Inversion-Free Arithmetic on Genus 3
Hyperelliptic Curves

Xinxin Fan! , Yumin Wang?!

National Key Lab of Integrated Service Networks,
Xidian University,
Xi’an, China,
xxfan@mail.xidian.edu.cn
ymwang@xidian.edu.cn

Abstract. Hyperelliptic curve cryptosystem (HECC) is becoming more
and more promising for network security applications because of the com-
mon effort of several academic and industrial organizations. With short
operand size compared to other public key cryptosystems, HECC has
showed excellent performance in embedded processors. Recently years,
many effort has been made to investigate all kinds of explicit formulae
for speeding up group operation of HECC. In this paper, explicit formu-
lae without using inversion for genus 3 HECC are given. We introduce
a further coordinate to collect the common denominator of the usual 6
coordinates. The proposed formulae can be used in smart card where
inversion is much more expensive than multiplication.

Keywords: Genus 3 Hyperelliptic Curve Cryptosystem, Explicit For-
mulae, Inversion-Free

1 Introduction

In 1989, Neal Koblitz proposed using the Jacobian of a hyperelliptic curve defined
over a finite field to implement discrete logarithm cryptographic protocols. Due
to the work of Cantor [1] (for odd characteristic only) and Koblitz [2], it is
possible to perform efficient operation in the ideal class group of a hyperelliptic
curve and use HECC in practice.

Recently years, using explicit formulae instead of Cantor algorithm has re-
duced sharply the complexity of arithmetic in the ideal class group of hyperellip-
tic curves and obtained fast implementation in software and hardware platform.
In the remainder of the paper I denotes a field inversion, M a field multiplication,
and S a field squaring.

For genus 2 hyperelliptic curve, Tanja Lange [3] gave explicit formulae which
need 1I + 22M + 35 for a group addition and 17 + 22M + 55 for a group
doubling in affine coordinate system. In [4,5,6], the authors introduced a further
coordinate called Z to represent the elements of the divisor class group and

! Supported by the National NKBRSF ’973’ Program of China (Grant No.G1999035803)



obtained explicit formulae in projective coordinate system. In [5], 47M + 4S5
are required for a group addition and 40M + 65 for a group doubling. In [7],
Lange noticed the difference between the denominator of the V;’s and the U;’s
and introduced weighted coordinates for genus 2 curves. In addition, the paper
found optimal matches to use mixed coordinates and obtained more efficient
inversion-free explicit formulae.

For genus 3 case, Kuroki et al. [8] proposed an extension of Harley algorithm
over odd characteristic fields and Pelzl et al. [9] gave its improvement and gen-
eralization for arbitrary characteristic fields. In [10], the authors used Toom’s
multiplication to improve Harley’s algorithm and showed implementation results
on the 64-bit CPU Alpha EV68 1.25GHz. Without distinguishing multiplication
and squaring, their proposed algorithm will cost I+70M and I+71M for a group
addition and doubling respectively. Affine coordinates are the only coordinate
system currently available for genus 3 curves.

In this paper, based on the very recent explicit formulae for addition on
genus 3 hyperelliptic curves proposed by Gonda et al. [10], we give inversion-
free explicit formulae in projective coordinate system. We will take the same
method as in [4,5,6]. In addition, we consider also a group addition with mixed
coordinates: one of the input divisor class is represented with affine coordinates,
the other projective coordinates and the output divisor class is in projective
representation. This kind of mixed addition can also be used efficiently in scalar
multiplication.

This paper is organized as follows. Section 2 gives a brief overview of the
mathematical background related to genus 3 hyperelliptic curves. In section 3,4
and 5, we investigate inversion-free explicit formulae for group addition, mixed
addition and doubling for genus 3 HECC respectively. Finally, Section 6 con-
cludes the whole paper.

2 Mathematical Background

In this section we present a brief introduction to some of the theory of genus 3
hyperelliptic curves over odd characteristic fields. For more details the reader is
referred to [1], [11] and [12].

Let n be a positive integer, p # 2,7 be a prime number, and ¢ = p™. A genus
3 hyperelliptic curve C over K = GF(q) is defined as follows: C' : Y? = F(X),
where F(X) = X7+ f5X° + fuX* + f3X3 + fo X% + f1X + fo € GF(p)[X] with
disc(F)# 0.

The divisor class group Jo(GF(q)) of C forms a finite Abelian group and
therefore we can construct cryptosystems based on discrete logarithm problems
on the Jacobian of C. Due to Mumford [13], an element of Jacobian, which is
called a reduced divisor, has a nice cannonical representation by means of two
polynomials u and v defined over GF(q). We will use the notation [u, v] for the
divisor represented by w and v. For genus 3 curves, we have commonly [u,v] =
[#3 +uow? +uyz+ug, V222 +v12+v9] With u|f —v?. When using explicit formulae
proposed by Gonda et al. [10] to add two reduced divisor classes or double one



reduced class, we will obtain another reduced divisor class [u',v'] = [#3 +up2? +
ullx + uz), v;xZ + v/lx + 11(,)]. For each addition and doubling above, we need one
inversion. In order to avoid inversion, we introduce a further coordinate Z to
collect the common denominator of the usual 6 coordinates and let the septuple
[Ua, Uz, Uy, Va, V1, Vo, Z] stand for [#3+(Us/Z)2*+(U1/Z)x+(Uo/Z), (Va/Z)2*+
(V1/Z)x+(Vo/Z)]. After finishing scalar multiplication, we will require I+6M to
transform the output reduced divisor class from projective coordinates to affine
coordinates. In this paper, we study only the most frequent case in detail. Other
special cases occur with very low probability and so we will deal with any special
case with a less efficient routine (such as Cantor algorithm).

3 Inversion-Free Addition Formula

In this section, we give explicit formula for adding two reduced divisor classed
in projective coordinate system. When inversions are much slower than multi-
plications (such as in smart card), we will consider to use inversion-free addition
formula. Our formula can also be used for affine inputs if we regard [u1,v1] as
the septuple [uj2,u11, U10, V12, V11, V10, 1]. Table 1 lists the number of field oper-
ations required to finish each step. If one of the input divisor class is represented
in affine coordinates and the other in projective coordinates, we will discuss this
case at length in the next section.

4 Inversion-Free Mixed Addition Formula

In this section, we show inversion-free mixed addition formula which takes a
reduced affine divisor class and a reduced projective divisor class as the input and
a reduced projective divisor class as the output. This kind of formula has been
widely used in many scalar multiplication algorithms such as (signed) double-
and-add, NAF and so on. When using these scalar multiplication algorithms, one
of the input is the base divisor class in affine representation and the intermediate
result in projective representation. We can see clearly that this kind of addition
formula can do better than the previous algorithm. Table 2 lists the number of
field operations required to perform the respective steps.

[Remark]:Using the formula in Table 2, one saves 31M + 1S more than
the general inversion-free addition formula. Therefore, when we compute scalar
multiplication, it is more efficient to use mixed addition formula.

5 Inversion-Free Doubling Formula

In this section, we investigate inversion-free doubling formula. For doubling al-
gorithm the input is almost always in projective representation. Table 3 lists the
number of field operations required to complete the respective steps.



Table 1. Explicit Formula For Addition On Genus 3 HEC (Most Frequent Case)

In.

Genus 3HEC C: Y2 = F(X),F = X" 4+ fsX° + fuX* + f3X3 + o X2+ 1 X + fo

Reduced Divisors Dy = [Ui2, U11, U1o, Viz, Vi1, Vio, Z1], D2 = [Uaa, Ua1, Uzg, Vaa, Va1, Vag, Z2)

out.|D' = [Uy,Us, Uy, Vs, V) Vo, Z'] = Dy + Da(Af fine + Af fine)
Step|Expression Operations
1 |Precomputation: 13M + S
Z =2Z12,2 = Z?
Uiz = Z3U2,Ur1 = Z2Ur1, Uro = Z2Uio, Viz = Z2Via, Vii = Z2Va1, Vio = Z2Vio;
Usz = Z1Usz2,Us1 = Z1Us1, Usg = Z1Usq, Vaz = Z1Vaz, Va1 = Z1 Va1, Vao = Z1Vao;
2 |Compute the resultant r» of Uy and Us: 13M + 28
t1 = U11Uszo — UioUz1, ta = U12Usz0 — UioUs2, t3 = Uso — Uto, ta = Usay — Ury;
ts = Usz — U2, te = 13, t7 = tata, ts = U12Uz1 — Ur1Usa + t3,tg = t5 — t1ts;
ti0 = tots — tr, 7 = [tsto + ta(t1io — t7) + t1te]Z;
3 |If r = 0 then call the Cantor algorithm
Compute the pseudo-inverse I = ip X2 4+ i1 X + 9 = r/UimodUs: 6 M
ia = tstg — te, i1 = Usgia — Zti0,i0 = Uz1iz — (Usatio + Zto);
5 |Compute S', = S;X2 + s;X + s;] =rS = (Vo — Vi)ImodUs: 14M
t1 = Vio — Vao, ta = Vi1 — Vo1, t3 = Viz — Vao, ta = tai1, ts = tido, ts = taia;
tr = Unate, ts = ta + t7 + Ztg — (t2 + t3) (i1 + Ziz), to = Uzo + Uaa;
ti0 = (to + Ua1)(ts — Ztg), to = (tg — Ua1)(ts + Zte), S:) = —(Ua0ts + Zts);
sy = Z[ta + t5 — tr + (t1 + t2) (G0 + i1)] + (to — t10)/2;
sy = Z[Ztg — ta — (t1 + ta)(io + Zia)] — sq — (to + t10)/2
If s, = 0 then call the Cantor algorithm
Monic § = X2 + (5/1/52)X + 50/5/2
Precomputation: 10M + 3S
5:) = s:)Z, §l1 = s/lZ7 §’2 = s;Z, 5; = 5/22,&‘; = §;Z,R =rZ;
A:E;Z,B:A:;;,C:Az,D:RB,E:AD27F=AE;
9 ComputeZ:X5+Z4X4+z3X3+sz2+le+z0:S’U1: 8M
zo = 58010,21 = (S:) + 5/1)(010 +U11) — 8/11711 — S:)fho‘-,
zo = (S:) + 5;)(010 + Ui2) — S;ﬁlz - 5:)010 — 3,1[711;
z3 = 5:, + (‘3; + S;)(012 + U11) — 8/1011 — 8;012724 = 5/1 + 8;012;
10 |Compute Uy = X* + uis X° 4+ w2 X2 4+ w1 X + wgo: 20M
Utz = sp(za + 5/1 — 0225;), ts = 5/124 - (0225;)%3;
Uty = 2[5;(23 + 52) — 021Z) + t5],t1 = sz)Z3;
to = (Uaa + 021)(§;ut3 +uga), tz = Usiuge, ta = Zt1 — t3;
wer = 2[5z + (5 + 5,) (23 + 2a) + R(2Viasy — R) — ts] — Z(ta + ta + 55020);
w0 = Z(8921 + 8y 22) + Z{ts + R[2(V118, + V125)) + RU12]—
(géuta)(}zo} — Uaougr;
11 |[Compute V; = Vi3 X° 4+ v X2 + v41 X + veo: 15M
t1 = Ugz — Sy24, V40 = t1uto + B(zo + Vior);
ver = truer + B(z1 + ‘7117") — Auygo, ve2 = tiuge + B(z2 + ‘7127") — Augy;
vz = t1uz + Bzz — Auga;
12 |Compute Us = X3 + 132 X2 + us1 X + uso: 14M + 25
t1 = 2vi3, uz2 = —(Bus + Cvis), usr = fsF — Bugz — Ctives — (Augz)uys;
uzo = faF — Bugr — C(t1ver + v35) — (Ausa)use — usiues;
13 |Adjust: aM
Z' = FD,U, = u32D, U, = us1 D, Uy = uzoD;
14 |Compute V3 = 32 X2 + v31 X + v30: 6M
Vgl = Fua — u32v3, Vll = Fug — u31v3, Vol = Fvio — u30vt3;
Sum 132M + 8S




Table 2. Explicit Formula For Mixed Addition On Genus 3 HEC (Most Frequent Case)

In.

Genus 3HEC C: Y2 = F(X),F = X" 4+ fsX° + fuX* + f3X3 + o X2+ 1 X + fo

Reduced Divisors Dy = [Ui2, U1, Uig, Viz, Vi1, Vio, Z1], D2 = [Uaz, Ua1, Usg, Va2, Va1, Vao, 1]

out.|D" = [U,, U, Uy, Vs,V Ve, Z'] = Dy + Dy(Projective + Af fine)
Step|Expression Operations
1 |Precomputation: 6 M
Uszz = Z1Usz2,Us1 = Z1Uz1, Uzo = Z1Ua0, Vaz = Z1Vaz, Va1 = Z1Va1, Vao = Z1Vao;
2 |Compute the resultant r of U; and Ua: 12M + 28
t1 = U11Uz0 — U1oUa1, ta = U12Usz0 — U1oUa2, t3 = Uzo — Uto, ta = U1 — U1
ts = Usg — Uiz, te = t2,t7 = tata, tg = UroUzy — U11Usz + t3,t9 = t3 — t1ts;
tio = tats — t7,r = tgtg + ta(tio — t7) + tite;
3 |If » = 0 then call the Cantor algorithm
Compute the pseudo-inverse I = X%+ X + io = r/UimodUs: a4M
iz = lsts — t6, 11 = Uaziz — t10,t0 = Uz1i2 — Uzatio — to;
5 [Compute s = s X2 + sllX + s; =rS = (Vo — Vi)ImodUs: 10M
t1 = Vip — Voo, ta = Vi1 — Va1, t3 = Via — Voo, ta = toi1, t5 = t1io, ts = taiz;
t7 = Uzate,ts = ta +t7 +te — (t2 + t3)(i1 + i2), to = Uzo + Uaa;
tio = (tg + U21)(ts — te),to = (to — Ua1)(ts + te),S;} = —(Uzots + t5);
sy = ta+ b5 + (to — t10)/2 — t7 — (t1 + t2)(éo + i1);
S; =t — S; — (to + t10)/2 — ta — (t1 + t3)(i0 + i2);
If s; = 0 then call the Cantor algorithm
Monic S = X2 + (s, /55) X + sé/s’2
Precomputation: 9M + 3S
§:) = s;Z1,§/1 = s;Zl,E; = s;Zhs; = S;Q,R =rZi;
A=5,71,B=Asy,C =A% D= RB,E = AD? F = AE;
9 |Compute Z = X% 4 24Xt 4+ 25X% + 20X + 21X + 20 = SU;: 8M
z0 = s:)Ulo,zl = (s:) + sll)(Ulo + Ui1) — S;Uu - s;)Ul().‘,
22 = (59 + 52) (U0 + U2) — syU12 — soUso — s, U1
23 = §; + (9,1 + 3/2)(U12 + Ui1) — S/ U1 — 8;U12, 24 = 5/1 + S;Uu;
10 Compute Uy = X + U X3 +ut2X + u1 X + ugo: 24 M
utz = 5224 + 52 1= U2252, ts = 81Z4 — (Szur3)U22,
Uty = 82(23 + So - U2182) +t5,t1 = S:)Zs§
to = (U22 + U21)(9;Utd + ug2), ts = Uzlutz,t4 =11 — t3;
Ut = 6222 + (60 + 51)(23 +z4) + 7‘(2‘/1252 — R) — (ts + t2 + ta + s,U20);
Ugg = 8221 + 512’2 +ts + r[2(V1152 + V1281) + rUi2] — (S;ut?,)Uzo — Uzauy;
11 |[Compute V; = Vi3 X° 4+ vi2 X2 + v11 X + vio: 14M
t1 = upz — 3;24, veo = t1uro + B(z0 + Vior);
vi1 = trugr + B(z1 + Viir) — Augo, vi2 = truga + B(z2 + Viar) — Aug;
vt = t1ugz + Bzz — Augo;
12 |Compute Uz = X3 4+ u32X2 + us1 X + usp: 14M + 28
t1 = 2vs3, uz2 = —(Buz + Cvly),ust = fsF — Buga — Ctives — (Ausa)uss;
uzo = faF — Bug — C(t1vgr + v2%) — (Auza)uss — uziugs;
13 |Adjust: 4M
7z = FD,U, = u32D, U, = us, D, Uy = uzoD;
14 |Compute Vi = v32 X2 + v31 X + v30: 6 M
Vgl = Futa — u32v:3, Vl/ = Fug1 — u31v:3, Vol = Fuio — u30vt3;
Sum 101M + 7S




Table 3. Explicit Formula For Doubling On Genus 3 HEC (Most Frequent Case)

In.

Genus 3HEC C: Y?=F(X), F=X"4fX"4+f1X*+ X3+ LX2+HX+fo

Reduced Divisors D1 = [Ulg, Ull’ Ul(), V12, Vll, V10~, Z]

out.|D’ =[Uy, U, Uy, Vs, Vi, Vy,Z'] = 2Dy (Projective)
Step|Expression Operations
1 |Precomputation: 6M + 2S
Z=2%2=2%
Uiz = ZU12,U11 = ZU11, Uro = ZU1o, Viz = ZVi2, Vi1 = ZVi1, Vio = ZVio;
2 |Compute the resultant r of U; and Vj: 17TM + 18
t1 = U11Vio — U1oVa1, t2 = U12Vio — UroVia, ts = V3, ta = Vi1 Vio;
ts = Vio + Ur2Vi1 — U1 Via, tg = ‘71(_)‘/10 — Viaty,t7 = Vit — Zty;
r = [tste + ta(ty — Zts) + (Zt3)t1]Z Z;
If » = 0 then call the Cantor algorithm
Compute the pseudo-inverse I = 9 X% 4+ i1 X + io = r/VimodUy: ™M
iy = Z(Zts — Viats), i1 = Uitz + Zt7,i0 = Uitz + Uratr + Zte;
5 |Compute Z = 20 X2 + 21X + 2o = (F — V12)/U1modU1: 10M + 28
ts = Uly,ta = faZ — (2U10 + V), ts = fsZ + t3 — 2U11;
z2 = Z(EE‘ + 2t3), 21 = U12(2011 — t5) + Zta;
2o = faZ + t3(ts — Ur1) + U12(2010 — ta) + U11(O11 — f52) — 2Vi2Viy;
6 |Compute S, = S;X2 + sllX + s;) =2rS = ZImodU;: 16 M
t1 =id121,t2 = i020,t3 = i222,ts = Uiats;
ts = Z[(i2 + 1) (22 + 21) — (t1 + t3)] — ta, t6 = Urots, tr = Uro + Uz;
tg = t7 + Ur1,to = t7 — Ur1,t7 = ts(Zt3 + t5), t11 = to(ts — Zt3);
S; = Z[t1 — ta — tz + (i2 +i0) (22 + 20)] + t6 — (t7 + t11)/2;
8/1 = Z[(i0 + i1)(20 + z1) — (t1 + t2)] + Zta + (t11 — t7)/2»88 = Zts — t¢;
If s; = 0 then call the Cantor algorithm
Monic S = X2 4 (sll/s,z)X +s[,)/s,2
9 |Precomputation: 8M + 38
Sy = 502,53 = 5,Z,8y = 5,2, R = rZ;
A=52 B=A5, C=A%D=2RB,E=AD> F = AE;
10 |Compute G = X% + g4 X* 4+ g3 X3 + g2 X% 4+ 1 X + go = SUq: 8M
go = S:)Ulo-,gl = (S:) + S;)(Um +Un) — SllUu — S:)Um;
g2 = (S:) + 5;)(U10 + Ui2) — S;U12 - 3:)U10 — S;Ull'-,
g3 = 5:) + (‘3/1 + S;)(U12 +Un1) — S;Uu - S;U12,g4 = 5/1 + 812U12;
11 |Compute Uy = X% + 13 X% + w2 X2 4+ w1 X + wgo: 9M + 28
Uy = 25 5y, Urn = 542 + 28054, usy = 2[5, 50 + 2R(syVi2 — R)];
Uy = 5:)2 + 4r[U12(2R — S;Vlz) + 51\712 + s;\711];
12 [Compute Vi = v13X° + V12 X2 + v X + vio: 15M
t] = ugz — 5/294, vio = truto + B(go + Vior);
ve1 = tiuer + B(g1 + Viir) — Augo, ve2 = tiue + B(g2 + Viar) — Augr;
vtz = t1ues + Bgs — Auga;
13 |Compute Us = X3 + u33 X2 + ug1 X + uso: 14M + 2S5
t1 = 2ui3, use = —(Buws + Cvl),us1 = fsF — Eugs — Ct1vee — (Auge)us;
usg = faF — Buy — C(t1ver + vy) — (Auza)uss — ugiues;
14 |Adjust: AM
Z' = FD,U, = u32D, U, = u21D,Up = u0D;
15 |Compute V3 = v32 X2 4+ v31 X + v30: 6 M
Vgl = Fuga — u20v¢3, Vll = Fug1 — u21v3, VOI = Fugo — u20v¢3;
Sum 120M + 128




6 Conclusion And Outlook

We gave explicit formulae to perform inversion free arithmetic on genus 3 hyper-
elliptic curve. Our Explicit formulae cost respectively 132M + 8M, 101M + 75
and 120M + 12S to perform addition, mixed addition and doubling. The practi-
cal performance of our algorithm in embedded system (especially in smart card)
needs studying further.

In order to minimize the number of operations, we did not keep the additional
coordinate Z minimal as in [4]. We took respectively Z = 7“3.9;13Z327 7“33/213Zf
and 8r3s,!3 Z16 for addition, mixed addition and doubling formula. Furthermore,
we must adjust the denominator of Uy, U; and U, to be the same as that of Vj,
V, and V.

How to improve our algorithms and to generalize weighted projective coor-
dinates to genus 3 curves will be our important future works.

References

1. D.G.Cantor.: Computing In The Jacobian Of A Hyperelliptic Curve. Math. Comp.,
48:95-101, 1987.

2. N.Koblitz.: Hyperelliptic Cryptosystems. In Ernest F.Brickell, editor, Journal of
Cryptology, pp.139-150, 1989.

3. T.Lange.: Efficient Arithmetic on Genus 2 Hyperelliptic Curve Over Finite
Field via Explicit Formulae. Cryptology ePrint Archieve, Report 2002/121,
http://eprint.iacr.org/, 2002

4. T.Lange.: Inversion-Free Arithmetic on Genus 2 Hyperelliptic Curves. Cryptology
ePrint Archieve, Report 2002/147, http://eprint.iacr.org/, 2002

5. Y.Miyamato, H.Doi, K.Matsuo, J.Chao and S.Tsujii.: A Fast Addition Algorithm Of
Genus Two Hyperelliptic Curve. In Proc. of SCIS 2002, IEICE Japan, pp.497-502,
2002. in Japanese.

6. T.Lange.: Formulae For Arithmetic On Genus 2 Hyperelliptic Curves.
http://www.ruhr-uni-bochum.de/itsc/tanja/preprints/expl-sub.pdf., 2003

7. T.Lange.: Weighted Coordinates On Genus 2 Hyperelliptic Curves. Cryptology
ePrint Archieve, Report 2002/153, http://eprint.iacr.org/, 2002

8. J.Kuroki, M.Gonda, K.Matsuo, J.Chao and S.Tsujii.: Fast Genus Three Hyperellip-
tic Curve Cryptosystems. In Proc. of SCIS 2002, IEICE Japan, pp.503-507, 2002

9. J.pelzl, T.Wollinger, J.Guajardo and C.Paar, Hyperelliptic Curve Cryptosystems:
Closing The Performance Gap To elliptic Curve (Update), Cryptology ePrint
Archieve, Report 2003/026, http://eprint.iacr.org/, 2003

10. M.Gonda, K.Matsuo, K.Aoki, J.Chao and S.Tsujii.: Improvements Of Addition
Algorithm On Genus 3 Hyperelliptic Curves And Their Implementations. In Proc.
of SCIS 2004, Japan, 2004

11. N.Koblitz.: Hyperelliptic Cryptosystems. In Ernest F.Brickell, editor, Journal of
Cryptology, pp.139-150, 1989.

12. A.Menezes, Y.Wu and R.Zuccherato.: An Elementary Introduction to Hyperellip-
tic Curve. Technical Report CORR 96-19, University of Waterloo, 1996, Canada.
Available at http://www.cacr.math.uwaterloo.ca

13. D.Mumford.: Tata Lectures on Theta II. Birkhauser, 1983



About the author:

Xinxin Fan: was born in 1980. He received the B.S. degree in applied mathe-
matics in 2002 from Xidian University, China. He is a M.S. candidate in the Na-
tional Key Lab On Integrated Services Networks,Xidian University. His research
interests include elliptic curve cryptography, hyperelliptic curve cryptography
and side-channel attack.

Yumin Wang: was born in 1936. He received the B.E. degree from Depart-
ment of Telecommunication Engineering, Xidian University, China in 1959. In
1979-1981, he was a visiting scholar in Department of Electronic Engineering,
Hawaii University. Currently he is a professor, a Ph.D. supervisor in Xidian
University. He is a fellow member of the Chinese Institute of Communication,
a fellow member of the Chinese Institute of Electronics. He serves as a member
of the Board of Governors of the Chinese Institute of Cryptography (preparator
committee) and also serves on the committee of Information Theory Society for
the Chinese Institute of Electronics, and a senior member of IEEE. His research
interests are communication, information theory, coding and cryptography.



