDH Groups. In light of the need
to hash the DH value, some natural questions arise: when applying the hashed DH transform, is it
still necessary to work over groups where the DDH assumption holds, or can this requirement be
relaxed? Can one obtain a secure (hashed) DH transform over a non-DDH group, and specifically,
is doing hashed DH over Z∗

p secure? In this paper we provide answers to these questions. Our
main result can be informally stated as follows: For any cyclic group G, applying the hashed DH
transform over G has the same security as applying the hashed DH transform directly over the
maximal DDH subgroup of G. In particular, one can obtain secure applications of the hashed
DH transform over non-DDH groups; the only requirement is that G contain a (sufficiently large)
DDH subgroup (see below for the exact meaning of “sufficiently large” and other parameter size
considerations). A significant point is that we are only concerned with the existence of such a
subgroup; there is no need to know the exact size or structural properties of, nor to be able to
construct, this specific (maximal) DDH subgroup.

A particularly interesting consequence of the above result is that assuming that DDH holds on
large subgroups of Z∗

p (we will see later that it is sufficient to assume that DDH holds on large
prime-order subgroups of Z∗

p), one can build secure (hashed) DH applications working directly over
Z∗

p , where p is an unconstrained random prime. Only the length of the prime is specified, while other
common requirements such as the knowledge of the partial or full factorization of p − 1, insisting
that p − 1 has a prime factor of a particular size, or disqualifying primes for which (p − 1)/2 has
a smooth part, are all avoided here. Moreover, there is no need to find a generator of Z∗

p ; instead,
the plaussible assumption that p−1 has sufficiently large prime factors allows us to use a randomly
chosen element r from Z∗

p in lieu of a generator of Z∗
p . In this case the group G = 〈r〉 is guaranteed

to have a large enough DDH subgroup, and therefore the hashed DH transform over G is secure
(this is true even if the order of r has small factors or if it misses some prime divisors of p−1). Note
that avoiding the need to find a generator for Z∗

p allows us to work with primes p with unknown
factorization of p− 1 (which is otherwise required to find a Z∗

p generator).

The t-DDH Assumption. In order to prove our main result (i.e., that the hashed DH transform
is secure over any group G, not necessarily a DDH group, that contains a large enough DDH
subgroup), we introduce a relaxation of the DDH assumption which we call the t-DDH assumption.
Informally, a group G satisfies the t-DDH assumption (where 0 ≤ t ≤ |G|) if given the pair (ga, gb)
(where g is a generator of G) the value gab contains t bits of computational entropy. The notion
of computational entropy, introduced in [HILL99], captures the amount of computational hardness
present in a probability distribution. In other words, we relax the “full hardness” requirement at
the core of the DDH assumption, and assume partial hardness only. Moreover, we do not care about
the exact subsets of bits or group elements where this hardness is contained, but only assume their
existence. On this basis, and using the entropy-smoothing theorem from [HILL99] (also known as
the leftover hash lemma), we obtain a way to efficiently transform (via universal hashing) DH values
over groups in which the t-DDH assumption holds into shorter outputs that are computationally
indistinguishable from the uniform distribution. The maximal length of (pseudorandom) strings
that one can obtain as output from the hashed DH transform depends on the maximal value of t for
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which the t-DDH holds in G. In particular, in order to be 2−k-computationally close to uniform one
can output up to t−2k pseudorandom bits (e.g., to produce 128-bit keys with a security parameter
of k = 80 the group G should be 288-DDH, while for k = 128, G is to be 384-DDH).

After defining the t-DDH assumption and showing its usefulness in extracting random bits from
t-DDH groups, we show that if G contains a DDH subgroup of order m then G is log(m)-DDH.
This forms the basis for our main result as stated above. Indeed, it suffices that G has a suitably
large-order DDH subgroup to ensure that hashing the DH output results in pseudorandom outputs
of the required length. Again, it is important to stress that we do not need to know the specific
DDH subgroup or its order, only (assume) its existence.

A Direct Product Characterization of the DDH Assumption. A further contribution of
our work is in providing a characterization of the DDH assumption in a given group in terms of its
DDH subgroups. Specifically, we show that a group is DDH if and only if it is the direct product
of (disjoint) prime power DDH groups. In other words, a group G is DDH if and only if all its
prime power subgroups are DDH. Moreover, for any cyclic group G, the maximal DDH group in
G is obtained as the product of all prime power DDH subgroups in G. Beyond its independent
interest, this result plays a central role in our proof that the hashed DH transform over Z∗

p is secure
as long as the DDH assumption holds in the subgroups of Z∗

p of large prime order. In particular,
this allows us to expand significantly the groups in which one can work securely with the hashed
DH transform without having to strengthen the usual assumption that DDH holds in large prime
order subgroups.

Some Practical Considerations. Beyond the theoretical interest in understanding the role of
the DDH assumption and proving the usefulness of relaxed assumptions, our results provide a
justification of the use of non-DDH groups in practical applications of the DH transform as long as
these groups contain a large enough prime-order subgroup and the application takes care of hashing
the DH output. One interesting practical example is the IPsec’s Key Exchange (IKE) protocol
[RFC2409, IKEv2] that uses a Diffie-Hellman exchange to negotiate shared keys but is careful to
first hash the DH value (see [Kra03]).1. In addition, and as pointed out before, our results also
show that under the sole assumption that the DDH holds in groups of large prime order one can
work directly over Z∗

p for a random prime p, without having to know the factorization of p − 1
and without having to find a generator of Z∗

p . Moreover, the ability to work over non-prime order
groups has the benefit of eliminating the attacks on the DH transform described in [LL97], without
having to search for primes of a special form (and without necessitating special parameter checks
when certifying public keys [LL97]).

Short-Exponent Diffie-Hellman. One important practical consideration is the length of expo-
nents used when applying the DH transform. Full exponents when working over Z∗

p are, typically,
of size 1024 or more. Even if one works over a prime-order subgroup, one still needs to use rela-
tively large orders (e.g. 288-bit long primes), with their correspondingly large exponents, to ensure
a hashed output (say of 128 bits) that is indistinguishable from uniform. (This requirement for
sufficiently large computational entropy is often overlooked; indeed, the usual practice of using
160-bit prime-order groups, which originates with Schnorr’s signatures, may not be appropriate for
hashed DH-type applications.)

Motivated by the significant cost of exponentiation using long exponents, we investigate whether
one can use short exponents (e.g. as in [RFC2409]) and still preserve the security of the hashed

1 In IKE, the family of hash functions used for extracting a pseudorandom key from the DH value are implemented
using common pseudorandom function families keyed with random, but known, keys. The randomness extraction
properties of the latter families are studied in [DGHKR04].
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DH transform. An obviously necessary requirement for the short exponent practice to be secure
is the assumption that the discrete log problem is hard when exponents are restricted to a short
length (say of s bits). We show that this requirement (referred to as the s-DLSE assumption) is
sufficient for the secure use of short exponents in the setting of the DH transform; more precisely,
we prove (based on [Gen00]) that if the s-DLSE assumption holds in a group G, then the hashed
DH transform in G is as secure with full exponents as with s-bit exponents. As a consequence,
one can analyze the security of the hashed DH transform in the group G with full exponents and
later replace the full exponents with much shorter ones without sacrificing security. In this case
the important parameter is the length s; we note that the appropriate value of s depends on the
underlying group. See [vOW96] for an extensive study of the plausible value of s for different
groups.

Paper’s Organization. Section 2 introduces some of the notation and basic notions underlying
our technical treatment (including the definition of DDH groups and a discussion of our concrete
security treatment). In Section 3 we prove the Direct Product DDH Characterization Theorem.
In Section 4 we introduce the t-DDH Assumption and its application to the hashed DH transform,
and prove the central Max-Subgroup Theorem. In Section 5 we investigate the security of the
hashed DH transform when using short exponents. We conclude in Section 6 by describing the
applicability of our results to the hashed DH transform over non-DDH groups.

2 Preliminaries

Througout the paper we use the following notation. Let D be a probability distribution over a set
A. By x ∈D A we mean that x is chosen in A according to the distribution D, and with x ∈R S we
denote the choice of x with uniform distribution over the set S. When m is an integer we use the
notation |m| to indicate the length of m in bits.

2.1 The Decisional Diffie-Hellman Assumption

Let G be a cyclic group of order m generated by an element g. Consider the following problem:
Given a pair ga, gb compute the value gab. If this problem is intractable for the group G then we
say that the Computational Diffie-Hellman (CDH) assumption holds over G.

A much stronger, but also more useful, assumption is the following. Consider the set G3 =
G×G×G and the following two probability distributions over it:

RG = {(ga, gb, gc) for a, b, c ∈R [0..m]}

and
DHG = {(ga, gb, gab) for a, b ∈R [0..m]}

Definition 1 We say that the (S, ε) Decisional Diffie-Hellman (DDH) Assumption holds over G = 〈g〉
(alternatively, that G is a (S, ε) DDH group) if the two distributions RG and DHG are (S, ε)-
indistinguishable.

The notion of (S, ε) indistinguishability is recalled in Appendix A.
Informally, the DDH assumption states that no feasible algorithm (a “distinguisher”) has a

significant probability of deciding correctly whether the third element of the triple (ga, gb, gc) is
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the result of the Diffie-Hellman transform applied to ga, gb or a randomly chosen group element.
Clearly this is a much weaker requirement than computing the value gab from ga, gb, and therefore,
as a general hardness assumption, DDH is stronger than the CDH. We note that, in principle, the
DDH assumption could hold for a group G with respecto to a generator g but not with respect
to another generator g′. As we will see in Section 2.2 this is not the case when using a concrete
security formalism as in this paper.

Example 1: A group where the DDH assumption does not hold. Consider the group G = Z∗
p for a

prime p. Since testing for quadratic residuosity over Z∗
p is easy, by computing the Legendre symbol

( ·p), then we immediately get a distinguisher against DDH in this group: by mapping the Legendre
symbol of 1 (i.e., quadratic residues) to 0, and the Legendre symbol of -1 to 1, we can simply check
that (ga

p )(gb

p ) = (gc

p ), and output “DH” if it holds and “R” otherwise. Clearly, if the triple is a
legal DH triple then the distinguisher outputs DH with probability 1, while in the other case the
probability is only 1/2.

Example 2: A group where the DDH is conjectured to hold. Let p, q be primes such that q divides
p− 1, and p and q are “large” (say, |q| = 1024 and |q| ≥ 160). Let G be the subgroup of order q in
Z∗

p . In this case no efficient DDH distinguisher for G is known.
In informal statements and discussions (as in the above examples) we sometimes omit the (S, ε)

parameters from the DDH assumption, e.g., we say that “G is DDH”, in which case the intent
is, as before, that no “feasible-size” distinguisher succeeds in the above task with “significant”
probability. (See the discussion below on the (in)dependence of the DDH assumption on a specific
generator g.) Also, when the group G is clear from the context we often omit the subscript G in
the notation of the two distributions RG and DHG.

2.2 On Concrete Security and Non-Uniformity

In Definition 1 and througout this paper, our treatment of computational difficulty follows the
“concrete security” approach in which concrete (numerical) bounds are established on the re-
sources (time/space) and success probability of algorithms (or “attackers”). This approach has
the advantage of providing very clear quantitative results which, in particular, highlight the exact
cost of security reductions (the downside is making the formal statements of results somewhat
more cumbersome). Maybe more significant is the fact that concrete security allows us to talk
about individual, finite objects, such as a single finite group. In contrast, when stating results in
terms of polynomial-time one must resort to asymptotics and infinite families, something that is
not very well suited to the typical use of Diffie-Hellman groups which are usually defined and fixed
in advance for repeated use by many applications and in many sessions (e.g., IKE, SSH, etc.)

Moreover, for some of our results it is natural to speak about an individual group and its
individial subgroups; trying to map this into an asymptotic presentation just obscures the results.
Another fundamental aspect of concrete security that fits well into our setting is that concrete
security captures a non-uniform notion of computation. For example, when solving a problem for
a particular group, an algorithm can always include an “auxiliary input” that helps solving the
problem over that particular group. To emphasize the non-uniformity behind the concrete security
approach, we talk about circuits with concrete size S. (We note that while the concrete security
literature usually states bounds in terms of time, talking of “size” rather than “time” is more
accurate since even if one talks about time, the size of algorithms must be taken into account, or
else some problems can be trivialized via huge pre-computed tables.)
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In our context, it is interesting to consider two consequences of the non-uniform aspect of
concrete security. First, an algorithm that works for a specific group G can always include (as
part of the algorithm “code” or auxiliary input) the order of the group or even the factorization
of |G|. Hence, in this setting we need to work under the assumption that an attacker may have
such information. For example, in Theorem 2 we assume that the attacker may know the group’s
order m and may even know the factorization of m (both of which can be included in the “code”,
or “auxiliary input” of the algorithm). This is a non-trivial example in the sense that the theorem
does not necessarily hold for groups in which the factorization of |G| is secret, e.g., G = Z∗

N where
N = pq is a modulus of unknown factorization.

Second, in a uniform (asymptotic) treatment one cannot talk about the DDH assumption hold-
ing in a group G; instead the validity of DDH may depend on a specific generator g of G. In
contrast, in a non-uniform setting as ours if the DDH assumption holds in G with respect to a
generator g then it holds with respect to any other generator g′ of G and hence the DDH property
is independent of the specific generator (indeed, if DDH is easy in G with respect to a generator h
then it is also easy with respect to any other generator g: just give the distinguisher with respect
to g the value logh(g) as auxiliary input). This independence from specific generators is more
“elegant” and particularly useful when stating several of our results.

3 A Direct-Product DDH Characterization

The following theorem provides a full characterization of DDH groups in terms of their prime
(power) order subgroups. As remarked in Section 2.2, the proof of this theorem assumes that
the distinguisher is given the factorization of ord(G). The theorem is first formulated informally
without concrete bounds; these are stated and proved in the following Lemmas.

Theorem 2 (Direct Product Characterization Theorem – informal.) A cyclic group G is
DDH if and only if all its prime-power order subgroups are DDH.

The precise meaning of the above Theorem is specified by the following Lemmas 3 and 4. Below
we denote with expG the size of the circuit that computes exponentiations in G.

Lemma 3 Let G be a group of order order m = m1m2, and let G1 be the subgroup of G of order
m1. If the (S, ε) DDH holds in G then the (S1, ε) DDH holds in G1 where S1 = S − 3expG.

Proof Let G be a DDH (cyclic) group of order order m = m1m2, and let G1 be a subgroup of G
of order m1. Let g be a generator of G and g1 = gm2 be a generator of G1. Assume by contradiction
that the (S1, ε) DDH does not hold in G1, i.e., there is a distinguisher D1 of size ≤ S1 that upon
receiving a triple (A1 = ga1

1 , B1 = gb1
1 , C1 = gc1

1 ) ∈ G3
1, can distinguish whether it came from the

distribution RG1 or DHG1 with advantage > ε. We build a distinguisher D of size ≤ S for G which
distinguishes between the distributions DHG and RG with the same probability ε. This contradicts
the assumption that (S, ε) DDH holds in G.

Upon receiving a triple (A = ga, B = gb, C = gc), where a, b ∈R Zm1m2 and c is either the
product of ab or picked uniformly at random in Zm1m2 , the distinguisher D :

1. Computes (A1, B1, C1) by setting A1 = Am2 , B1 = Bm2 , and C1 = Cm2 .

2. Passes the triple (A1, B1, C1) to D1
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3. Outputs the same output bit as D1.

Note that by construction the values A1, B1, C1 equal ga1
1 , gb1

1 , gc1
1 , respectively, where a1 = a mod

m1, b1 = b mod m1, c1 = c mod m1. Since a, b ∈R Zm1m2 then a1, b1 ∈R Zm1 . Also, if c =
ab mod m1m2 then c1 = a1b1 mod m1, while if c ∈R Zm1m2 then c1 ∈R Zm1 (independently of
a1, b1). In other words, whenever the triple (A,B, C) is distributed according to DHG then the
triple (A1, B1, C1) is distributed according to DHG1 , while if (A,B, C) is distributed according to
RG then the triple (A1, B1, C1) is distributed according to RG1 . Therefore, D distinguishes between
the distributions DHG and RG with the same probability ε that D1 distinguishes between DHG1

and RG1 . Notice that the size of D is ≤ S since all it does is computing three exponentiations in
G and then invoke D1.

Lemma 4 Let G be a cyclic group of order m = m1m2, where (m1,m2) = 1, and let G1 and G2

be the subgroups of G of orders m1,m2 resp. If (S1, ε1) DDH holds in G1 and (S2, ε2) DDH holds
in G2 then (S, ε) DDH holds in G where S = min(S1, S2)− 9expG and ε = ε1 + ε2.

Proof Let g, g1, g2 be generators of G, G1, and G2, respectively; in particular, g1 = gm2 and
g2 = gm1 . Given a triple t1 = (A1 = ga1

1 , B1 = gb1
1 , C1 = gc1

1 ) ∈ G3
1 and a triple t2 = (A2 =

ga2
2 , B2 = gb2

2 , C2 = gc2
2 ) ∈ G3

2 we define the following transformation T which “lifts” this pair of
triples into a triple in G3. (T is the standard isomorphism between the group G and its product
group representation as determined by the Chinese Reminder Theorem.) On input t1, t2, T (t1, t2)
outputs a triple (A = ga, B = gb, C = gc) ∈ G3 defined as follows:

1. Let r1, r2 be such that r1m1 + r2m2 = 1 (i.e., r1 = m−1
1 mod m2 and r2 = m−1

2 mod m1)

2. Set A = Ar2
1 Ar1

2 = ga1m2r2+a2m1r1 ∈ G, i.e., a = a1m2r2 + a2m1r1 mod m

3. Set B = Br2
1 Br1

2 = gb1m2r2+b2m1r1 ∈ G, i.e., b = b1m2r2 + b2m1r1 mod m

4. Set C = C
m2r2

2
1 C

m1r2
1

2 = gc1m2
2r2

2+c2m2
1r2

1 ∈ G, i.e., c = c1m
2
2r

2
2 + c2m

2
1r

2
1 mod m

Note the following facts about the triple (A,B, C) which result from the above transformation:

Fact 1 If a1, b1 ∈R Zm1 , and a2, b2 ∈R Zm2 , then a, b ∈R Zm.

Fact 2 c− ab ≡ c1 − a1b1 mod m1 and c− ab ≡ c2 − a2b2 mod m2

Fact 3 Following Facts 1 and 2, if the triple t1 is chosen according to distribution DHG1 and
t2 according to distribution DHG2 , then the triple (A,B, C) is distributed according to the
distribution DHG. Similarly, if t1, t2 are distributed according to RG1 and RG2 , respectively,
then (A,B, C) is distributed according to RG.

For probability distributions P1,P2 we denote by T (P1,P2) the probability distribution induced by
the random variable T (x1, x2) where x1, x2 are random variables distributed according to P1,P2,
respectively, and T is the above defined transform. Using this notation and Fact 3 we get:
DHG = T (DHG1 ,DHG2) and RG = T (RG1 ,RG2). Let us now consider the “hybrid” probabil-
ity distribution T (RG1 ,DHG2).

Note that this distribution is (S1− 9expG, ε1) indistinguishable from T (DHG1 , DHG2). Indeed,
since the distribution DHG2 is efficiently samplable (it costs 3 exponentiations to sample it) and
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the transformation T is efficiently computable (it costs 6 exponentiations to compute it), then one
can transform any (S, ε) distinguisher between the above two distributions into a (S + 9expG, ε)
distinguisher between RG1 and DHG1 . Thus if S < S1 − 9expG and ε > ε1 we have a distinguisher
for RG1 and DHG1 of size ≤ S1 that distinguishes with probability > ε1, in contradiction to the
hypothesis that G1 is a (S1, ε1) DDH group.

Similarly, we have that the hybrid distribution T (RG1 ,DHG2) is (S2− 9expG, ε2) indistinguish-
able from T (RG1 ,RG2).

By invoking the triangle inequality for computational indistinguishability (see Prop. 22 in
Appendix A) we have that RG and DHG are (S, ε) indistinguishable where S = min(S1−9expG, S2−
9expG) = min(S1, S2)− 9expG and ε = ε1 + ε2 as required.

Discussion (On prime-power subgroups). We note that the result summarized in Theorem 2
is actually asymmetric. In the “only if” direction (Lemma 3) all subgroups are guaranteed to be
DDH, while for the “if” direction (Lemma 4) we need the DDH assumption on prime-power order
subgroups. The reason for the latter is the condition (m1,m2) = 1 in the statement and proof of
Lemma 4. A natural question is whether one can strengthen the latter lemma and prove a similar
result for factors m1,m2 which are not necessarily co-prime. More specifically, we are interested
in the following. Let G be a cyclic group of order q2 for prime q, and let H be the subgroup
of G of order q. Assume that H is DDH. Does this imply that G is DDH as well? This was
posed as an open question in an earlier version of this paper. Recently, Don Coppersmith has
built [Cop04] an ingenious counter-example, namely, a cyclic group G of order q2 which contains a
subgroup H of order q, such that H is believed to be DDH but G is trivially not DDH. We present
Coppersmith’s example in Appendix B. It is still interesting to settle this question for specific
families of groups (e.g., the subgroups of Z∗

p for prime p). In general, how plausible is it to assume
the DDH assumption in prime-power order subgroups of Z∗

p?
We end this section by mentioning a result by Maurer and Wolf (Corollary 5, [MW96]) that

shows a relation between the hardness of the (computational) Diffie-Hellman problem in a cyclic
group and the hardness of this problem in some of its subgroups. More specifically, they prove
that if G is a cyclic group and H a subgroup such that the index |G|/|H| is smooth then the CDH
problem in G and H are polynomial-time equivalent.

4 The t-DDH Assumption and the Hashed DH Transform

In this section we introduce an intractability assumption that is, in general, weaker than the DDH
assumption, yet it suffices for ensuring DH outputs from which a large number of pseudorandom
bits can be extracted. We start by recalling the notions of computational entropy and entropy
smoothing. We use the notations introduced at the end of Section 1.

4.1 Computational Entropy and Entropy Smoothing

Definition 5 Let X be a probability distribution over A. The min-entropy of X is the value

min-ent(X ) = minx∈A:ProbX [x] 6=0(− log(ProbX [x]))

Note that if X has min-entropy t then for all x ∈ A, ProbX [x] ≤ 2−t.
The notion of min-entropy provides a measurement of the amount of randomness present in a

probability distribution. Indeed, the Entropy Smoothing Theorem (see below) shows that if X has
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min-entropy t it is possible to construct from X an (almost) uniform distribution over (almost) t
bits, by simply hashing elements chosen according to X . The basic hashing tool to do this uses the
following notion of universal hashing.

Definition 6 Let H be a family of functions, where each H ∈ H is defined as H : A → {0, 1}m.
We say that H is a family of (pairwise-independent) universal hash functions if, for all x, x′ ∈ A,
x 6= x′, and for all a, a′ ∈ {0, 1}m we have

ProbH∈H[H(x) = a and H(x′) = a′] = 2−2m.

That is, a randomly chosen H will map any pair of distinct elements independently and uniformly.

Our techniques use as a central tool the following Entropy Smoothing Theorem from [HILL99]
(see also [Gol01, Lub96]), also known as the “Leftover Hash Lemma”. The definition of statistical
distance used in the theorem’s statement is recalled in Appendix A.

Theorem 7 (Entropy Smoothing Theorem [HILL99]) Let t be a positive integer and let X be
a random variable defined on {0, 1}n such that min-ent(X ) > t. Let k > 0 be an integer parameter.
Let H be a family of universal hash functions such that ∀h ∈ H, h : {0, 1}n → {0, 1}t−2k.
Let U be the uniform distribution over {0, 1}t−2k. Then, the distributions [〈h(X ), h〉]h∈RH and
[< U , h >]h∈RH have statistical distance at most 2−(k+1).

Thus, the Entropy Smoothing Theorem guarantees that if X is a probability distribution over A
with min-entropy of at least t, and H a family of universal hash functions from A to {0, 1}t−2k,
then the random variable h(x), where h ∈R H and x is chosen according to the distribution X ,
is “almost” uniformly distributed over {0, 1}t−2k even when the hash function h is given. Here,
“almost” means a statistical distance of at most 2−k−1.

The following notion represents a computational analogue of the notion of min-entropy and was
introduced in [HILL99]. We recall it here (under a concrete security formulation) for completeness
and because it is implicit in our definition of the t-DDH assumption in the next sub-section.

Definition 8 A probability distribution Y has (S, ε) computational entropy t if there exists a prob-
ability distribution X such that

• min-ent(X ) ≥ t

• X and Y are (S, ε) indistinguishable

Using a standard hybrid argument it is easy to show that the Entropy Smoothing Theorem, as
discussed above, can be generalized to probability distributions X that have (S, ε) computational
entropy t. In this case, applying a (randomly chosen) universal hash function with output in
{0, 1}t−2k results in a distribution which is (S, ε + 2−k−1) indistinguishable from the uniform one.

4.2 t-DDH: A Relaxed DDH Assumption

We proceed to define the t-DDH assumption. The intuition behind this assumption is that if the
Computational Diffie-Hellman Assumption holds in a group G generated by a generator g, then
the DH value gab must have some degree of unpredictability (or “partial hardness”) even when
ga and gb are given. Specifically, we say that the t-DDH Assumption holds in the group G if the
Diffie-Hellman output gab has t bits of computational entropy (here 0 ≤ t ≤ log(G)). Formally:
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Definition 9 We say that the (S, ε) t-DDH Assumption holds over a group G if there exists a
family of probability distributions X (ga, gb) over G (one distribution for each pair ga, gb) such that

• min-ent(X (ga, gb)) ≥ t

• The probability distribution DHG (see Section 2) is (S, ε) indistinguishable from the ensemble

R∗ = {(ga, gb, C) for a, b ∈R ord(G) and C ∈X (ga,gb) G}

It is important to note that the distributions X (ga, gb) in the above definition may be different
for each pair of values ga, gb. Requiring instead a single distribution X for all pairs ga, gb (as may
seem more natural at first glance) results in a significantly stronger, and consequently less useful,
assumption.

Consider Example 1 from Section 2: over Z∗
p one can break the DDH by detecting if the

quadratic residuosity character of C is consistent with the one induced by ga, gb. Yet, Z∗
p can

satisfy the t-DDH assumption even for high values of t. For example, if for all a, b for which one
of a, b is even we define X (ga, gb) to be the set of quadratic residues in Z∗

p , and for all other pairs
ga, gb we define X (ga, gb) to be the set of quadratic non-residues in Z∗

p , then the trivial break of
DDH in the above example does not hold against these distributions. More generally, if we consider
a prime p of the form 2uq + 1 where q is a prime then we can get that (given current knowledge)
the t-DDH assumption holds for Z∗

p for t = |p| − u, while clearly the DDH assumptions does not
hold over this group.

Note that the DDH assumption can also be stated in terms of computational entropy. Indeed the
DDH assumption over a group G is equivalent to the t-DDH assumption over G for t = log(ord(G)).

Sampling X (ga, gb). The t-DDH Assumption as stated above makes no requirement on the ex-
istence of an efficient sampling algorithm for the distribution X (ga, gb). We say that X (ga, gb) is
S′-samplable if there exists a (probabilistic) circuit of size S′ whose output distribution (on null
input) is X (ga, gb). We say that X (ga, gb) is S′-semi-samplable if there exists a circuit of size S′

which is run on input either a or b and whose output distribution is X (ga, gb).
We note that our results do not necessitate of any form of samplability of the X distributions

except for the results on using DDH with short exponents (Section 5). In the latter case our security
proof requires X (ga, gb) to be S′-semi-samplable and the parameter S′ will affect the quality of the
reduction.

As a direct consequence of the Entropy Smoothing Theorem and the definition of t-DDH we
have:

Lemma 10 Let G be a group in which the (S, ε) t-DDH Assumption holds, and let H be a collection
of universal hash functions such that for all h ∈ H, h : G → {0, 1}t′ where t′ = t − 2k. Then the
induced distribution of h(gab), for a, b ∈R [1..ord(G)] and h ∈R H, is (S, ε + 2−k) indistinguishable
from the uniform distribution over {0, 1}t′ even when h, ga and gb are given to the distinguisher.

Notice that the above lemma requires the hash function h to be chosen at random for each
application. This is the case in several practical protocols (such as the case of IKE [RFC2409,
IKEv2], mentioned in the Introduction, in which a key to the hash function is chosen by the
communicating parties anew with each run of the protocol). However, it is also possible to fix
a randomly chosen hash function and apply it repeatedly to different DH values. An example of
such an application would be its use in the context of the Cramer-Shoup CCA-secure cryptosystem
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[CS98] (also discussed in the Introduction) in which the specific hash function h would be chosen
at random from the family H by the owner of the decryption key, and published as part of the
public key parameters. In this case, the security of the repeated use of the same hash function h
can be proved via a standard simulation argument.

Next we show that for groups of prime order, the t-DDH Assumption is equivalent to the full
DDH assumption. The proof uses a standard random self-reducibility argument [Sta96, NR97].

Lemma 11 Let G be a group of prime order q. If the (S, ε) t-DDH Assumption holds in G for
t > 0 then the (S′, ε′) DDH Assumption holds in G with S′ = S − 8expG and ε′ = ε

1−2−t .

Proof Assume by contradiction that there exists a distinguisher D of size ≤ S′ that distinguishes
between RG and DHG with probability > ε′. We use D to break the (S, ε) t-DDH assumption in
G.

Let X (ga, gb) be a family of distributions with min-entropy t defined over G. We are given three
values A = ga, B = gb, C = gc where either c = gab or C ∈X (ga,gb) G. We sample r, s, u, v ∈R [1..q]
and set A′ = Argu = gar+u, B′ = Bsgv = gbs+v and C ′ = CrsArvBusguv. Notice that

logg C ′ = crs + arv + bsu + uv = (c− ab)rs + (ar + u)(v + bs) mod q

thus if C = gab then C ′ is the result of the DH transform over A′, B′. On the other hand, since q is
a prime and thus any element has an inverse modq, if c 6= ab then C ′ is uniformly distributed over
G. Notice that if C ∈X (ga,gb) G then c = ab with probability at most 2−t.

Thus by feeding A′, B′, C ′ to D we can distinguish the case in which C = gab and C ∈X (ga,gb) G
with probability larger than ε′(1− 2−t). Notice that this distinguisher has size S′ + 8expG since it
costs 8 exponentiations to compute A′, B′, C ′ before running D.

Thus by setting S′ = S − 8expG and ε′ = ε
1−2−t we contradict the assumption that the (S, ε)

t-DDH Assumption holds in G.
This yields an interesting 0-1 law for prime order groups, in which either the DDH Assumption

holds, and thus the DH output has log(q) bits of computational entropy, or we cannot claim that
the DH output has any bits of computational entropy. We stress that this result, by itself, does
not imply that over prime order groups either DDH holds or the Diffie-Hellman problem (i.e.,
Computational Diffie-Hellman) is easy. What the result says is that in this case (i.e. a prime-order
group which is CDH but not DDH), pseudorandomness cannot be extracted from a DH value solely
based on the computational min-entropy of the distribution but rather may require specialized hard
core functions (such as Goldreich-Levin, etc. [Gol01]).

4.3 The Max-Subgroup Theorem

We now proceed to prove our main theorem concerning the t-DDH assumption. The significance
of the theorem below is that for a cyclic group G to be t-DDH it suffices that t be the order of the
maximal (or maximal disjoint) subgroup of G where the DDH holds.

Theorem 12 Let G be a cyclic group of order m = m1m2 where (m1,m2) = 1, and G1 be a sub-
group of order m1 in G. If the (S, ε) DDH Assumption holds over G1 then the (S′, ε) log(m1)-DDH
Assumption holds in G, where S′ = S − 5expG.
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Proof An initial intuition behind the correctness of the theorem is that the hardness hidden in
G1 could be “sampled” when applying a hash function to the DH values over G. This however
is incorrect: the size of G1 may be negligible in relation to |G| and as such the probability to
sample a triple (ga, gb, gab) from G1 is negligible too. The actual argument, presented next, uses
the observation that the “hardness” present in G1 can be extended to its cosets in G.

Let g be a generator of G and g1 = gm2 be a generator of order m1 of G1. Given ga, gb ∈ G,
we define the distribution X (ga, gb) to be the uniform distribution over {C = gc ∈ G such that c ∈
Zm and c ≡ ab mod m2}. Thus, it is easy to see that X (ga, gb) has log(m1) bits of min-entropy
(since the above set has m1 elements). LetR∗ denote the probability distribution {(ga, gb, C) : a, b ∈R

Zm and C ∈X (ga,gb) G}.
We assume by contradiction that the (S′, ε) log(m1)-DDH assumption does not hold in G, and

thus we have a circuit D of size ≤ S′ which distinguishes between the distributions DHG and
R∗ with advantage ε. Using D we build a distinguisher D1 of size ≤ S that distinguishes be-
tween the distributions DHG1 and RG1 with the same advantage, thus contradicting the theorem’s
assumption.

Given a triple (A1, B1, C1) where A1 = ga1
1 , B1 = gb1

1 , and C1 either equals ga1b1
1 or gc1

1 for
c1 ∈R Zm1 , the distinguisher D1 does the following:

1. Chooses i, j ∈R Zm

2. Sets A = A1g
i, B = B1g

j and C = Cm2
1 Aj

1B
i
1g

ij computed in G

3. Hands D the triple (A,B, C)

4. Outputs the same output bit as D.

Notice that D1computes 5 exponentiations and runs D, thus is of size ≤ S.
Let’s examine the distribution of the triple (A,B, C). The value A is set to A = A1g

i = ga1
1 gi =

gm2a1+i thus a = m2a1+i. Since i ∈R Zm then also a ∈R Zm. Similarly for B = gb we get b ∈R Zm.
In the case of C we have C = Cm2

1 Aj
1B

i
1g

ij = gc1m2
2+m2a1j+m2b1i+ij , thus c = c1m

2
2+m2a1j+m2b1i+

ij. In addition, we have that ab = (m2a1 + i)(m2b1 + j) = m2
2a1b1 + m2a1j + m2b1i + ij. Thus

c− ab = m2
2c1 + m2a1j + m2b1i + ij − (m2

2a1b1 + m2a1j + m2b1i + ij) = m2
2c1 −m2

2a1b1

which implies c = m2
2(c1 − a1b1) + ab mod m. Therefore, if c1 = a1b1 then c = ab. On the other

hand, if c1 ∈R Zm1 then c1 − a1b1 ∈R Zm1 , i.e., c = ab + rm2
2 (for r ∈R Zm1). Now, using

the fact that m2 has an inverse modulo m1, we get that c is uniformly distributed over the set
{ab + im2 : 0 ≤ i < m1} or, equivalently, that C is distributed according to the distribution
X (ga, gb). In other words, the triple (A,B, C) is distributed according to DHG if (A1, B1, C1)
came from DHG1 , and it is distributed according to R∗ if (A1, B1, C1) came from RG1 . Therefore,
D1 distinguishes between DHG1 and RG1 with the same probability that D distinguishes between
DHG and R∗, that is ε.

Since we assumed that the (S, ε) DDH holds in G1 we reached a contradiction.

Remark on samplability. The distributions X (ga, gb) defined in the above proof are efficiently
samplable given m1,m2 and at least one of a, b (i.e., X (ga, gb) is semi-samplable in the terminology
of Section 4.2). Indeed given, say, a,B = gb we can sample X (ga, gb) by choosing k ∈R Zm1 and
setting C = gkm2Ba.
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From the above theorem we get the following important corollary. Its first part follows immedi-
ately from Theorem 12 when using the following terminology: a subgroup H of G is called a disjoint
subgroup if (|H|, |G|/|H|) = 1. The second part of the corollary (which does not involve the notion
of disjoint subgroups) follows from Theorem 12 combined with Theorem 2. The corollary is stated
without concrete bounds which can be derived from the previous theorems.

Corollary 13 For any cyclic group G, G is log(m)-DDH where m is the order of the maximal
disjoint DDH subgroup of G. If all the large prime-power subgroups of G are DDH, then G is
log(m)-DDH where m is the order of the maximal DDH subgroup of G.

The above Corollary is stated somewhat informally, in particular one has to specify the meaning of
“large” subgroups. The idea is the following: let G be a cyclic group of order m = Π`

i=1p
ei
i where

p1 < . . . < p` is the prime decomposition of m. Thus G is the direct product of the subgroups
Gi where each Gi has order pei

i . Fix an (S, ε) security parameter and consider the subgroups
{Gj1 , . . . , Gj`′} which are (S, ε)-DDH. Then we can apply Theorem 12 and Lemma 4 since the
orders of the subgroups Gi are relatively prime with each other. And thus we have that G is (S′, ε′)
m′-DDH where: m′ = Σ`′

i=1eji log pji , S′ = S − 14expG and ε′ = `′ε.

5 DDH and t-DDH with Short Exponents

In this section we investigate the use of the DDH and t-DDH assumptions in conjunction with the
so called “short-exponent discrete-log” assumption.

The Short-Exponent Discrete-Log Assumption. A common practice for increasing the effi-
ciency of exponentiation in cryptographic applications based on the hardness of computing discrete
logarithms, and in particular those using the Diffie-Hellman transform, is to replace full-length ex-
ponents (i.e., of length logarithmic in the group order) with (significantly) shorter exponents. The
security of this practice cannot be justified by the usual assumption that computing discrete loga-
rithms (with full-length exponents) is hard, but rather requires a specific assumption first analyzed
in [vOW96] and formalized in [PS98]. We give a concrete security formalization below.

Assumption 14 (s-DLSE [PS98]) Let G be a cyclic group generated by g and of order ord(G) =
m. We say that the (S, ε) s-DLSE Assumption holds in G if for every circuit I of size ≤ S, we
have that Probx∈R[1..2s](I(g,m, s, gx) = x) ≤ ε.

Current knowledge points to the plausibility of the above assumption even for exponents s signif-
icantly shorter than log(ord(g)). The exact values of s for which the assumption seems to hold
depend on the group generated by the element g. An obvious lower bound on s, if one wants to
achieve security against 2k-complexity attacks, is s ≥ 2k which is necessary to thwart the usual
square-root attacks such as Shanks and Pollard methods. However, as pointed out in [vOW96],
there are cases where s needs to be chosen larger than 2k. Specifically, they show how to use a
Pohlig-Hellman decomposition to obtain some of the bits of the exponent. The power of the attack
depends on the (relatively) small prime factors of the group order. For example, when working over
Z∗

p with a random prime p, the [vOW96] results indicate the use of s ≈ 4k (e.g., with a security
parameter of 80 one should use s = 320 which is much shorter than the 1024 or 2048 bits of p,
yet twice as much as the bare minimum of s = 160). If one wants to use s = 2k (i.e., assume the
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2k-DLSE), it is necessary to work in special groups such as those of prime order or Z∗
p with p a

safe prime (i.e., p = 2q + 1, and q prime).

From Hardness to Indistinguishability. Gennaro [Gen00] proves that if the s-DLSE as-
sumption holds in G = Z∗

p with p a safe prime then the distribution over G generated by gx

for x ∈R [1..2s] is computationally indistinguishable from the uniform distribution over G. The
following proposition generalizes this result as needed for our purposes2.

Proposition 15 Let G be a cyclic group of order m generated by g, such that m is odd or m/2 is
odd. If the (S, ε) s-DLSE Assumption holds in G, then the following two distributions SG = {gx :

x ∈R [1..2s]} and UG = {gx : x ∈R Zm} are (S′, ε) indistinguishable, where S′ ≈
(

ε
|m|−s

)2
S

The proof is presented in Appendix C.
Next we show that if in a group G, both the s-DLSE and the t-DDH Assumptions hold, then

performing the Diffie-Hellman transform with short exponents a and b, yields a DH output with t
bits of computational entropy. In other words, the security of the hashed DH transform over such
groups when using s-bit long exponents is essentially equivalent to that of using full exponents.

Theorem 16 Let G be a cyclic group of order m generated by g, such that m is odd, or m/2 is odd.
Let s, t be such that the (S1, ε1) s-DLSE and the (S2, ε2) t-DDH Assumptions hold in G. Denote
with X (ga, gb) the family of distributions induced by the t-DDH assumption over G (see Def. 9).
Assume that X (ga, gb) is S3-semi-samplable (see Sec. 4.2). Then the following two distributions

SDH = {(ga, gb, gab) for a, b ∈R [1..2s]}

and
SR∗ = {(ga, gb, C) for a, b ∈R [1..2s] and C ∈X (ga,gb) G}

are (S, ε) indistinguishable where S = min(S2,
(

ε
|m|−s

)2
S1 − S3) and ε ≤ ε2 + 4ε1.

Before proving the Theorem, we point out that for a technical reason inside the proof (an hybrid
argument) we need the semi-samplable version of the t-DDH assumption here. We stress that the
“short exponent” technique is the only case in which we need semi-samplability, and in this case it
is easily seen that this condition holds (see Remark at the end of the next Section).
Proof Recall that if the (S2, ε2) t-DDH Assumption holds over the group G of order m, then
there exists a family of probability distributions X (ga, gb) with min-entropy t (one distribution for
each pair ga, gb) over G such that the distributions

DH = {(ga, gb, gab) for a, b ∈R Zm}

and
R∗ = {(ga, gb, C) for a, b ∈R Zm and C ∈X (ga,gb) G}

are (S2, ε2) indistinguishable.
The following standard hybrid argument yields the proof of the theorem. Consider the inter-

mediate distributions
D0 = {(ga, gb, gab) for a, b ∈R [1..2s]}

2A similar, but slightly weaker statement was independently stated in [KK04].
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D1 = {(gα, gb, gαb) for α ∈R Zm, b ∈R [1..2s]}

D2 = {(gα, gβ, gαβ) for α, β ∈R Zm}

D3 = {(gα, gβ, C) for α, β,∈R Zm and C ∈X (gα,gβ) G}

D4 = {(gα, gb, C) b ∈R [1..2s], α ∈R Zm and C ∈X (gα,gb) G}

D5 = {(ga, gb, C) : a, b ∈R [1..2s] and C ∈X (ga,gb) G}

Clearly D0 = SDH while D5 = SR∗.
Under the (S2, ε2) t-DDH Assumption we know that D2 is (S2, ε2) indistinguishable from D3.
Also, under the (S1, ε1) s-DLSE Assumption we know that Di is (S1/s− S3, (|m| − s)ε1) indis-

tinguishable from Di+1 for i = 0, 1, 3, 4 by reduction to Proposition 15. The extra additive factor
of S3 is due to the fact that in the case i = 3, 4 one needs X (ga, gb) to be semi-samplable, which
by assumption can be done by a circuit of size S3.

Thus by invoking the triangle inequality for computational indistinguishability (see Prop 22 in
Appendix A) we have that SDH is (S, ε) indistinguishable from SR∗ where S = min(S2, S1/s−S3)
and ε = ε2 + 4(|m| − s)ε1 as desired.

Note that, as a particular case, when t = log(m) the theorem states that if G is a DDH group in
which the s-DLSE assumption holds, then performing the DH transform over G with exponents of
size s yields values that are indistinguishable from random elements in G.

6 Hashed DH over Z∗
p and its Subgroups

Here we discuss the security of the hashed DH transform over groups and subgroups of Z∗
p for

random prime p. Throughout this section we assume that the DDH assumption holds over the
large prime-order subgroups of Z∗

p (or the prime-power order subgroups in the unusual case that
p − 1 is divisible by a large prime with multiplicity larger than 1). Under this assumption we
immediately get that it is secure to use the hashed DH transform over a subgroup Gq of Z∗

p of
order q, provided that q is a sufficiently large prime that divides p − 1. The meaning of “large”
here is that DDH holds over Gq with parameters (S, ε) that make the distinguishing task infeasible;
specifically, when talking of a “security parameter” k we require S/ε ≥ 2k. Also, a large q is one
for which a sufficient number of bits can be extracted from a Diffie-Hellman value. For example, if
the application requires a pseudorandom output of ` bits then q needs to satisfy |q| ≥ ` + 2k (see
Theorem 7).

Very importantly, however, due to our results we can extract from a Diffie-Hellman value over
Z∗

p more bits than those guaranteed by individual factors q of p − 1. If we want to extract ` bits
and Z∗

p has a subgroup of order m, where m is the product of different large primes (say, each of
size ≥ 2k), then it suffices that |m| ≥ ` + 2k in order to extract ` bits from a DH value over such
subgroup. Moreover, these results show that one can securely apply the hashed DH transform also
over some non-DDH groups whose order is divisible by small prime factors which, in particular, is
the case of Z∗

p (the order m = p − 1 of this group is always divisible by small prime factors, e.g.,
2). Specifically, we showed that the hashed DH is secure over Z∗

p provided that p − 1 has enough
prime divisors (with multiplicity 1) whose product is larger than the entropy bound 2`+2k, and for
which the subgroups of corresponding prime order are DDH in the above sense. (In particular, the
fact that p− 1 has additional smaller prime factors does not invalidate the security of the hashed
DDH in Z∗

p .)
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A particularly interesting group is Z∗
p for p = 2q + 1 and q prime. In this case, working

directly with the hashed DH over Z∗
p is secure since we are assuming that its subgroup of order q

is DDH, and therefore the whole Z∗
p group is

∣∣∣p−1
2

∣∣∣-DDH. Working over Z∗
p in this case has several

important advantages: (i) one can produce a large (actually, largest) number of pseudorandom
bits (specifically, |p| − 1 − 2k bits); (ii) p can be chosen such that 2 is a generator of Z∗

p (which
speeds up exponentiation); (iii) the 2k-DLSE Assumption (see Section 5) is conjectured to hold
in these groups [vOW96] and therefore one can use minimal-length exponents (i.e., of length 2k)
in these groups, obtaining yet another significant exponentiation speedup without sacrificing the
security of the (hashed) DH transform; and (iv) these groups are free from the potentially serious
attacks described in [LL97] (that affect subgroups of prime order q where (p− 1)/q has a relatively
large smooth factor). Note that items (i) and (iii) use our results in an essential way. The only
downside of working over such a group is the cost of generating p’s of the above form; this, however
is insignificant in typical applications (e.g., IKE [RFC2409, IKEv2]) in which prime generation is
very rare, and usually done at the set-up of the system and used for a large period of time.

Note that in all of the above examples it is assumed that one knows the full or partial fac-
torization of p − 1; in particular, the knowledge of this factorization is essential for selecting a
generator of the group. It is a theoretically and practically important question to establish whether
the knowledge of the factorization of p − 1 is essential for working securely over Z∗

p or over one
of its subgroups. In the rest of this section we show that this knowledge is not essential (at least
under some plausible assumptions on the distribution of the prime factors of p− 1). Specifically, it
follows from our results that if one chooses a random prime p (of a pre-specified size such that the
Discrete Logarithm Problem is hard in Z∗

p) and a random element e in Z∗
p , then performing the

hashed DH transform over the group generated by e is secure.3

Let p be a random prime such that p−1 = p1p2 · · · pn and p1 ≤ p2 ≤ ... ≤ pn are all (not necessarily
different and possibly unknown) primes. Let e be an element randomly chosen from Z∗

p , and let Ge

denote the subgroup of Z∗
p generated by e. We first claim that with overwhelming probability the

large prime factors of p− 1 divide the order of Ge.

Lemma 17 Let Z∗
p and p− 1 = p1 · · · pn be as described above. Then for all 1 ≤ i ≤ n:

Pre∈RZ∗
p
[pi 6 | ord(e)] ≤ 1/pi.

Proof Let g be a generator of Z∗
p . There are at most (p − 1)/pi elements whose order is not

divisible by pi, and they are the elements of the form gjpi for 1 ≤ j ≤ (p − 1)/pi. When p2
i |p − 1

this is a strict upper bound, otherwise this is an exact bound. Thus, the probability to choose e
such that pi 6 | ord(e) is at most (p−1)/pi

p−1 = 1
pi

.

Corollary 18 For a given bound B, let p− 1 = Πn
i=1pi where pj , pj+1, ..., pn > B. Then

Pre∈RZ∗
p
[Πn

i=j pi | ord(e)] ≥ 1−
n∑

i=j

1
pi
≥ 1− n− j

B
≥ 1− log p

B
.

Thus, for large values of B, the order of a random element e is divisible, with overwhelming
probability, by all the prime factors of p− 1 which are larger than B. Or, equivalently, Ge has as
subgroups all the prime-order subgroups of Z∗

p whose order is larger than B.

3We stress that while the legitimate users of such a scheme do not need to know the factorization of p − 1, the
scheme remains secure even if this factorization is known to the attacker.
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Now, if we set our security parameter to k, define B = 22k, and assume that the DDH holds
in subgroups of prime order larger than B, then we have that, with overwhelming probability,
Ge contains all the prime order DDH subgroups of Z∗

p . In other words, if we denote by P the
product of all prime factors of p−1 larger than B, we have that Ge contains, by virtue of our DDH
Characterization Theorem (Theorem 2), a DDH subgroup of size P , and then by the Max-Subgroup
Theorem (Theorem 12) we get that Ge is |P |-DDH.

All that is left to argue is that |P | is large enough. For this we use the following lemma from
[vOW96] that provides an upper bound on the expected size of the product of all prime divisors of
p− 1 that are smaller than B (and thus, it provides a lower bound on the expected size of |P |).

Lemma 19 ([vOW96]) For a random prime p (as above) and a fixed bound B, the expected length
of Πipi where pi < B is log B + 1.

In other words, the lemma states that the expected size of |P | is |p| − |B| = |p| − 2k.
If, for the sake of illustration, we set |p| = 1024 and k = 80 we get that we expect Ge to be

864-DDH. However, note that this expected size may vary for specific p’s, and in particular the
above result does not rule out that there could be many primes p’s for which p − 1 is smooth.
Fortunately this is not the case: a better estimate of the probability that for a random prime p,
the value p− 1 is smooth can be found in [PS02] from which one can state that most primes p have
a large prime q dividing p− 1. We refer the reader to [PS02] for details.

Remark (Short exponents and semi-samplability). Notice that in order to use short expo-
nents in the above scenario (i.e., when working over a random prime p with a random generator e),
one must make sure that the order m of the group generated by e is either odd, or m/2 is odd (so
that we can invoke Theorem 16). This can be easily achieved by choosing first a random element e

in Z∗
p and then using as the group generator the element e2f

mod p where f is the maximal integer
such that 2f |(p − 1). In addition, for the application of Theorem 16, we need to show that the
distributions X (ga, gb) in this case are semi-samplable. This is so since in the above arguments we
are (implicitly) using the distributions defined in the proof of Theorem 12 which are semi-samplable
when the factorization of the group order is known (see the remark following the proof of Theorem
12). Therefore, we obtain that, even though the honest parties may not know the factorization of
p− 1, the DH transform with short exponents remains secure in this case even if such factorization
is available to the attacker.
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A Indistinguishability of Probability Distributions

Definition 20 Let X ,Y be two probability distributions over a set A. We say that X and Y have
statistical distance bounded by ∆ if∑

x∈A

|ProbX [x]− ProbY [x]| ≤ ∆

Next we adapt the classical notion of computational indistinguishability [GM84] to the concrete
security setting (informally, two distributions X and Y are (S, ε) indistinguishable if no circuit of
size S can distinguish between samples drawn according to X or according to Y with advantage
larger than ε).

Definition 21 Let X ,Y be two probability distributions over A. Given a circuit D (called the
distinguisher) consider the following quantities

δD,X = Probx∈X [D(x) = 1] and δD,Y = Proby∈Y [D(y) = 1]

We say that the probability distributions X and Y are (S, ε) indistinguishable if for every circuit D
of size ≤ S we have that

|δD,X − δD,Y | ≤ ε

We now state a simple “triangle inequality” for (S, ε) indistinguishability (a.k.a. the “hybrid
argument”).

Proposition 22 Given three probability distributions X ,Y,Z over a set A, such that (i) X is
(S1, ε1) indistinguishable from Y and (ii) Y is (S2, ε2) indistinguishable from Z. Then X is (S, ε)
indistinguishable from Z where S = min(S1, S2) and ε = ε1 + ε2.

Proof Assume that X is not (S, ε) indistinguishable from Z. Then there exists a distinguisher D
of size S such that

|δD,X − δD,Z | > ε

Now by the triangle inequality we have that

ε < |δD,X − δD,Y |+ |δD,Y − δD,Z | ≤ ε1 + ε2 = ε

which is a contradiction. Note that the second upper bound is due to the fact that the size of D is
smaller than both S1 and S2.

B Coppersmith’s Example

As mentioned at the end of Section 3, Coppersmith [Cop04] has provided us with an example of
a non-DDH cyclic group G of order q2 (for prime q) that contains a DDH subgroup Gq of order
q. Moreover, such a group G can be constructed on the basis of any given DDH group of order q.
Here we present Coppersmith’s construction.

Let Gq be a cyclic DDH group of order q, for prime q, generated by an element g. We build a
group G as follows. The set of elements in G is S = {(h, a) : h ∈ Gq, 0 ≤ a < q} and the group
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operation ∗ is defined as: (h1, a1) ∗ (h2, a2) = (h, a) where (i) if a1 + a2 < q then h = h1h2 (with
multiplication over Gq) and a = a1 +a2; and (ii) if a1 +a2 ≥ q then h = h1h2g and a = a1 +a2− q.
The idea behind the construction of the group G, and its operation, is given by the following natural
bijection between the set of integers between 0 and q2 − 1 and the set S: for any 0 ≤ b, c < q, we
map bq + c into (gb, c). More specifically, we consider G as a cyclic group with generator (1, 1) (the
first 1 is the unit element in Gq, the second is the integer 1). In this case we have that for any
0 ≤ b, c < q, (1, 1)bq+c = (gb, c), (or, equivalently, dlog(1,1)(gb, c) = bq + c).

Clearly, the element (1, 1)q = (g, 0) generates the subgroup Gq × {0} of order q which is (by
assumption) DDH. However G is not DDH (not even CDH). Indeed, the Diffie-Hellman transform
over G is (see footnote4)DH((h1, a1), (h2, a2)) = (h1

a2h2
a1gba1a2/qc, a1a2 mod q), and then trivial

to compute given (h1, a1) and (h2, a2). Note that in this example G is not even CDH. Yet, a similar,
but somewhat more involved, example shows that one can build G of prime-power order (qe, e > 1)
with the following properties (i) CDH holds in G, (ii) DDH holds in a subgroup of G; yet (iii) DDH
does not hold in G.

C Proof of Proposition 15

In this section we prove the following proposition from Section 5.

Proposition 15 Let G be a cyclic group of order m generated by g, such that m is odd or
m/2 is odd. If the (S, ε) s-DLSE Assumption holds in G, then the following two distributions
SG = {gx : x ∈R [1..2s]} and UG = {gx : x ∈R Zm} are (S′, ε) indistinguishable, where

S′ =
(

ε
|m|−s

)2
S.

What follows is an extension of arguments that appeared first in [PS98, Gen00].
Let m be the order of cyclic group G and g a generator for G. Let n = |m|.
[Hugo: Rosario: check that indeed n is used below in lieu of |m|.] H

Hard-Core Bits and the s-DLSE Assumption. In [PS98] Patel and Sundaram prove that
under the s-DLSE Assumption the bits x2, x3, . . . , xn−s are simultaneously hard for the function
f(x) = gx mod p, if p is congruent to 3 mod 4. It is not difficult to see that their proof can be
extended in two ways:

• It holds for any cyclic group of odd order, in which case even the bit x1 is hard.

• It holds for any cyclic group G of even order m but such that m/2 is odd. Notice that for
these groups, computing x1 when given y = gx is easy.

Short-Exponent Indistinguishability. Gennaro in [Gen00] builds on the above result from
[PS98] as follows. An alternative way to say that the the bits xi, . . . , xj are simultaneously hard is
to say that the two distributions:

[gx, xi, . . . , xj ] for x ∈R Zm

[gx, ri, . . . , rj ] for x ∈R Zm, ri, . . . , rj ∈ {0, 1}
4Let h1 = gb1 ,h2 = gb2 . Then: DH((h1, a1), (h2, a2)) = DH((gb1 , a1), (g

b2 , a2)) = DH((1, 1)b1q+a1 , (1, 1)b2q+a2)
def
= (1, 1)(b1q+a1)(b2q+a2) = (1, 1)(b1a2+a1b2)q+a1a2 = (gb1a2+a1b2+ba1a2/qc, a1a2 mod q) = (h1

a2h2
a1gba1a2/qc, a1a2 mod q).
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are computationally indistinguishable. Denote with x(i, j) the value x with the bits in position
from i to j zeroed out. Then a consequence of the above statement is that the two distributions

[gx] and [gx(i,j)] for x ∈R Zm

are computationally indistinguishable.
Gennaro uses this to construct efficient pseudo-random generators in which the basic operation

is an exponentiation with an exponent with a lot of contiguous zero’s in it (the positions from i to
j indeed) which is substantially faster to compute than a regular exponentiation.

Notice, however, that the above conclusion is still different from the statement of Proposition
15. But we show now that if Proposition 15 is false then we can contradict the above conclusion.
We distinguish two cases.

Case 1: m is odd. In this case we have that [Gen00] implies that

[gx] and [gx(1,n−s)] for x ∈R Zm

are computationally indistinguishable. Assume that we have a distinguisher D that distinguishes
between [gx]x∈RZm and [gz]z∈R[1..2s] then we can use D to distinguish in the case above. Given
an element y we compute y2−(n−s) mod mgw with w ∈R [1..2s]. A random group element y will be
mapped to a random group element, while an element of the form y = gx(1,n−s) (i.e., with the least
n− s significant bits zeroed out) will be mapped to a random element of the form gz with z < 2s.

Case 2: m is even, but m/2 is odd. In this case we have that [Gen00] implies that

[gx] and [gx(2,n−s)] for x ∈R Zm

are computationally indistinguishable. Notice also that given y = gx, the bit x1 is easily com-
putable. Assume that we have a distinguisher D that distinguishes between [gx]x∈RZm and [gz]z∈R[1..2s]

then we can use D to distinguish in the case above. Given an element y we perform the following
steps:

• Compute x1 and set y1 = y · g−x1

• For i = 2 to n − s, compute yi as the principal square root of yi−1. The principal square
root of a square y is that square root which is also a square. When m/2 is odd, the principal
square root is unique and can be efficiently computed.

• Set y′ = yn−s · gw with w ∈R [1..2s].

A random group element y will be mapped to a random group element, while an element of the
form y = gx(2,n−s) will be mapped to a random element of the form gz with z < 2s.

Concrete Complexity. The concrete complexity bounds stated in Prop. 15 are a refinement of
the ones stated in [Gen00].
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