
Fault and Side-Channel Attacks on Pairing

Based Cryptography ?

D. Page1 and F. Vercauteren2

1 Department of Computer Science,
University of Bristol,

Merchant Venturers Building,
Woodland Road,
Bristol, BS8 1UB,
United Kingdom.

page@cs.bris.ac.uk
2 Department of Electrical Engineering,

Katholieke Universiteit Leuven,
Kasteelpark Arenberg 10,
B-3001 Leuven-Heverlee,

Belgium.
fvercaut@esat.kuleuven.ac.be

Abstract. Current side-channel analytic attacks against public key cryp-
tography focus on traditional schemes such as RSA and ECC, and to a
lesser extent primitives such as XTR. However, bilinear maps, or pair-
ings, have presented theorists with a new and increasingly popular way
of constructing cryptographic protocols. Most notably, this has resulted
in eÆcient methods for Identity Based Encryption (IBE). Since identity
based cryptography seems an ideal partner for identity aware devices
such as smart-cards, in this paper we examine the security of concrete
pairing instantiations in terms of side-channel analysis.

1 Introduction

The increasing ubiquity of computing devices is continuing to o�er exciting new
applications to consumers, but also multiplies the number of security issues a
system designer must consider. Since such devices will be carried into and used in
hostile environments and often house sensitive information, for example identity
related tokens or �nancial information, the threat of attack is signi�cant. This
threat is magni�ed by both the potential pay-o� and level of anonymity that
side-channel attacks allow.

? The work described in this paper has been supported in part by the European Com-
mission through the IST Programme under Contract IST-2002-507932 ECRYPT.
The information in this document re
ects only the author's views, is provided as is
and no guarantee or warranty is given that the information is �t for any particular
purpose. The user thereof uses the information at its sole risk and liability

Side-channel analysis, formally proposed by Kocher et al. [17, 18], is the art
of externally monitoring a device while it executes some algorithm that includes
secret information. By careful pro�ling of, for example, power or EM emissions
and correlation of said pro�les with the target algorithm, an attacker can often
uncover the secret information. This sort of attack is generally described in the
context of smart-cards where an attacker could have easy physical access to the
card and details of the power consumption while it is connected to a malign
terminal. However, the fact that one can attack a device somewhat remotely
via timing [8] and EM emission [2, 3] means that most ubiquitous computing
devices need to be aware of similar problems in their operational environments.
We can extend this passive de�nition of side-channel attack to include active
attacks such as fault injection whereby an attacker can physically manipulate
the target device, tamper with internal state and perform erroneous operations.
Although a closer proximity of access is required by the attacker, active attacks
can often be applied non-destructively and do therefore provide a feasible means
of recovering the same secret information as passive attacks.

Although side-channel attack and defence techniques are becoming increas-
ingly well understood, the current emphasis in terms of public key systems is
mainly on traditional cryptographic schemes such as RSA and ECC. For ex-
ample, in ECC based systems, one generally derives security from a discrete
logarithm problem posed over the curve group. That is, one constructs some
private value d and performs the operation

Q = d � P

for a public point P . For large enough curve groups, reversal of this operation
is intractable and hence one can transmit Q without revealing d. A multitude
of side-channel attacks against implementations of this primitive have been pro-
posed. An equally large range of innovative countermeasures mean that when
correctly implemented, the threats can generally be at least managed and pos-
sibly nulli�ed.

Newer primitives such as XTR have received some investigation [22, 15], but
there has been no previous work on the side-channel security of pairing based
cryptography [11]. Since pairings, formally described as bilinear maps, underpin
cryptographic protocols such as Identity Based Encryption (IBE) [9], one might
see them as an ideal application for the same identity aware, ubiquitous comput-
ing devices that are vulnerable to side-channel attack. One reason for this lack
of analysis is the fact that early implementation techniques for computing the
Tate pairing such as the BKLS algorithm [7] are e�ectively realised as a point
multiplication with a �xed multiplier and some auxiliary operations to compute
the pairing value. From such a description, the fact that the algorithm performs
a �xed sequence of operations and has no secret in a conventional sense has led
people to believe that the pairing is secure against current side-channel attack
methods. In part, this is true. However, the role of the pairing in associated pro-
tocols is somewhat di�erent and much more diverse than point multiplication in
ECC: it isn't enough to consider the new primitive in the context of traditional
attack methods.

Field Field Polynomial Curve Order MOV security

F379 t79 + t26 + 2 Y 2 = X3 �X � 1 379 + 340 + 1 750
F397 t97 + t12 + 2 Y 2 = X3 �X + 1 (397 + 349 + 1)=7 906
F3163 t163 + t80 + 2 Y 2 = X3 �X � 1 3163 + 382 + 1 1548
F3193 t193 + t12 + 2 Y 2 = X3 �X � 1 3193 � 397 + 1 1830
F3239 t239 + t24 + 2 Y 2 = X3 �X � 1 3239 � 3120 + 1 2268
F3353 t353 + t142 + 2 Y 2 = X3 �X � 1 3353 + 3177 + 1 3354

Table 1. A table of �eld de�nitions and curve equations used in pairing based cryp-
tography.

To bridge the resulting gap, in this paper we present an investigation of pair-
ings and associated protocols in terms of their security against fault attacks and
side-channel analysis. Although one can parameterise pairing based protocols
according to a large number of options we try to consider general cases, o�er-
ing concrete examples when discussing speci�c issues. Furthermore, we consider
both software and hardware implementation given that di�erent methods may
be used to realise each.

We organise our work by �rst presenting a brief introduction to pairings and
algorithms for their evaluation in Section 2. We then investigate applications
of active, fault injection attacks against the Duursma-Lee algorithm and the
Baek-Zheng (t; n)-threshold decryption scheme in Section 3. In Section 4 we
then present a method of passive side-channel attack and associated defence
techniques, focusing on Boneh-Franklin [9] encryption. Finally, we present some
concluding remarks in Section 5.

2 An Introduction to Pairings

To ease description in the context of side-channel analysis, we use the concrete
example of pairings where the base �eld is of characteristic three, i.e. Fq where
q = 3m. Although most of our results translate easily to situations where other
�elds are used, selecting characteristic three allows us to present and consider a
uni�ed description of all known methods of pairing evaluation.

Let E be an elliptic curve over a �nite �eld Fq , and let O denote the identity
element of the associated group of rational points E(Fq). We include a table
of suitable curve parameterisations in Table 1. For a positive integer lj#E(Fq)
coprime to q, let Fqk be the smallest extension �eld of Fq which contains the l-th

roots of unity in Fq. Also, let E(Fq)[l] denote the subgroup of E(Fq) of all points
of order dividing l, and similarly for the degree k extension of Fq . To unify the
notation used in most protocols, we use three groups G 1 , G 2 and G 3 . The groups
G 1 and G 2 will always be subgroups of elliptic curve groups, whereas the group
G 3 is a subgroup of the multiplicative group of a �nite �eld. In all the schemes
we consider here, we set G 1 = G 2 and assume that the pairing internally distorts
the inputs provided into the required groups.

The Reduced Tate Pairing From an eÆciency perspective, k is usually chosen
to be even [7]. For a thorough treatment of the following, we refer the reader
to [7] and also [12], and to [25] for an introduction to divisors. The reduced Tate
pairing of order l is the map

el : E(Fq)[l]�E(Fqk)[l]! F
�

qk =(F
�

qk)
l;

given by el(P;Q) = fP;l(D). Here fP;l is a function on E whose divisor is equiva-
lent to l(P)�l(O),D is a divisor equivalent to (Q)�(O), whose support is disjoint
from the support of fP;l, and fP;l(D) =

Q
i fP;l(Pi)

ai , where D =
P

i aiPi. It
satis�es the following properties:

{ For each P 6= O there exists Q 2 E(Fqk)[l] such that el(P;Q) 6= 1 2
F�qk =(F

�

qk)
l (non-degeneracy).

{ For any integer n, el([n]P;Q) = el(P; [n]Q) = el(P;Q)
n for all P 2 E(Fq)[l]

and Q 2 E(Fqk)[l] (bilinearity).

{ Let L = hl. Then el(P;Q)
(qk�1)=l = eL(P;Q)

(qk�1)=L.
{ It is eÆciently computable.

The non-degeneracy condition requires that Q is not a multiple of P , i.e. that Q
is in some order l subgroup of E(Fqk) disjoint from E(Fq)[l]. When one computes
fP;l(D), the value obtained belongs to the quotient group F�qk =(F

�

qk)
l, and not

F�qk . In this quotient, for a and b in F�qk , a � b if and only if there exists c 2 F�qk

such that a = bcl. Clearly, this is equivalent to

a � b if and only if a(q
k
�1)=l = b(q

k
�1)=l;

and hence one ordinarily uses this value as the canonical representative of each
coset. The isomorphism between F�qk =(F

�

qk)
l and the elements of order l in F�qk

given by this exponentiation makes it possible to compute fP;l(Q) rather than
fP;l(D). In fact we can consider the Tate pairing as a pairing of the groups
G 1 � G 2 ! G 3 , with G 1 = G 2 = E(Fqk)[l] and G 3 = �l � Fqk , the group of l-th
roots of unity.

The BKLS [7] algorithm takes advantage of this fact to evaluate the pairing
using Miller's algorithm but without the costly denominators. Using this algo-
rithm, we operate on tuples we call T-points such that (P; �) 2 G 1 � G 3 . We
then de�ne addition of these objects

(P3;
) = (P1; �) + (P2; �)

using Algorithm 1. Note that this is essentially normal point addition with some
auxiliary operations to compute
 and that a method for tripling T-points fol-
lows directly from the above. We use tripling rather than doubling because the
eÆciency of cubing in Fq allows a particularly concise point tripling formula; in
other characteristics doubling would obviously be more appropriate. Also note
as mentioned above, we can ignore the division by V (xP3 ; yP3) which vastly
accelerates evaluation.

Algorithm 1: An algorithm for adding T-points within BKLS evaluation.

Input : T-point P1 = (P1; �), point P2 = (P2; �)

Output : T-point P3 = (P3;
) = P1 + P2

1 P3 P1 + P2

2 let L(X;Y) = 0 denote the line through P1 and P2

3 if P3 6= O then

4 let V (X;Y) = 0 denote the line through P3 and O
5 else

6 let V (X;Y) = 1 denote the line through P3 and O

7

����L(xP3 ;yP3)

V (xP3 ;yP3)

8 return (P3;
)

Algorithm 2: The Duursma-Lee algorithm.

Input : point P = (x1; y1), point Q = (x2; y2)

Output : fP (�(Q)) 2 F
�

q6 =F
�

q3

1 f 1
2 for i = 1 to m do

3 x1 x31
4 y1 y31
5 � x1 + x2 + b
6 � �y1y2� � �2

7 g �� ��� �2

8 f f � g
9 x2 x

1=3
2

10 y2 y
1=3
2

11 return f

Once the requisite tripling and addition methods as constructed for T-points,
to compute the pairing we simply perform the equivalent of a point multiplication
of P using these methods in place of conventional ECC point arithmetic and the
curve order as the multiplier. At the end of this multiplication, we will have
calculated (O;
) such that when we power
 by (qk � 1)=l we have the result
we want.

The Modi�ed Tate Pairing Duursma and Lee introduced their algorithm
in the context of pairings on a family of hyperelliptic curves. Restricting to the
elliptic curve case, it applies to a family of supersingular curves in characteristic
three, including those in Table 1.

Let q = 3m and E(Fq) : Y
2 = X3�X + b, with b = �1, and let P = (x1; y1)

and Q = (x2; y2) be points of order l. Let Fq3 = Fq [�]=(�
3 � � � b), with b =

�1 depending on the curve equation, and let Fq6 = Fq3 [�]=(�
2 + 1). Then the

modi�ed Tate pairing on E is the mapping fP (�(Q)) where � : E(Fq)! E(Fq6)
is the distortion map �(x2; y2) = (� � x2; �y2). The method for computing this

is shown in Figure 2, noting that the �nal result is powered by q3 � 1 to form a
compatible result with the BLKS method.

3 Active Attacks

3.1 A Faulty Duursma-Lee Algorithm

Recovering a Secret Point Given the secret point P = (x1; y1) and Q =
(x2; y2), a point chosen by the attacker, assume for the moment that we can
eliminate the �nal powering. Let e� denote pairing via the Duursma-Lee algo-
rithm where through tampering we induce some transient fault and replace the
loop bound m with �. This could be achieved by using glitch attack [4, 19] to
tamper with the loop test and branch mechanism, or given that the Duursma-
Lee algorithm is essentially parameterised by m given the right �eld arithmetic
and that m is therefore likely to be held in memory somewhere, by selectively
provoking errors in memory or registers [26, 5]. In this latter case, it may even by
feasible to mount bu�er-over
ow type attacks to change the value of m. Given
this ability, instead of producing a product of polynomials of the form

mY
i=1

h
(�y3

i

1 � y
1=3i�1

2 � � (x3
i

1 + x
1=3i�1

2 + b)2)� (x3
i

1 + x
1=3i�1

2 + b)�� �2
i

the algorithm instead produces

�Y
i=1

h
(�y3

i

1 � y
1=3i�1

2 � � (x3
i

1 + x
1=3i�1

2 + b)2)� (x3
i

1 + x
1=3i�1

2 + b)�� �2
i

for some value � and remembering that for now, we ignore the �nal powering.
If we were able to induce a fault so that � = m+1, for example by glitching

the loop iteration so it executes once too often, then recovering the secret point
it trivial: we compute two pairings, one correct and one tampered with

R1 = em(P;Q)
R2 = em+1(P;Q) :

If we use g(i) to denote the i-th factor of a product produced by the Duursma-Lee
algorithm, by dividing the two results above we are left with a single factor

g(m+1) = (�y3
m+1

1 � y
1=3m

2 �� (x3
m+1

1 + x
1=3m

2 + b)2)� (x3
m+1

1 + x
1=3m

2 + b)�� �2:

Since we have that
z3

m

= z1=3
m

= z

for all elements z 2 Fq , we can extract x1 or y1, given that we know x2 and y2,
and hence reconstruct the secret point.

However, the ability to selectively induce a fault so � = m+1 seems tenuous.
It is far more realistic to assume that we can induce � = m � r for random,

unknown values of r. Using this ability, we calculate many erroneous pairing
value with the aim of collecting a pair

R1 = em�r(P;Q)
R2 = em�r+1(P;Q) ;

so that we are again left with a single term of the product g(m�r+1) and can
hence run a similar method as above although needing to compensate for the
di�ering powers of x1; y1; x2 and y2 introduced by r.

The problem with this approach is detecting when we have induced faults
with the correct � values for use. This is also quite an easy task. Since the
algorithm is straight-line and takes a �xed number of operations, given the time
taken to compute the pairing or a power pro�le, it seems simple to work out
how many loop iterations were performed in the same way that one can observe
and count the sixteen rounds of DES. Given the value of r, this approach will
deterministically recover the correct value of P and requires reasonably few
invocations of the pairing on the target device due to a similar argument as the
birthday paradox: we simply keep provoking random faults until we recover a
pair of results that satisfy our conditions.

Reversing the Final Powering The remaining problem then, is to reverse
the �nal powering which takes the output of the pairing function and produces a
unique representative for the coset in F�qk =(F

�

qk)
l. To reverse this operation given

the result

R = e(P;Q)

we want to recover S, the value that was computed by the algorithm before the

�nal powering so that R = S(qk�1)=l. For the Duursma-Lee method shown in
Algorithm 2, this simpli�es to R = Sq

3
�1. It is clear that given R, the value of S

is not uniquely determined, but only up to a non-zero factor in Fq3 . Indeed, for

non-zero c 2 Fq3 we have cq
3
�1 = 1. Furthermore, given one solution S 2 Fq6 to

Xq3�1�R = 0, all others are of the form c �S for non-zero c 2 Fq3 . As an aside,
note that this is similar to the T2 compression and decompression mechanism of
Rubin and Silverberg [23].

However, given the attack description above we are not trying to reverse the
powering on the full product of factors computed by the Duursma-Lee algorithm,
rather only one of these factors which has a fairly special form. That is, given

R =
R2

R1
=
em�r+1(P;Q)

em�r(P;Q)
= gq

3
�1

(m�r+1)

we want to recover g(m�r+1) which will, in turn, allow us to recover the correct
x1 and y1 for the secret point.

We therefore need a method to compute one valid root of R = gq
3
�1 for

some factor g, and then derive the correct value of g from amongst all possible

solutions. The �rst problem can be solved very eÆciently as follows: multiply
the equation Xq3�1 �R = 0 by X to obtain

Xq3 �R �X = 0 ;

and note that the operatorXq3�R�X is a linear operator on the two dimensional
vector space Fq6 =Fq3 . Since Fq6 �= Fq3 [�]=(�

2 � 1) we can write X = x0 + �x1
and R = r0 + �r1, with x0; x1; r0; r1 2 Fq3 . Using this representation, we see
that the above equation is equivalent to

M �X =

�
1� r0 r1
r1 1 + r0

��
x0
x1

�
= 0 :

The kernel of the matrix M is a one-dimensional vector space over Fq3 and thus

provides all the solutions to Xq3�1 �R = 0.
To choose the correct root amongst all q3�1 possibilities, we use the speci�c

form of the factors in the product computed in the Duursma-Lee algorithm.
Indeed, each factor g is of the form

g = g0 + g1�� �2 + g2� ;

with g0; g1; g2 2 Fq . To recover g from R = gq
3
�1, we �rst obtain g0 = c � g for

some c 2 Fq3 using the root �nding algorithm above, and then compute c�1 and
thus g itself. Again this boils down to a simple linear system of equations: by
multiplying g0 with an appropriate factor in Fq3 , we can assume that g0 is of the
form g0 = 1 + (g00 + g01� + g02�

2)�. Let d = c�1 = g=g0 2 Fq3 , then d clearly is
of the form d = d0 + d1� � �2. To determine d0; d1 2 Fq , we use the fact that
the terms �� and �2� do not appear in g. This �nally gives the following linear
system of equations:

�
g01 g

0
0 + g02

g02 g01

��
d0
d1

�
=

�
g01 + g02
g00 + g02

�
:

An Example To make this a little clearer, we present an example attack using
the described method. Assume that we want to discover the secret point P =
(x1; y1), are granted control of Q = (x2; y2), and receive results from the faulty
pairing Ri = e�(P;Q). We perform many executions of the pairing, invoking
di�erent errors until we recover two values

Rj = em�r(P;Q)
Rk = em�r+1(P;Q):

For the sake of concreteness but without loss of generality, let us assume that
m = 97, i.e. q = 397, and r = �7 which gives

Rj = e90(P;Q)
Rk = e91(P;Q):

Since we observed the calculation of Rj and Rk, either by timing the operation
of monitoring some other side-channel, we can tell how many loop iterations
were performed in the Duursma-Lee algorithm and hence the value of r. Given
this information, we next compute

R = Rk

Rj
= gq

3+1
(91)

which is the 91-st term of the product produced by the Duursma-Lee algorithm
including the �nal powering. This �nal powering is then removed and the correct
g value recovered as described above so that we are left only with

g(91) = (�y3
91

1 � y
1=390

2 � � (x3
91

1 + x
1=390

2 + b)2)� (x3
91

1 + x
1=390

2 + b)�� �2:

From this polynomial we can clearly extract the coeÆcients

x3 = x3
91

1 + x
1=390

2

y3 = y3
91

1 � y
1=390

2

given that we know b. We also know x2 and y2 so by computing the values x
1=390

2

and y
1=390

2 , possible since we also know r, we can eliminate these terms from x3
and y3 to leave

x3 = x3
91

1

y3 = y3
91

1 :

Finally, since for all z 2 F397 we have z = z3
97

, if we power x3 and y3 by 36, we
are produce

x3 = x1
y3 = y1

which recovers the secret point. In the above example alterations to the process
clearly need to be made for di�erent situations but the attack clearly works
against any randomly provoked value of r.

3.2 Baek-Zheng (t; n)-Threshold Decryption

Attack Description Baek and Zheng [6] proposed a method for (t; n)-threshold
decryption that is based on extensive use of pairings; we provide an overview
of this scheme in the Appendix. The basic idea is that a central entity, termed
the authorised dealer, is granted a private key associated with his identity by a
trusted authority. He then runs an algorithm to share this private key between n
decryption servers with the servers storing their key share and the corresponding
veri�cation key: the private key shares are kept secret, the veri�cation key shares
are published.

Anyone can encrypt a message to the authorised dealer using his identity
as the public key. When an authorised delegate of the trusted dealer wants to
decrypt such a message, they give the ciphertext to each decryption server and

get back a decryption share. By recombining at least t of these shares, the original
message is recovered.

In short, an attacker can feed as many chosen ciphertexts as they want to each
decryption server and get back decryption shares. This is the part of scheme that
is vulnerable to attack. In a simpli�ed form, a given decryption server computes
the values

a = e(S;U)

b = e(R;U)

c = e(R;P)

where S is the key share the attacker would like to recover, R is a random
unknown element in G 1 and P is a public generator of G 2 . The value of U is
parsed from the ciphertext C = (U; V;W) and is hence under control of the
attacker. Having computed these values, the server returns the tuple (a; b; c) as
well as some other values to the attacker.

If we assume the attacker can provoke faults in the �rst of the pairings, then
we are in the case where we control one input to the pairing, the other input
is secret and we get the result back. Hence, we can run the attack described
previously and recover S, the key share for each server. Even if the original
secret key cannot be recovered, the attacker can decrypt any message since he
knows everything that each decryption server does.

Defence via Improved Design This is hardly a devastating attack since it
is somewhat unrealistic to assume that the attacker could provoke faults in the
pairing given that the server is only remotely accessible. However, it does hint
that the transmission or raw pairing values to an attacker who has provided
the input could generally be seen as bad design practise. For example, Boneh-
Franklin encryption is saved from the same attack because raw pairing values
are never transmitted: they �rst pass through a hash function which masks their
actual form. This seems the only strong defence against the fault attack that does
not depend on taking the obvious route of preventing the fault using hardware
assistance.

Using Point Blinding Techniques If raw pairing values really need to be
transmitted, one can utilise the point blinding techniques described in Section 4
to construct a defence mechanism. Such techniques apply a blinding factor to
one or both of the input points before the pairing and eliminate this factor
afterwards. If we blind the point under control of the attacker, any tampering
with the pairing will cause the un-blinding phase to essentially produce a random
result.

4 Passive Attacks

4.1 Boneh-Franklin Encryption

Attack Description Considering Boneh-Franklin encryption [9], as outlined
brie
y in the Appendix, we see that the pairing is applied once during encryption
and once during decryption. During encryption, the pairing operates only on
public values and furthermore, the result may be pre-computed by the sender
for each recipient of encrypted messages. This operation is therefore unsuitable
for manipulation by the attacker.

However, the recipient of a ciphertext C = (U; V) from the attacker must use
their private key SID to decrypt the corresponding message. This information
is fed into the pairing to compute

M = V �H2(e(SID; U)):

In this case an attacker can control one of the points supplied to the pairing,
i.e. the value of U , while the other is both �xed and private. Furthermore, since
the attacker controls the value of C he can prompt repeated executions of the
pairing, adapting his input as required. For example, a smart-card implementing
the Boneh-Franklin scheme might be repeatedly asked by the attacker to decrypt
di�erent messages that he has constructed so that monitoring the decryption
yields information: assuming SID = (x1; y1) is the secret point and U = (x2; y2)
is controlled by the attacker, manipulating y2 to recover y1 would allow the
attacker to reconstruct SID.

To recover the private key SID, the attacker must monitor an operation that
combines it in some way with the controlled point U . Thus, through understand-
ing of said operation and manipulation of the controlled point, he can reveal the
value of the secret point. Such an operation is clearly accessible in Step 6 of
Algorithm 2, the Duursma-Lee algorithm, where one computes the product of
y1 and y2. Similarly, in the BKLS algorithm, one needs to compute a product
when updating the pairing value during a tripling operation

 =
3 � (a � xP1 + b+ yP1)

where a and b are derived from the coordinates of one input point and xP1 and
yP1 from the other. The product a � xP1 thus has one operand derived from SID
and one from U . Careful analysis of how these values are derived followed by
control of U allows a route of attack to be established.

SPA-like Attack In the most naive situation where the �eld multiplication is
implemented using the shift-and-add method, one can mount an attack by mon-
itoring execution in the same way as one would monitor binary exponentiation.
Simply put, if a shift-and-add multiplication algorithm is employed and y1 is
used as the multiplier, the multiplication can be attacked using SPA analysis to
spot where the conditional add operations take place.

Algorithm 3: A Messerges style DPA attack to reveal SID = (x1; y1) by
guessing y1 one bit at a time.

set yg to 0
set Shi and Slo to empty
for i = 0 to n� 1 do

guess the i-th bit of yg to one
for k = 0 to r � 1 do

select at random U = (xu; yu) and V = (xv; yv)
calculate X = yg � yu
use smart-card to decrypt C = (U; V), collect power signal Sk[j]
if the i-th bit of X is 1 then

add Sk[j] to Shi
else

add Sk[j] to Slo

average power signals to get DPA bias D[j] = Shi[j]� Slo[j]
if DPA bias signal has a spike then

the guess was right: set i-th bit of yg to 1
else

the guess was wrong: set i-th bit of yg to 0

reconstruct xg from yg and return SID = (xg; yg)

Although clearly viable given some assumptions about the implementation,
there are a number of drawbacks to this approach. For example, in characteristic
three the shift-and-add method performs an addition when the current multi-
plier coeÆcient is equal to one and a subtraction when it is equal to two. Since
the attacker is unlikely to be able to distinguish between an addition and a sub-
traction, SPA analysis of the operation trace will only yield the fact that a given
coeÆcient is either zero or non-zero rather than the actual magnitude.

DPA-like Attack A method for revealing one operand of an integer multi-
plication given knowledge of the other is presented by Messerges [20][Page 93]
in the context of an attack against ECDSA. It is easy to see how an analogue
would apply in the case of �nite �elds and where instead of one operand being
produced by the algorithm, as in ECDSA where the r in r � d is an output, it is
under control of the attacker as an input. Algorithm 3 outlines such an attack,
guessing the value of y1 one bit at a time and using a correlation with the power
output of the smart-card as an indicator to tell if the guess is correct. In this
description we use n to denote the length of y1 and r to represent a limit on
the number of runs of decryption on the smart-card. Note that unlike the SPA
method where characteristic three seems troublesome, this attack is easily ex-
tended to cope by considering a �eld element as simply represented by a set of
bits and guessing each one in turn.

Using Point Multiplication and Bilinearity A general method of defending
against both the SPA and DPA attacks is to use the concept of point blinding

to randomise the points fed into the pairing. By randomising the points on each
invocation of the pairing, the attacker can no longer perform any correlation
between successive runs in a DPA-like attack and any successful analysis of a
single run using an SPA-like attack will simply yield the randomised rather than
secret data. Since we know that the relationship

e(a � P; b �Q) = e(P;Q)a�b

holds, we can randomise the points P and Q by selecting random values for a
and b. Although this results in an additional factor of a � b in the exponent of
the result, we can eliminate this by careful selection of a and b such that

a � b = 1 (mod l):

If one cannot accept the cost of a GCD-like operation to compute arbitrary
random a and b pairs of the right form, it is possible to employ a deterministic
update procedure akin to traditional point blinding. One computes and stores
two random pairs such that

a � b = 1 (mod l)
c � d = 1 (mod l):

This is only ever done once, perhaps when the device is initialised. Updating a
and b can then be achieved by multiplication with c and d

a a � c (mod l)
b b � d (mod l)

which only costs two �eld multiplications per update and retains the fact that
a�b = 1 mod l. In summary, the defence costs two additional point multiplications
and two �eld multiplications to instrument.

Altering Traditional Point Blinding Traditional point blinding for ECC
has the host device store two extra points that are retained across invocations of
the point multiplication algorithm. Given a secret multiplier d, the card stores a
random point R and the point S = d �R. The point multiplication d � P is then
computed as

d � P = d � (P +R)� S

so that the point fed into the multiplication routine is randomly blinded by �rst
addingR with the result recovered by subtracting S. Considering the relationship

e(P;Q+R) = e(P;Q) � e(P;R)

we can apply an augmented point blinding technique to the pairing so that
the controlled point is again randomised before use. For the DPA-like attack
described above, this seems suÆcient defence since by randomising the control
point, the attack can no longer correctly compute the multiplication oracle that
drives DPA selection.

Assuming P is the secret point, Q is the point controlled by the attacker that
we want to randomise, R is a random point and S = e(P;R)�1, we apply the
map as

e(P;Q) = e(P;Q+R) � S:

By blinding Q, the point under control of the attacker, we e�ectively remove
this control and hence defeat any attack based on it: the attacker can no longer
reason about internal operation based on the point they sent into the pairing.

Since P and R are known to the device at initialisation, we can store the point
R and �eld element S in order to implement the method. Using this technique,
the overhead in performance is equal to one point addition and a �eld multi-
plication in G 3 . However, the issue of updating the blinding variables presents
a drawback. Updating R and S is performed before or after the multiplication
routine is executed in order to provide changing and hopefully non-deterministic
blinding factors to the real point. In the traditional blinding defence, one might
perform the following update operations

b f�2;+2g

R b �R

S b � S:

That is, one doubles the points and may randomly also invert them, although
this is inexpensive. However, this simple form of update has been shown to
be vulnerable to attack [21]. Furthermore, in our case we need to perform the
operations

b f�2;+2g

R b �R

S Sb:

Squaring a �eld element is reasonably inexpensive but in order to accommodate
both potential values of b, we need to store some extra information so that inver-
sion is equally inexpensive. To do this, we can use a technique in characteristic
three where a fractional representation of G 3 renders inversion inexpensive [13]
or simple store and update the value S�1 along with S if there is enough space.

5 Conclusion

We have presented the �rst investigation into the security of pairing based cryp-
tography against side-channel attack. Although the use of pairings in the sorts of
environment where side-channel attack is most prevalent is still some way o�, the
coupling of identity based cryptography with identity aware devices seems very
attractive. Naive early assumptions about the security of pairings in this setting
were as a result of directly applying existing knowledge of RSA and ECC vul-
nerabilities. However, since the use of pairings represents a vastly di�erent and
more diverse problem from that in more conventional systems, it is important to

also consider new methods of attack. Our results show that although vulnerabil-
ities do inevitably exist, creative use of the bilinearity property of pairings and
sensible implementation methods help to minimise such risk with low overhead.

There are clearly many other areas that could be followed up in light of this
work. The diverse way in which pairings are used in comparison to conventional
exponentiation in RSA or ECC means that vulnerabilities are equally as diverse
in their manifestation:

Further passive attacks The signature scheme of Hess presents an additional
avenue of attack related to conventional point multiplication: �nding an unknown
point given control of the multiplier. That is, can one discover P by monitoring
the execution of the operation d � P where d is known and controlled by the at-
tacker. This is clearly di�erent from conventional attacks on point multiplication
in the context of ECC since there, d is the secret and P is typically known and
only potentially controllable. As well as the scheme of Hess, this problem also
relates to several of our countermeasures so at least seems worth investigating
further.

Further active attacks Ciet and Joye [10] described two di�erent fault attacks
on ECC which work by computing point multiplications with invalid points and
erroneous �eld arithmetic. Translating these concepts to the context of pair-
ings seems interesting but diÆcult. For example, feeding invalid points into the
pairing generally causes it to become degenerate or produce garbage results. Ad-
ditionally, we need to consider two points, one of which is unknown and �xed:
it is not clear what would happen if the one under control of the attacker is not
on the expected curve.

Special point attacks Goubin [14] proposed an attack on ECC point multi-
plication whereby special points were fed into the implementation. These points
trigger errors in execution that, when carried through to the result, reveal infor-
mation about the internal operation and hence private information. This method
was later enhanced by Akishita and Takagi [1]. Although such attacks are easily
countered [27] it seems interesting to consider what happens when a similar ap-
proach is used for points fed into the pairing. Clearly the attacks do not apply
directly: there is no secret scalar multiplier to reveal by using so called special
points. However, it is not clear what happens if either input to the pairing is a
special point in some more pairing-speci�c sense.

Acknowledgements

The authors would like to thank Steven Galbraith, Rob Granger, Nigel Smart
and Martijn Stam for invaluable help and discussion throughout the course of
this work.

References

1. T.Akishita and T. Takagi. Zero-Value Point Attacks on Elliptic Curve Cryptosys-
tem. In Information Security Conference (ISC), Springer-Verlag LNCS 2851,
218{233, 2003.

2. D. Agrawal, B. Archambeault, J.R. Rao and P. Rohatgi. The EM Side-Channel(s).
In Cryptographic Hardware and Embedded Systems (CHES), Springer-Verlag LNCS
2523, 29{45, 2002.

3. D. Agrawal, J.R. Rao and P. Rohatgi. Multi-channel Attacks. In Cryptographic
Hardware and Embedded Systems (CHES), Springer-Verlag LNCS 2779, 2{16,
2003.

4. R.J. Anderson and M.G. Kuhn. Low Cost Attacks on Tamper Resistant Devices. In
International Security Protocols Workshop (IWSP), Springer-Verlag LNCS 1361,
125{136, 1997.

5. H. Bar-El, H. Choukri, D. Naccache, M. Tunstall and C. Whelan. The Sorcerer's
Apprentice Guide to Fault Attacks, In Cryptology ePrint Archive, Report 2004/10,
2004.

6. J. Baek and Y. Zheng. Identity-Based Threshold Decryption. In Public Key
Cryptography (PKC), Springer-Verlag LNCS 2947, 262{276, 2004.

7. P.S.L.M. Barreto, H. Kim, B. Lynn and M. Scott. EÆcient Algorithms for Pairing-
Based Cryptosystems. In Advances in Cryptology (CRYPTO), Springer-Verlag
LNCS 2442, 354{368, 2002.

8. D. Boneh and D. Brumley. Remote Timing Attacks Are Practical. In 12th USENIX
Security Symposium, USENIX Press, 2003.

9. D. Boneh and M. Franklin. Identity-Based Encryption from the Weil Pairing. In
SIAM Journal on Computing, Volume 32, no. 3, 586-615, 2003.

10. M. Ciet and M. Joye. Elliptic Curve Cryptosystems in the Presence of Permanent
and Transient Faults. To appear in Designs, Codes and Cryptography, 2004.

11. R. Dutta, R. Barua and P. Sarkar, Pairing-Based Cryptographic Protocols : A
Survey. In Cryptology ePrint Archive, Report 2004/064, 2004.

12. S. Galbraith, K. Harrison and D. Soldera. Implementing the Tate pairing. In
Algorithmic Number Theory Symposium (ANTS-V), Springer LNCS 2369, 324{
337, 2002.

13. R. Granger, D. Page and M. Stam. On Small Characteristic Algebraic Tori in
Pairing-Based Cryptography. In Cryptology ePrint Archive, Report 2004/132,
2004.

14. L. Goubin. A Re�ned Power-Analysis Attack on Elliptic Curve Cryptosystems. In
Public Key Cryptography (PKC), Springer-Verlag LNCS 2567, 199{210, 2003.

15. D-G. Han, J. Lim, and K. Sakurai. On Insecurity of the Side Channel Attack on
XTR. In Symposium on Cryptography and Information Security (SCIS), 2004.

16. F. Hess. EÆcient Identity Based Signature Schemes Based on Pairings. In Selected
Areas in Cryptography (SAC), Springer-Verlag LNCS 2595, 310{324, 2003.

17. P.C. Kocher. Timing Attacks on Implementations of DiÆe-Hellman, RSA, DSS,
and Other Systems. In Advances in Cryptology (CRYPTO), Springer-Verlag LNCS
1109, 104{113, 1996.

18. P.C. Kocher, J. Ja�e and B. Jun. Di�erential Power Analysis. In Advances in
Cryptology (CRYPTO), Springer-Verlag LNCS 2139, 388{397, 1999.

19. O. K�ommerling and M.G. Kuhn. Design Principles for Tamper-Resistant Smart-
card Processors. In USENIX Workshop on Smart Card Technology, 9{20, 1999.

20. T. Messerges. Power Analysis Attacks and Countermeasures for Cryptographic
Algorithms. PhD Thesis, University of Illinois, 2000.

21. K. Okeya and K. Sakurai. Power Analysis Breaks Elliptic Curve Cryptosys-
tems Even Secure Against the Timing Attack. In Progress in Cryptology (IN-
DOCRYPT), Springer-Verlag LNCS 1977, 178{190, 2002.

22. D. Page and M. Stam. On XTR and Side-Channel Analysis. To appear in Selected
Areas in Cryptography (SAC), 2004.

23. K. Rubin and A. Silverberg. Torus-Based Cryptography. In Advances in Cryptology
(CRYPTO), Springer-Verlag LNCS 2729, 349{365, 2003.

24. M. Scott and P. Barreto. Compressed Pairings. To appear in Advances in Cryp-
tology (CRYPTO), 2004.

25. J. Silverman. The Arithmetic of Elliptic Curves. Springer-Verlag GTM 106, 1986.

26. S.P. Skorobogatov and R.J. Anderson. Optical Fault Induction Attacks. In Cryp-
tographic Hardware and Embedded Systems (CHES), Springer-Verlag LNCS 2523,
2{12, 2002.

27. N.P. Smart. An Analysis of Goubin's Re�ned Power Analysis Attack. In Cryp-
tographic Hardware and Embedded Systems (CHES), Springer-Verlag LNCS 2779,
281{290, 2003.

Appendix: An Overview of Pairing Based Protocols

For convenience, we present an overview of the two main pairing based protocols
that are referred to in the body of the paper. In order to achieve a uni�ed notation
for the schemes, and hence make our analysis easier, these descriptions may di�er
slightly from the original papers.

All the schemes rely on the existence of three groups G 1 , G 2 and G 3 all of
order l, that are additive and multiplicative respectively and are selected by the
Trust Authority (TA). In all cases we can actually take G 1 = G 2 and de�ne a
bilinear map

e : G 1 � G 1 ! G 3

and select some generator P 2 G 1 . Finally, we select a number of cryptographic
hash functions with the following signatures

H1 : f0; 1g
� ! G

�
1

H2 : G 3 ! f0; 1g
N

H3 : f0; 1g
� � G 3 ! Z

�
l :

for some value N and a few extra ones for the Baek-Zheng scheme

H4 : G 3 ! f0; 1g
N

H5 : G
�
1 � f0; 1g

N ! G
�
1

H6 : G 3 � G 3 � G 3 ! Z
�
l

where l is the length of a plaintext.

5.1 Boneh-Franklin Encryption [9]

Setup Generate a random master secret s 2 Z�
l and set PTA, the public key of

the TA, to be s � P .

Extract De�ne the public key for ID as PID = H1(ID) and return the private
key SID = s � PID.

Encrypt Select some random r 2 Z�
l and construct the ciphertext for a message

M as the pair
C = (r � P;M �H2(e(PID ; PTA)

r):

Decrypt Given the ciphertext parsed as C = (U; V), compute

M = V �H2(e(SID; U)):

5.2 Baek-Zheng (t; n)-Threshold Decryption [6]

Setup Generate a random master secret s 2 Z�
l and set PTA, the public key of

the TA, to be s � P .

Extract Given an identity ID, the algorithm computes the corresponding public
key as PID = H1(ID) and then returns the private key SID = s � PID.

Distribution Given a private key SID, n decryption shares and a threshold
parameter 1 � t � n < q, the algorithm select elements

R1; R2; : : : ; Rt�1 2R G
�
1

and computes

F (u) = SID +

t�1X
j=0

uj �Rj

for u 2 f0g [N. It then computes a private key for server �i as Si = F (i) and
veri�cation key yi = e(P; Si) for 1 � i � n. Finally, the algorithm distributes
the private key Si and veri�cation key yi to server �i before making yi public to
all parties.

Encrypt Given a plaintext M 2 f0; 1gN and an identity ID, the algorithm
selects some r 2R Z�

l and computes the public key PID = H1(ID) followed by
the value � = e(PID; PTA)

r. It then computes the values

U = r � P

V = H4(�)�M

W = r �H5(U; V)

and returns the ciphertext formed as the triple C = (U; V;W).

Decryption Share Generation Given a ciphertext parsed as C = (U; V;W)
and a private key Si from each decryption server, the algorithm computes h =
H5(U; V) and checks if the equality e(P;W) = e(U; h) holds. If the test holds

{ Calculate the following values

�i = e(Si; U)

~�i = e(Ti; U)

~yi = e(Ti; P)

�i = H6(�i; ~�i; ~yi)

Li = Ti + �i � Si

for previously selected Ti 2R G 1 .
{ Return Æi;C = (i; �i; ~�i; ~yi; �i; Li).

Otherwise

{ Return Æi;C = (i; \invalid ciphertext").

Decryption Share Veri�cation Given a ciphertext parsed as C = (U; V;W), a
set of veri�cation keys fy1; y2; : : : ; yng, and a decryption share Æi;C , the algorithm
computes h = H5(U; V) and checks if the equality e(P;W) = e(U; h) holds. If
the test holds

{ If Æi;C is of the form (i; \invalid ciphertext"), return \invalid share".
{ Otherwise parse Æi;C as (i; �i; ~�i; ~yi; �i; Li) and compute �i0 = H6(�i; ~�i; ~yi).

� Check if �i0 = �i, e(Li; U)=�
�i0
i = ~�i and e(Li; P)=y

�i0
i = ~yi.

� If the above tests hold, return \valid share"; otherwise return \invalid
share".

Otherwise

{ If Æi;C is of the form (i; \invalid ciphertext"), return \valid share"; otherwise
return \invalid share".

Share Combining Given a ciphertext C and a set of valid decryption shares
fdj;Cgj2� where j�j � t for the threshold t, the algorithm h = H5(U; V) and
checks if the equality e(P;W) = e(U; h) holds. If the test holds

{ Compute � =
Q

j2� �
c�0;j
j and return M = H4(�)� V .

Otherwise

{ Return \invalid ciphertext".

