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Abstract. The distribution of r-patterns is an important aspect of pseudo-
randomness for periodic sequences over finite field.The aim of this work is

to study the distribution of r-patterns in the Kerdock-code binary sequences

and the highest level sequences of primitive sequences over Z2l .By combining
the local Weil bound with spectral analysis,we derive the upper bound of the
deviation to uniform distribution.As a consequence,the recent result on the

quantity is improved.

1. Introduction

Pseudorandom sequences with a variety of statistical properties are important
in many areas of communications and cryptography. Hence the development of a
good pseudorandom sequence generator is a hot topic.Many sequences with nice
pseudorandom properties have been found,such as Bent sequences,No sequences
and interleaved sequences(see [5] and the references therein).There are also some
interesting binary sequences derived from the rings Z2l . And in this paper we will
study such two kinds of binary sequences:the Kerdock-code binary sequences and
the highest level sequences of primitive sequences over Z2l .

In [8] some families of binary sequences of period T = 2m−1 were constructed.We
call them the Kerdock-code binary sequences.The family size is larger than the
known ones.And it is approximately T l−1/2l−1.The 0,1 distribution is asymptoti-
cally uniform.The crosscorrelations and nontrivial autocorrelations is upper bounded
by 0.19l2(2l−1 − 1)

√
T + 1.When l = 3,the nonlinearity of these sequences is up-

per bounded by 3
√

2 +
√

2
√

T + 1.Furthermore,the linear complexity is of order
O(m4) which is much larger than that of the so-called Z4-linear sequences.Hence
these sequences might be an attractive alternative in applications such as CDMA
communication and cryptography.In this paper we will show that the distribution
of r-patterns in the Kerdock-code binary sequences is asymptotically uniform.

The highest level sequences of primitive sequences over Z2l were introduced in
the last century motivated by the potential cryptographic applications(see [1] and
the references therein).In [1],it was proved that the period of the highest level
sequence is T = 2l−1(2m − 1) and the lower bound on the linear complexity is
large.In [4] the authors revisted the highest level sequence.And they proved that
the 0,1 distribution is asymptotically uniform and the absolute value of the auto-
correlation function CT (τ) is bounded by 2l−1(2l−1 − 1)

√
3(22l − 1)2n/2 + 2l−1 for

τ 6= 0.By combining the local Weil bound with spectral analysis(I think the origin
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idea comes from [7, 10]),the two results were improved in [11].In [2, 3] the distri-
bution of r-patterns in the highest level of p-adic sequences over Galois rings was
investigated.By the similar method,we will give a new estimate on the deviation to
uniform distribution in this paper.And the result improves the known ones in [2, 3].

The organization of this paper is as follows.In section 2 we will point out some
basic knowledge of Galois ring GR(2l,m) and Fourier transformation on Z2l needed
in the following sections.In section 3 the distribution of r-patterns in the Kerdock-
code binary sequences will be investigated.And in section 4 the distribution of
r-patterns in the highest level sequences of primitive sequences over Z2l will be
investigated.Finally,section 5 concludes the paper.

2. Preliminaries

2.1. Galois ring of characteristic 2l. The Galois ring GR(2l,m) is the unique
Galois extension of degree m over Z2l .It is a ring of characteristic 2l with 2lm ele-
ments.And it is also a local ring with unique maximal ideal 2GR(2l,m) and residue
field F2m .Thus the set GR(2l,m)∗ of units is GR(2l,m)\2GR(2l,m).GR(2l,m)∗ is
a multiplicative group with the following group structure:

GR(2l,m)∗ ∼= Z2m−1 × Z2l−1 × ...× Z2l−1︸ ︷︷ ︸
m copies

if l = 2;
GR(2l,m)∗ ∼= Z2m−1 × Z2 × Z2l−2 × Z2l−1 × ...× Z2l−1︸ ︷︷ ︸

m−1 copies

if l ≥ 3.
The Teichmüller set Γ of GR(2l,m) is {0, 1, ξ, ξ2, ..., ξ2m−2},where ξ is a prim-

itive (2m − 1)th root of unity.Each element x ∈ GR(2l,m) has a unique 2-adic
representation

x = x0 + 2x1 + ... + 2l−1xl−1

where x0, x1, ..., xl−1 ∈ Γ.
The Frobenius automorphism from GR(2l,m) to GR(2l,m) acts as follows:

F (x) = x2
0 + 2x2

1 + ... + 2l−1x2
l−1.

F fixes only elements of Z2l ,and generates the Galois group of GR(2l,m)/Z2l ,which
is a cyclic group of order m.The trace map Tr from GR(2l,m) to Z2l is defined by

Tr(x) = x + F (x) + ... + Fm−1(x).

Borrowing the notation in [11],let MSB denotes the most significant bit map,i.e.,

MSB(x0 + 2x1 + ... + 2l−1xl−1) = xl−1.

2.2. Exponential sum over Galois ring. The canonical additive character ψ

over Z2l is defined by ψ(x) = e2πix/2l

,∀x ∈ Z2l .For any β ∈ GR(2l,m),the
additive character Ψβ over GR(2l,m) is defined by Ψβ(x) = (ψ ◦ Tr)(βx) =
e2πiTr(βx)/2l

.When β = 1,Ψβ is the canonical additive character ψ over GR(2l,m).
The following lemma is contained in [11].And it follows easily from the Weil

exponential sum over Galois ring(see [6, 9]).
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Lemma 2.1. For any λ ∈ GR(2l,m), λ 6= 0,we have

|
∑

x∈Γ

Ψλ(x)| ≤ (2l−1 − 1)
√

2m.

2.3. Fourier transformation on Z2l . For any k ∈ Z2l ,we denote by ψk the
additive character over Z2l

ψk(x) = e2πikx/2l

,∀x ∈ Z2l .

Let µ be the map from Z2l to {±1} such that µ(x) = (−1)c where c is the most
significant bit of t ∈ Z2l ,i.e.,it maps 0, 1, ..., 2l−1−1 to +1 and 2l−1, 2l−1+1, ..., 2l−1
to −1.We can express the map µ as a linear combination of characters:

µ = Σ2l−1
j=0 µjψj ,

where µj = 1
2l

∑2l−1
x=0 µ(x)ψj(−x).

The next lemma is the corollary 14 of [8].

Lemma 2.2. With the notations as above,for any l ≥ 4,the following estimate
holds:

Σ2l−1
j=0 |µj | < 2l ln(2)

π
+ 1.

Finally,we will give the definition of r-pattern.

Definition 2.3. Suppose that (ct)∞t=0 is a binary sequence with period T .∀(z, s) ∈
F r

2 × [0, T )r is called a r-pattern of (ct)∞t=0, where s = (s1, s2, ..., sr), 0 ≤ s1 < s2 <
... < sr < T.

Throughout the following sections,let ξ be the generator of the multiplicative
group Γ∗ = Γ \ {0}.

3. r-patterns in the Kerdock-code binary sequences

First,we define a cyclic code as:

Sm = {(Tr(λξt))2
m−2

t=0 |λ ∈ GR(2l,m)}.
From which we can get a binary code sm as sm = MSB(Sm).

Any Kerdock-code binary sequence (ct)∞t=0 with period T = 2m−1 can be defined
as ct = MSB(Tr(λξt)),where λ ∈ GR(2l,m)∗.

The following theorem is the main result on the distribution of r-patterns in the
Kerdock-code binary sequences.

Theorem 3.1. Suppose that (ct)∞t=0 is a Kerdock-code binary sequence with period
T = 2m − 1.And it is defined as above.(z, s) is a r-pattern of (ct)∞t=0,where z =
(z1, z2, ..., zr) ∈ F r

2 , s = (s1, s2, ..., sr), 0 ≤ s1 < s2 < ... < sr < T .Let N(z,s) denotes
the number of (z, s) in one cycle of (ct)∞t=0.If ξs1 , ξs2 , ..., ξsr is linear independent,we
have

|N(z,s) −
2m − 1

2r
| < [(

l ln(2)
π

+ 1)r − 1
2r

][(2l−1 − 1)
√

2m + 1].

Proof. By the similar method in the proof of theorem 2 in [4],we know

N(z,s) =
2m−2∑
t=0

1
2

∑

d1=0,1

(−1)d1(ct+s1+z1)...
1
2

∑

dr=0,1

(−1)dr(ct+sr +zr)
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=
1
2r

∑

d1,d2,...,dr=0,1

(−1)d1z1+...+drzr

2m−2∑
t=0

(−1)d1ct+s1+...+drct+sr .

Thus

N(z,s) −
2m − 1

2r
=

1
2r

∑

(d1,...,dr) 6=(0,...,0)

(−1)d1z1+...+drzr

2m−2∑
t=0

(−1)d1ct+s1+...+drct+sr .

|N(z,s) −
2m − 1

2r
| ≤ 1

2r

∑

(d1,...,dr) 6=(0,...,0)

|
2m−2∑
t=0

(−1)d1ct+s1+...+drct+sr |.

Now we will give a estimate on |∑2m−2
t=0 (−1)d1ct+s1+...+drct+sr |.Suppose there are

exactly k elements among d1, ..., dr are 1,and the others are 0,1 ≤ k ≤ r.Without
loss of generality,let d1 = 1, ..., dk = 1, dk+1 = 0, ..., dr = 0.Since µ = Σ2l−1

j=0 µjψj ,we
have

|
2m−2∑
t=0

(−1)d1ct+s1+...+drct+sr | = |
2m−2∑
t=0

(−1)ct+s1+...+ct+sk |

= |
2l−1∑

j1=0

...

2l−1∑

jk=0

µj1 ...µjk

2m−2∑
t=0

Ψβ(ξt)|.

Here β = λ(j1ξs1 + ...+ jkξsk).β 6= 0 as λ ∈ GR(2l,m)∗,and ξs1 , ξs2 , ..., ξsr is linear
independent.Thus

|
2m−2∑
t=0

(−1)d1ct+s1+...+drct+sr | ≤ (
2l−1∑

j=0

|µj |)k|
2m−2∑
t=0

Ψβ(ξt)|

< (
2l ln(2)

π
+ 1)k[(2l−1 − 1)

√
2m + 1].

Finally,we have

|N(z,s) −
2m − 1

2r
| < 1

2r

r∑

k=1

(
r

k

)
(
2l ln(2)

π
+ 1)k[(2l−1 − 1)

√
2m + 1]

= [(
l ln(2)

π
+ 1)r − 1

2r
][(2l−1 − 1)

√
2m + 1].

This completes the proof. ¤

Remark 3.2. When r=1,this theorem is almost the same as Theorem 5 in [8].

Let f(z,s) denotes the proportion of (z, s) in one cycle of (ct)∞t=0,we have the
following corollary.

Corollary 3.3. With the notations as above,we have

|f(z,s) −
1
2r
| < [(

l ln(2)
π

+ 1)r − 1
2r

][(2l−1 − 1)
√

2m + 1]/(2m − 1)

≈ Cl/
√

2m,

where Cl is a constant in l of order lr2l.

Hence when m → +∞, f(z,s) → 1
2r ,for any r-pattern (z, s) which satisfies the

condition in Theorem 3.1.
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4. r-patterns in the highest level sequences of primitive sequences
over Z2l

Let T = 2l−1(2m − 1).Any primitive sequences (at)∞t=0 over Z2l has the well
known trace deccription:

at = Tr(αγt),
where α ∈ GR(2l,m)∗, γ = ξ(1 + 2ξ1), ξ1 ∈ GR(2l,m)∗. Therefore the highest level
sequences (ct)∞t=0 of primitive sequences over Z2l has the following description:

ct = MSB(Tr(αγt)).

The following theorem is the main result on the distribution of r-patterns in
highest level sequences of primitive sequences over Z2l .

Theorem 4.1. Suppose that (ct)∞t=0 is a highest level sequence of primitive se-
quences over Z2l with period T = 2l−1(2m− 1).(z, s) is a r-pattern of (ct)∞t=0,where
z = (z1, z2, ..., zr) ∈ F r

2 , s = (s1, s2, ..., sr), 0 ≤ s1 < s2 < ... < sr < T .Let N(z,s)

denotes the number of (z, s) in one cycle of (ct)∞t=0.If γs1 , γs2 , ..., γsr is linear in-
dependent,we have

|N(z,s) −
2l−1(2m − 1)

2r
| < 2l−1[(

l ln(2)
π

+ 1)r − 1
2r

][(2l−1 − 1)
√

2m + 1].

Proof. (sketch)Note that for any β 6= 0

|ΣT−1
t=0 Ψβ(γj)| = |Σ2l−1−1

t=0 Σx∈Γ∗Ψβ(1+2λ)t(x)|
≤ 2l−1[(2l−1 − 1)

√
2m + 1].

Then by the same method in the proof of Theorem 3.1,we will get the upper bound
on |N(z,s) − 2l−1(2m−1)

2r |. ¤

Remark 4.2. When r=1,this theorem is the same as Theorem 3.3 in [11].

Let f(z,s) denotes the proportion of (z, s) in one cycle of (ct)∞t=0.It is interesting
that the following corollary is the same as corollary 3.3.

Corollary 4.3. With the notations as above,we have

|f(z,s) −
1
2r
| < [(

l ln(2)
π

+ 1)r − 1
2r

][(2l−1 − 1)
√

2m + 1]/(2m − 1)

≈ Cl/
√

2m,

where Cl is a constant in l of order lr2l.

The estimate in [2, 3] is of the same shape with respect to m.But the constant
Cl is of order 2(r+1)l.So our estimate is more sharp with respect to l.

5. Concluding remarks

The distribution of r-patterns in the Kerdock-code binary sequences and the
highest level sequences of primitive sequences over Z2l is studied in this paper.By
combining the local Weil bound with spectral analysis,we derive the upper bound of
the deviation to uniform distribution.And the results show that they are asymptot-
ically uniform.As a consequence,the recent result on the the highest level sequences
of primitive sequences over Z2l is improved.
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Moreover,suppose a binary sequence (ct)∞t=0 is defined by

ct = MSB(Tr(αγt))

where α ∈ GR(2l,m)∗, γ = ξ(1 + 2iξ1), ξ1 ∈ GR(2l,m)∗, 1 < i < l.Then the period
of (ct)∞t=0 is 2l−i(2m − 1).And it is easy to check that the distribution of r-patterns
in (ct)∞t=0 is also asymptotically uniform.
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