
The Security of the FDH Variant of Chaum’s
Undeniable Signature Scheme ?

Wakaha Ogata1 and Kaoru Kurosawa2 and Swee-Huay Heng3

1 Tokyo Institute of Technology,
2-12-1 O-okayama, Meguro-ku,Tokyo, 152-8552 Japan

wakaha@craft.titech.ac.jp
2 Department of Computer and Information Sciences,

Ibaraki University,
4-12-1 Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan

kurosawa@cis.ibaraki.ac.jp
3 Multimedia University,

Jalan Ayer Keroh Lama, 75450 Melaka, Malaysia
shheng@mmu.edu.my

Abstract. In this paper, we first introduce a new kind of adversarial
goal called forge-and-impersonate in undeniable signature schemes. Note
that forgeability does not necessarily imply impersonation ability. We
then classify the security of the FDH variant of Chaum’s undeniable
signature scheme according to three dimensions, the goal of adversaries,
the attacks and the ZK level of confirmation and disavowal protocols. We
finally relate each security to some well-known computational problem.
In particular, we prove that the security of the FDH variant of Chaum’s
scheme with NIZK confirmation and disavowal protocols is equivalent
to the CDH problem, as opposed to the GDH problem as claimed by
Okamoto and Pointcheval.

Keywords: Undeniable signature, security analysis

1 Introduction

1.1 Background

The notion of undeniable signature schemes was introduced by Chaum and van
Antwerpen in 1989 [11]. Since then, there have been a wide range of research
covering a variety of different schemes for undeniable signatures. The validity or
invalidity of an undeniable signature can only be verified with the signer’s consent
by engaging interactively or non-interactively in a confirmation or disavowal
protocol respectively, as opposed to a digital signature in which its validity is
universally verifiable. Extended schemes possess variable degrees of security and
additional features such as convertibility [6, 15, 23], designated-verifier technique

? The proceedings version of this paper was presented at PKC 2005. This is an ex-
tended version.



[21], designated-confirmer technique [9], and so on. Among others, we also include
[8, 12, 19, 18, 17].

Undeniable signatures have various applications in cryptography such as in
licensing softwares, electronic voting and auctions. The most popular application
is in licensing softwares. For example, software vendors might want to sign on
their products to provide authenticity to their paying customers. Nevertheless,
they strictly disallow dishonest users who have illegally duplicated their softwares
to verify the validity of these signatures. Undeniable signature scheme plays an
important role here as it allows only legitimate users to verify the validity of the
signatures on the softwares.

The first proposal of undeniable signature which is based on the intractability
of the computational Diffie-Hellman (CDH) problem was due to Chaum and van
Antwerpen [11] and it was further improved by Chaum [8]. It is a simple and
nice scheme.

On the other hand, in general, each undeniable signature scheme may have
three variants of confirmation and disavowal protocols, namely, the perfect zero-
knowledge protocol (ZKIP), the 3-move honest-verifier zero-knowledge protocol
(HVZK) and the non-interactive zero-knowledge protocol (NIZK) with designated-
verifier technique.

However, the unforgeability of Chaum’s undeniable signature scheme (under
any types of confirmation and disavowal protocols) has been an open problem
for a long time. Recently, Okamoto and Pointcheval [24] considered the security
of the full-domain hash (FDH) [5, 13] variant of Chaum’s scheme with NIZK
confirmation and disavowal protocols. They claimed that its security is equivalent
to the gap Diffie-Hellman (GDH) problem in the random oracle model, where
one is allowed to use the decisional Diffie-Hellman (DDH) oracle to solve the
CDH problem.

1.2 Our Contributions

In this paper, we first introduce a new kind of adversarial goal called forge-and-
impersonate in undeniable signature schemes. In the past, the main adversarial
goal is forging and thus the most desirable security notion is the security against
existentially forgery under adaptive chosen message attack [20]. In the new ad-
versary model, the adversary not only attempts to forge but it also attempts
to impersonate a legitimate signer. More precisely, an adversary first forges a
message-signature pair and next executes a confirmation protocol with a veri-
fier, trying to convince the verifier that the signature is indeed valid. Note that
forgeability does not necessarily imply impersonation ability.

We then classify the security of the FDH variant of Chaum’s undeniable sig-
nature scheme according to three dimensions, the adversarial goals, the attacks
and the ZK level of confirmation and disavowal protocols. Finally, we prove the
equivalence between each security and some well-known computational problem
under various types of confirmation and disavowal protocols as shown in Table
1. However, we cannot solve the three cells marked “?” and it will be a further
work to make them clear.

2



Table 1. The Equivalence

forge (F) forge-and-impersonate (FI)
passive active passive active

ZKIP CDH ? ?
(Theorem 2)

HVZK CDH ? DLOG ≥ one-more DLOG
(Theorem 3) (Theorem 4) (Theorem 6)

NIZK CDH − DLOG or break PKS −
(Theorem 1) (Theorem 5)

*PKS denotes the verifier’s public key system

In our result, we also point out that the claim of Okamoto and Pointcheval as
mentioned at the end of Section 1.1 is wrong. Following our result from Theorem
1 which is indicated in Table 1, we show that the unforgeability of the FDH
variant of Chaum’s scheme with NIZK confirmation and disavowal protocols is
equivalent to the CDH problem, as opposed to the GDH problem as claimed by
them (cf. Claim 1). Further comments on their flaw will be given in Section ??.

Following is some explanation on Table 1. In the passive attack, the adversary
does not interact with the prover. What the adversary does is eavesdropping and
she is in possession of transcripts of conversations between the prover and the
verifier. In the active attack, the adversary gets to play the role of a cheating
verifier, interacting with the prover several times, in an effort to extract some
useful information before the forgery or forge-and-impersonate attempt. We re-
mark that if the scheme employs the NIZK confirmation and disavowal protocols
then it is not necessary to consider the active attack.

Meanwhile, there exists another security notion for undeniable signatures
called invisibility which was first introduced by Chaum et al. [12]. This notion
is essentially the inability to determine whether a given message-signature pair
is valid for a given user. We further prove the invisibility of the FDH variant of
Chaum’s scheme.

1.3 Organization

The remainder of this paper is organized as follows. In Section 2, we recall the
definitions for some computational problems and the definition for undeniable
signatures. We also describe the FDH variant of Chaum’s scheme and all the
confirmation and disavowal protocols associated with it. In Section 3, we present
a new adversary model for undeniable signatures. In Section 4, we elaborate on
how to classify the security of undeniable signatures. In Section 5, we analyze
and discuss the security of the FDH variant of Chaum’s scheme under various
confirmation and disavowal protocols comprehensively. In Section 6, we point
out the flaw in Okamoto and Pointcheval’s claim. In Section 7, we discuss the
invisibility of the FDH variant of Chaum’s scheme under various confirmation
and disavowal protocols. Finally, we conclude this paper in Section 8.

3



2 Preliminaries

2.1 Some Computational Problems

Let G be an Abelian group of prime order q, and let g be a generator of G. We
say that (g, gx, gr, gz) is a DH-tuple if z = xr mod q.

The DDH problem is to decide if (g, gx, gr, gz) is a DH-tuple. The CDH
problem is to compute gxr from (g, gx, gr). The GDH problem is to solve the
CDH problem with the help of a DDH oracle. (Informally, it means that the
CDH problem is hard but the DDH problem is easy.) The DLOG problem is to
compute x from gx.

We also briefly define the one-more DLOG problem as follows [3, 4]:
A one-more DLOG adversary is a randomized, polynomial time algorithm M
that gets input g and has access to two oracles, namely, a DLOG oracle that
given y ∈ G returns x ∈ Zq such that gx = y, and a challenge oracle that each
time it is invoked (it takes no inputs), returns a random challenge point y ∈ G.
We say that the adversary M wins if for arbitrary (polynomially bounded) t
challenge oracle access, it can find the DLOGs of all the challenges with at most
t− 1 (strictly less than t) DLOG oracle access.

2.2 Undeniable Signatures

We briefly review the concept of undeniable signatures introduced by Chaum
and van Antwerpen [11].

Definition 1. An undeniable signature scheme consists of the following two
polynomial time algorithms and two (possibly non-interactive) protocols between
a signer and a verifier.

– Key Generation. On input the security parameter 1k, the algorithm pro-
duces a pair of matching public and secret keys (pk, sk).

– Signing. On input a secret key sk and a message m, the algorithm returns
a signature σ.

– Confirmation Protocol. A protocol between a signer and a verifier such
that when given a message m, a signature σ and a public key pk, allows the
signer to convince the verifier that σ is indeed a valid signature on m for a
public key pk, with the knowledge of the secret key sk. If (m,σ) is invalid,
then no signer can prove it with non-negligible probability.

– Disavowal Protocol. A protocol between a signer and a verifier such that
when given a message m, a string σ and a public key pk, allows the signer
to convince the verifier that σ is an invalid signature on m for a public key
pk, with the knowledge of the secret key sk. If (m,σ) is valid, then no signer
can prove it with non-negligible probability.

In the existing literature, the unforgeability for undeniable signatures is sim-
ilar to the one for ordinary digital signatures, which is the notion of existential
unforgeability against adaptive chosen message attack [20]. The only difference

4



is that besides the signing oracle access, the forger of an undeniable signature
is also allowed to access to the confirmation/disavowal oracle. The confirma-
tion/disavowal oracle is simulated based on the types of attacks mounted, i.e.
passive attack and active attack.

Informally speaking, the forger is given the public key, and after some adap-
tive signing queries and confirmation/disavowal queries, the forger attempts to
produce a valid message-signature pair (m∗, σ∗) such that m∗ has never been
queried to the signing oracle. We say that the forger succeeds if it outputs
such a valid forgery (m∗, σ∗), or it queries a valid (m∗, σ∗) to the confirma-
tion/disavowal oracle such that m∗ has never been queried to the signing oracle.

2.3 The FDH Variant of Chaum’s Undeniable Signature Scheme

The FDH variant of Chaum’s scheme is described as follows. Let G be an Abelian
group of prime order q, and let g be a generator of G.

– Key Generation. On input the security parameter 1k, choose x ∈ Zq

randomly and compute y = gx. Choose a cryptographic hash function H :
{0, 1}∗ → G. Set the public key as (g, y,H) and the secret key as x.

– Signing. On input the public key (g, y,H), the secret key x and a message
m ∈ {0, 1}∗, the algorithm returns the signature as σ = H(m)x.

– Confirmation Protocol. Given a message-signature pair (m,σ), the signer
proves that (g, y, H(m), σ) is a DH-tuple.

– Disavowal Protocol. Given a message-signature pair (m,σ), the signer
proves that
(g, y, H(m), σ) is not a DH-tuple.

Remark Chaum’s original scheme (which does not employ a cryptographic hash
function) is not secure as it is existentially forgeable. Most precisely, it suc-
cumbed to the basic multiplicative attack: suppose that an adversary has two
message-signature pairs (m1, σ1) and (m2, σ2), where σ1 = mx

1 and σ2 = mx
2 .

Then it is obvious that σ1σ2 is a signature of m1m2.

Confirmation and Disavowal Protocols. There are various confirmation
and disavowal protocols associated with Chaum’s scheme, each with variable
degrees of zero-knowledgeness and efficiency. We make an effort to summarize
the various confirmation and disavowal protocols as follows.

Zero-Knowledge Interactive Proof (ZKIP). The first proposal by Chaum and
van Antwerpen was not zero-knowledge [11]. In [8], an improved version with
zero-knowledgeness was proposed. The confirmation protocol is a 4-move ZKIP
for language of DH-tuples. For brevity, we describe the complete protocol in
Fig. 1-(a).

A somewhat inefficient ZKIP disavowal protocol which requires more than
4-move was also proposed in [8]. A single execution of the protocol is as depicted
in Fig. 1-(b). In this figure, com(s) denotes the commitment of s and decom(s)
denotes the revealing of s.

5



Signer Verifier

a, b
R← Zq

c←− c = gaH(m)b

r
R← Zq

z1 = cgr

z2 = zx
1

z1,z2−→
a,b←−

c
?
= gaH(m)b r−→

z1
?
= ga+rH(m)b

z2
?
= ya+rσb

(a) Confirmation protocol

Signer Verifier

s
R← {0, 1, . . . , k}

a
R← Zq

c = gaH(m)s

c,c′←− c′ = yaσs

find s′ s.t.

(cx/c′) = (H(m)x/σ)s′ com(s′)−→
a←−

c
?
= gaH(m)s′ decom(s′)−→

s′
?
= s

(b) A single execution of disavowal protocol

Fig. 1. ZKIP protocols

3-Move Honest-Verifier Zero-Knowledge Proof (HVZK). A 3-move honest-verifier
zero-knowledge (HVZK) confirmation protocol is depicted in Fig. 2-(a). The
corresponding 3-move HVZK disavowal protocol was shown by Camenisch and
Shoup recently [7]. We describe the protocol in Fig. 2-(b).

Signer Verifier

r
R← Zq

z1 = gr

z2 = H(m)r z1,z2−→
c←− c

R← Zq

d = r + cx mod q
d−→

gd ?
= z1y

c

H(m)d ?
= z2σ

c

(a) Confirmation protocol

Signer Verifier

s, r, r′
R← Zq

w = (H(m)x/σ)s

z1 = gr/yr′

z2 = H(m)r/σr′ w,z1,z2−→ w
?

6= 1
c←− c

R← Zq

d = r + cxs mod q

d′ = r′ + cs mod q
d,d′−→

gd/yd′ ?
= z1

H(m)d/σd′ ?
= z2w

c

(b) Disavowal protocol

Fig. 2. HVZK protocols

Non-Interactive Zero-Knowledge Proof (NIZK). In general, a 3-move honest-
verifier zero-knowledge protocol can be transformed to a more efficient non-
interactive zero-knowledge (NIZK) protocol by using the Fiat-Shamir transfor-
mation [16, 1], where we need to employ another random oracle H ′. However, we

6



cannot use the above solution as a confirmation protocol or a disavowal protocol
because such NIZK proof is just an ordinary digital signature.

To overcome this problem, designated-verifier technique was introduced in
[21] by Jakobsson et al. In a designated-verifier confirmation proof, the signer
proves that “(g, y,H(m), σ) is a DH-tuple” or “he knows the verifier’s secret key”
(the signer knows the former, but not the latter). In other words, the verifier
is able to produce such a valid proof himself using his secret key. By using the
designated-verifier technique, one can thereby prevent illegal copies of the proof.

Using the technique shown in [14], a designated-verifier proof can be con-
structed for a public-secret key pair of any well-known public key system. The
obtained NIZK proof is zero-knowledge in the random oracle model.

We do not give the concrete NIZK designated-verifier confirmation and dis-
avowal protocols since different protocols are associated with different public key
systems used by the verifier.

3 New Adversary Model

In this section, we present a new adversary model for undeniable signatures that
incorporates a new adversarial goal called forge-and-impersonate. In the past,
the main adversarial goal is forging, i.e. one considers an undeniable signature
scheme to be secure if it is existentially unforgeable against adaptive chosen
message attack. In our new proposal, the adversary not only attempts to forge
but it also attempts to impersonate a legitimate signer.

It is clear that forgeability does not necessarily imply impersonation ability.
Hence the new adversarial goal is stronger. (On the other hand, the latter implies
the former because if (m,σ) is invalid, then any signer can convince the verifier
with only negligible probability in the confirmation protocol. See Section 2.2.)

Now, we present our proposal and explain what motivates us to consider this
new adversarial goal.

As usual, we classify adversaries by their ultimate adversarial goals. Nor-
mally, an adversary with the motive to forge a new message-signature pair (m,σ)
is given the name forger. As mentioned earlier, this is the traditional security
notion.

Now, we introduce a new type of adversary. The new adversarial goal is to
forge a message-signature pair (m,σ) and further convincing a (honest) verifier
that σ is indeed a valid signature on m, by executing the confirmation protocol
with the verifier. To avoid confusion, we stick to the following notation. We
denote the former type of adversary as forge (F) and the latter as forge-and-
impersonate (FI).

It is pretty hard for this new adversary to gain a success, but let us look at
the motivation for the adversary. As noted earlier in the introduction part, the
most common application of undeniable signatures is in licensing softwares. If
an adversary succeeds in forging a signature (but not in convincing the verifier
by executing a confirmation protocol), no doubt it would cause some damage
to the legitimate signer (e.g. Microsoft). On the other hand, if an adversary

7



succeeds in forging as well as in impersonating, then it can sell its own softwares
by impersonating an agent of Microsoft. In this case, it can actively earn some
fast money through its wicked deed. This is the motivation behind the attack.

Intuitively, the security against a FI adversary is equivalent to a problem
which is no easier than the problem which is equivalent to the security against
a F adversary. We shall exemplify this with some security analyses in the next
section.

On the other hand, we also remark that the security against FI does not
imply unforgeability from the definitions. From the definition of FI adversary,
the adversary forges (m,σ) and succeeds in the confirmation protocol. However,
notice that there is a possibility that even if (m, σ) is invalid, the adversary
succeeds in the confirmation protocol. Hence, the security against FI adversary
does not imply unforgeability. We also note that if we use a ZKIP confirmation
protocol, then the security against FI adversary does imply unforgeability, due
to the soundness of the ZKIP protocol.

4 Classification of Security Models

4.1 Types of Attacks

We can also classify adversaries by their capabilities or types of attacks. More
precisely, there exist two types of attacks, namely, passive attack and active
attack. Obviously, passive attack is a weaker attack.

Both the passive and active adversaries have access to the signing oracle
as well as the confirmation/disavowal oracle. The signing oracle plays the role
similar to those in the ordinary signature scheme. We highlight the difference
between a passive attack and an active attack below.

Whenever an adversary submits a confirmation/disavowal query (m,σ), the
oracle responds based on whether a passive attack or an active attack is mounted.
In a passive attack, the confirmation/disavowal oracle first checks the validity
of (m,σ). If it is a valid pair, then the oracle returns “yes” and a transcript of
confirmation protocol. Otherwise, the oracle returns “no” and a transcript of
disavowal protocol. In an active attack, the confirmation/disavowal oracle first
checks the validity of (m,σ). If it is a valid pair, then the oracle returns “yes”
and proceeds with the execution of the confirmation protocol with the adversary
(acting as a cheating verifier). Otherwise, the oracle returns “no” and executes
the disavowal protocol with the adversary accordingly.

4.2 Formal Security Definitions

In this section, we provide the formal security definitions by considering the two
adversarial goals, namely forge (F) and forge-and-impersonate (FI) and the two
types of attacks mounted by the adversary.

Definition 2 (Unforgeability). An undeniable signature scheme is said to be
existential unforgeable under adaptive chosen message attack if no probabilistic

8



polynomial time (PPT) forger F has a non-negligible advantage in the following
game:
1. Let pk be the input to F .
2. The forger F is permitted to issue a series of queries:

– Signing queries: F submits a message m to the signing oracle and receives
a signature σ on m. (We consider adaptive queries here – subsequent
queries is made based on previously obtained signatures.)

– Confirmation/disavowal queries: F submits a message-signature pair (m,σ)
to the confirmation/disavowal oracle, and the oracle responds based on
whether a passive attack or an active attack is mounted.
In a passive attack, the confirmation/disavowal oracle first checks the
validity of (m,σ). If it is a valid pair, then the oracle returns “yes” and
a transcript of confirmation protocol. Otherwise, the oracle returns “no”
and a transcript of disavowal protocol.
In an active attack, the confirmation/disavowal oracle first checks the
validity of (m,σ). If it is a valid pair, then the oracle returns “yes” and
proceeds with the execution of the confirmation protocol with the forger
F (acting as a cheating verifier). Otherwise, the oracle returns “no” and
executes the disavowal protocol with F accordingly.

3. At the end of this attack game, F outputs a message-signature pair (m∗, σ∗).

The forger F wins the game if F outputs a valid message-signature pair (m∗, σ∗)
such that m∗ has never been queried to the signing oracle, or it queries a valid
(m∗, σ∗) to the confirmation/disavowal oracle such that m∗ has never been queried
to the signing oracle. F ’s advantage in this game is defined to be Adv(F ) =
Pr[Fwins].

Definition 3 (Unforgeability-and-Unimpersonation). An undeniable sig-
nature scheme is said to be secure against forgery and impersonation under adap-
tive chosen message attack if no PPT adversary A has a non-negligible advantage
in the following game:

1. Let pk be the input to A.
2. The adversary A enters the learning phase where it performs a series of

queries: signing queries and confirmation/disavowal queries as in the pre-
vious definitions (based on whether a passive attack or an active attack is
mounted). At the end of this forgery phase, A outputs a forged message-
signature pair (m∗, σ∗) such that m∗ has never been queried to the signing
oracle.
We assume that if A queries (m∗, σ∗) to the confirmation/diavowal oracle
such that m∗ has never been queried to the signing oracle, and the oracle
returns “yes”, then A outputs (m∗, σ∗) immediately.

3. In the impersonation phase, A proceeds to execute the confirmation protocol
with a verifier on input (m∗, σ∗), trying to convince the verifier that (m∗, σ∗)
is a valid pair.

The adversary A wins the game if it can convince the verifier that (m∗, σ∗)
is a valid message-signature pair. A’s advantage in this game is defined to be
Adv(A) = Pr[Awins].

9



4.3 FI-Security in NIZK

For undeniable signature schemes with designated-verifier NIZK proofs, we have
to carefully define the security against FI attack. This is because in such scheme,
besides breaking the undeniable signature scheme, an adversary can also imper-
sonate by breaking the public key system of a verifier.

Therefore, we first specify the key generation algorithm of the public key
system PKS of the target verifier. We denote the FI attack in this situation with
FIPKS attack. We then adopt the following adversary model.

1. As usual, after making some oracle queries, the adversary A outputs a forged
message-signature pair (m,σ).

2. Now, A is given a public key of a verifier randomly.
3. Next, it outputs a non-interactive non-transferable confirmation transcript

corresponding to the given public key.

We say that A succeeds in FIPKS attack if the proof is accepted with non-
negligible probability, where the probability is taken over the key generation
algorithm of PKS as well.

5 The Equivalence

5.1 Our Objective

Following from the previous section, it is thus clear that we need to consider
four types of adversaries, namely, the passive F, the active F, the passive FI and
the active FI.

There are various confirmation and disavowal protocols associate with the
FDH variant of Chaum’s scheme, namely, ZKIP, 3-move HVZK and 1-move
NIZK.

We intend to explore further on the equivalence between the security of the
scheme (with various confirmation and disavowal protocols) and some compu-
tational problems, under the various types of adversaries. In other words, our
objective is to fill up Table 1.

We remark that if the scheme employs the non-interactive confirmation and
disavowal protocols (NIZK), then it is not necessary to consider active attack.

In what follows, a xxx scheme denotes the scheme with xxx confirmation
and disavowal protocols, where xxx is ZKIP, HVZK or NIZK.

5.2 On F Attacks

We now show that the passive F attack to the scheme with NIZK protocols
is equivalent to the CDH problem. In the NIZK scheme, the public key is
(g, y, H, H ′), where H ′ is a hash function which is used for Fiat-Shamir trans-
formation (which transforms a 3-move HVZK protocol to an NIZK proof).

10



Theorem 1. The NIZK scheme is secure against passive F attack in the random
oracle model if and only if the CDH problem is hard.

Proof. Firstly, we show that if there exists an algorithm M that solves the CDH
problem with advantage εM , then one can construct a forger F that can forge in
the universal way with advantage εF , by running M as a subroutine. The forger
F is given the public key (g, y,H, H ′) where y = gx. For a random message
m, F computes h = H(m) and gives the triple (g, y, h) as input to M . When
M outputs hx, F simply outputs the forgery as (m,σ = hx). It is clear that
εF = εM . This completes the first half of our proof.

Secondly, we show that if there exists a forger F that manage to forge with
advantage εF , then one can construct an algorithm M that can solve the CDH
problem with advantage εM , by running F as a subroutine. Suppose the input
to M is (g, gx, gr). M then starts running F by feeding F with the public key
(g, y = gx,H,H ′) where H and H ′ are random oracles that will be simulated by
M . M also simulates the signing oracle and the confirmation/disavowal oracle
itself. Let qS and qH be the number of signing queries and H-queries that F
issues respectively. We assume that when F requests a signature on a message
mi, it has already made the corresponding H query on mi.

When F makes a H query for a message mi, M responds with hi = H(mi) =
gαi with probability δ and hi = H(mi) = (gr)αi with probability 1−δ, where αi

is chosen randomly from Zq and δ is a fixed probability which will be determined
later.

When F makes a H ′-query for a new str, where str is the string that F
would like to know its H ′ value, M always responds with a random number.
In fact, M assigns some values to H ′(str) for some str in order to simulate
the confirmation/disavowal oracle. When F makes a H ′-query for such str, M
returns H ′(str) to F .

Suppose that F makes a signing query for a message mi. If M has responded
with hi = gαi to the H query for a message mi, then M returns σi = yαi as the
valid signature (since yαi = (gx)αi = hx

i = H(mi)x). Otherwise, M aborts and
it fails to solve the CDH problem.

Next, we consider the case when F makes a confirmation/disavowal query. Let
qv be the number of queries that F issues to the confirmation/disavowal oracle.
For convenience, we consider that the final output of F is the (qv + 1)th query.
We say that (mi, σ

′
i) is special if it is a valid message-signature pair queried by F

to the confirmation/disavowal oracle such that mi has never been queried to the
signing oracle. M guesses the first special query. More precisely, M guesses the
first i such that the ith query (mi, σ

′
i) is special. So, at the beginning, M chooses

Guess ∈ {1, 2, · · · , qv + 1} randomly. There are two cases to be considered here,
namely, i < Guess and i = Guess. First suppose that i < Guess.

– If F has never made a signing query for mi, then M returns “no” and the
transcript of the disavowal protocol.

– Otherwise, F has already made a signing query for mi, and M answered with
a valid signature σi with probability δ (with probability (1− δ) M aborts).

11



If σi = σ′i then M returns “yes” and the transcript of the confirmation
protocol. Otherwise, M returns “no” and the transcript of the disavowal
protocol.

As mentioned before, M can manipulate the H ′-oracle and thus it can generate
a transcript of the confirmation or disavowal protocol. (In fact, it is possible
that collision occurs for str, meaning that str is being asked to the H ′-oracle
by F earlier before M assigns a value to H ′(str). However, this probability is
negligible and thus it will not affect the overall success probability for M .)

Now suppose that i = Guess. Let (m∗, σ∗) be the ith query. If F has queried
m∗ to the signing oracle, then M aborts. Otherwise, we assume that F has
queried the H oracle on m∗ and so m∗ = mj for some j. If hj = (gr)αj , then
we have σ∗ = hx

j = (grαj )x. Consequently, M outputs gxr = (σ∗)1/αj and thus
it solves the CDH problem. Otherwise, M aborts and it fails to solve the CDH
problem.

To complete the proof, it remains to calculate the probability that M does
not abort. M guesses the first special query with probability 1/(qv + 1). The
probability that M answers to all the signing queries is δqS and M outputs gxr

with probability 1− δ. Therefore, the probability that M does not abort during
the simulation is δqS (1−δ)/(qv+1). This value is maximized at δopt = 1−1/(qS+
1). This shows that M ’s advantage εM is at least (1/e(1+qS))εF /(qv +1), where
e is the base of the natural logarithm. This is because the value (1−1/(qS +1))qS

approaches 1/e for large qS . This completes our proof. ut

Theorem 2. The ZKIP scheme is secure against each of passive/active F attack
in the random oracle model if and only if the CDH problem is hard.

Proof. The only if part is trivial. The if part can be shown almost similarly to
Theorem 1. Notice that M does not need to simulate the H ′-oracle here. The
signing oracle and H oracle are simulated similarly (see the proof of Theorem
1).

The confirmation/disavowal oracle is simulated similarly except for the sim-
ulation of a transcript. The zero-knowledge property of the protocols assures
that M can simulate the confirmation/disavowal oracle. In Appendix A, we
will present the concrete simulation of confirmation/disavowal protocol in an
active attack, where the verifier is a forger F . M can also simulate the confir-
mation/disavowal oracle in a passive attack since we have only to consider the
honest verifier in the simulation of Appendix A. ut

Theorem 3. The HVZK scheme is secure against passive F attack in the ran-
dom oracle model if and only if the CDH problem is hard.

Proof. The only if part is trivial. The if part can be shown almost similarly to
Theorem 2 except in the confirmation/disavowal oracle simulation. In Appendix
B, we will present the concrete perfect simulation of the transcripts of the con-
firmation/disavowal protocol. ut

12



5.3 On Passive FI Attacks

Theorem 4. The passive FI attack on the HVZK scheme is equivalent to the
DLOG problem in the random oracle model.

Proof. Firstly, we show that if there exists an algorithm M that solves the DLOG
problem, then an adversary A can succeed in FI attack by running M as a
subroutine. The adversary A is given the public key (g, y, H) where y = gx.
Since A can obtain the secret key x by feeding y to algorithm M , it can succeed
in the FI attack. This completes the first half of the proof.

Secondly, let A be a passive FI adversary. We show that one can construct an
algorithm M that can solve the DLOG problem by running A as a subroutine.
Suppose that the input to M is (g, gx), M then starts running A by feeding A
with the public key (g, y = gx, H), where H is a random oracle that will be simu-
lated by M . M also simulates the signing oracle and the confirmation/disavowal
oracle itself. We assume that when A requests a signature on a message mi, it
has already made the corresponding H query on mi.

When A makes a H query for a message mi, M responds with hi = gαi , where
αi is chosen randomly from Zq. When A makes a signing query for a message mi,
M returns σi = yαi as the valid signature (since yαi = (gx)αi = hx

i = H(mi)x).
Next, we consider the case when A makes a confirmation/disavowal query

for a message-signature pair (mi, σ
′
i). As in the proof of Theorem 1, let qv be

the number of queries that A issues to the confirmation/disavowal oracle. For
convenience, we consider that the forgery of A is the (qv + 1)th query. We say
that (mi, σ

′
i) is special if it is a valid message-signature pair queried by A to

the confirmation/disavowal oracle such that mi has never been queried to the
signing oracle. M guesses the first special query. More precisely, M guesses the
first i such that the ith query (mi, σ

′
i) is special. So, at the beginning, M chooses

Guess ∈ {1, 2, · · · , qv + 1} randomly. There are two cases to be considered here,
namely, i < Guess and i = Guess. First suppose that i < Guess.

– If A has never made a signing query for mi, then M returns “no” and runs
the disavowal protocol with A.

– Otherwise, A has already made a signing query for mi, and M has answered
with a valid signature σi. If σi = σ′i then M returns “yes” and runs the confir-
mation protocol with A. Otherwise, M returns “no” and runs the disavowal
protocol with A.

Now suppose that i = Guess. Let (m∗, σ∗) be the ith query. If A has queried
m∗ to the signing oracle, then M aborts. Otherwise, we assume that A has
queried the H oracle on m∗ and so m∗ = mj for some j. Notice that M can sim-
ulate the confirmation/disavowal oracle perfectly since the views of the honest-
verifier zero-knowledge protocols are simulatable (see Appendix B).

Next, A proceeds to prove that σ∗ is indeed a valid signature corresponding to
the message m∗ by executing the confirmation protocol with the honest-verifier.
Since the confirmation protocol is a proof of knowledge of x, thus M can extract
x by using the reset technique [2]. Please refer to Appendix C for the details. ut

13



The following theorem states the security of the scheme against passive FI
attack when non-interactive zero-knowledge proofs are used.

Theorem 5. The passive FIPKS attack on the NIZK scheme is equivalent to
“solving the DLOG problem or breaking PKS” in the random oracle model. Here,
“breaking” PKS means that the adversary obtains the secret key corresponding
to the given public key which is chosen randomly in PKS.

Proof. Consider an algorithm M whose input is ((g, y), Pk) where y is a random
element of G and Pk is a randomly chosen public key in PKS. If M outputs x
such that y = gx or Sk such that (Pk, Sk) is a public-secret key pair in PKS,
then we can say that M succeeds in “solving the DLOG problem or breaking
PKS”. Clearly, if there exists such algorithm M , then an adversary A can succeed
in FIPKS attack by running M as a subroutine. Thus the first half of the proof
was shown.

Secondly, let A be a passive FIPKS adversary. We show that one can construct
an algorithm M that can solve the DLOG problem or can break PKS by running
A as a subroutine. Suppose that the input to M is ((g, y), Pk). At first, M starts
running A by feeding A with the public key (g, y, H,H ′). We assume that when
A requests a signature on a message mi, it has already made the corresponding
H query on mi.

The simulation of the H oracle and the signing oracle are the same as in
the previous proof. The simulation of the H ′-oracle is the same as the proof of
Theorem 1. The simulation of the confirmation/disavowal oracle is also almost
the same as those in the proof of Theorem 4.

Eventually, A needs to run the confirmation protocol with the verifier in
order to show that the forgery (m∗, σ∗) is a valid message-signature pair. First,
it requests a verifier’s public key. M then hands Pk to A. A next generates
a non-interactive non-transferable confirmation transcript corresponding to Pk
and returns the transcript to M . After that, M resets A. Unlike in the previous
proof, M has to rewind A to the point that it has made the H ′-query for str
where H ′(str) is used as a random challenge in the confirmation transcript. Using
the same argument of forking lemma [25], if A outputs a NIZK confirmation
transcript with non-negligible probability, then rewinding A with a different
H ′ value will result M in getting two confirmation transcripts for a common
input (m,σ), with non-negligible probability. From these two transcripts, M can
obtain a witness W . At last M outputs W . Remember that the designated-
verifier confirmation transcript is a proof of knowledge of x (the signer’s secret
key) or the verifier’s secret key Sk. Therefore, we have W = x or W = Sk, that
is, M succeeds in solving the DLOG problem or breaking PKS. ut

From the above theorem, if the target verifier uses ElGamal cryptosystem,
then the passive FI attack on NIZK scheme is equivalent to the DLOG prob-
lem. If the target verifier uses RSA cryptosystem, then the passive FI attack on
NIZK scheme is equivalent to “solving the DLOG problem or factoring the RSA
modulus N” [22].

14



5.4 On Active FI Attacks

Finally, we consider the last case, the active FI attack. In the active FI attack, the
adversary has additional power, i.e. to execute confirmation and disavowal proto-
cols interactively with the signer. M plays the role of the signer in this scenario,
interacting with the adversary whenever it receives a confirmation/disavowal
query.

Theorem 6. The HVZK scheme is secure against active FI attack in the random
oracle model if the one-more DLOG problem is hard.

Proof. We show that if there exists an adversary A that succeeds in the active
FI attack, then there exists an algorithm M that can solve the one-more DLOG
problem by running A as a subroutine.

We show how to construct such an algorithm M . Suppose that the input
to M is g. At first, M queries its challenge oracle to obtain a random element
y0 ∈ G. M then starts running A with input (g, y0,H) as A’s public key, where
H is a random oracle that will be simulated by M . M also simulates the signing
oracle and the confirmation/disavowal oracle itself.

When A makes a H query for a message mi, M responds with hi = gαi ,
where αi is chosen randomly from Zq. When A makes a signing query for a
message mi, M returns σi = yαi

0 as the valid signature.
Next, we consider the case when A makes a confirmation/disavowal query.

Let qv be the number of queries that A issues to the confirmation/disavowal
oracle as in the proof of Theorem 1. For convenience, we consider that the final
output of A is the (qv + 1)th query. We say that (mi, σ

′
i) is special if it is a valid

message-signature pair queried by A to the confirmation/disavowal oracle such
that mi has never been queried to the signing oracle. M guesses the first special
query. More precisely, M guesses the first i such that the ith query (mi, σ

′
i) is

special. So, at the beginning, M chooses Guess ∈ {1, 2, · · · , qv + 1} randomly.
There are two cases to be considered here, namely, i < Guess and i = Guess.
First suppose that i < Guess.

– If A has never made a signing query for mi, then M returns “no” and runs
the disavowal protocol with A as shown below.

– Otherwise, A has already made a signing query for mi, and M answered
with a valid signature σi. If σi = σ′i then M returns “yes” and runs the
confirmation protocol with A as shown below. Otherwise, M returns “no”
and runs the disavowal protocol with A as shown below.

M runs the confirmation protocol with A as follows. M first queries its challenge
oracle to obtain yi. M then gives (yi, y

αi
i ) to A as the commitment (the first

message) in the confirmation protocol. A returns ci as the challenge (the second
message). Notice that M does not possess the secret key x0, which is the discrete
logarithm of y0 (i.e. y0 = gx0). In order to find a response (the third message),
M sends yiy

ci
0 to the DLOG oracle and gets the discrete logarithm di, which is

then returned to A. This is exactly the response that would be returned to A
because di = xi + cix0 mod q, where yi = gxi and y0 = gx0 .

15



M runs the disavowal protocol with A with the help of DLOG oracle in the
same way.

Now suppose that i = Guess. Let (m∗, σ∗) be the ith query. Eventually, A
outputs (m∗, σ∗) and proves the validity of this forgery with the confirmation
protocol. If σ∗ is a valid signature on m∗, then σ∗ = yα

0 . By using the reset
technique [2], M can extract the discrete logarithm of y0 which is x0 that satisfies
y0 = gx0 .

Suppose that M queries its challenge oracle for t+1 times altogether. Finally,
for i = 1, . . . , t, M computes the discrete logarithms of all the challenge points
as xi = di − cix0 mod q. ut

5.5 Discussion

We have analyzed the security of the FDH variant of Chaum’s scheme under
various types of confirmation/disavowal protocols using the newly proposed ad-
versary model. Their equivalence with some known computational problems are
proven. In conclusion, the results we obtained are as summarized in Table 1,
which follows from Theorem 1 to Theorem 6.

The three cells marked “?” are still unsolved at the moment due to the
following reasons. In the proofs of Theorem 4 and Theorem 5, M can extract
x from y = gx because the confirmation protocol is a proof of knowledge of x,
thus there exists a knowledge extractor for x. On the other hand, the perfect
zero-knowledge confirmation protocol shown in Fig. 1-(a) is a proof of language
and not a proof of knowledge. Therefore, it is impossible for us to construct
such a knowledge extractor. This is the reason why we are unable to prove the
equivalence between FI attack and some well-known computational problem by
using the same approach. May be there exist some other approaches to prove
the equivalence, however we are yet to discover it at the moment.

However, we conjecture that the problem which should be equivalent to the
security against passive FI and active FI attacks when ZKIP protocols are em-
ployed and the problem which should be equivalent to the security against active
F attack when HVZK protocols are employed, should be no easier than the CDH
problem. We anticipate the solution in the near future and we encourage more
attempts on them.

6 The Flaw in Okamoto and Pointcheval’s Claim

Okamoto and Pointcheval [24] made the first attempt to analyze the security of
Chaum’s scheme by incorporating the full-domain hash (FDH) technique [5, 13].
In other words, they studied the security of the FDH variant of Chaum’s scheme
in the random oracle model by modeling the hash function H as a random oracle.
4 Okamoto and Pointcheval further claimed that they have solved the more than

4 Another merit in the FDH variant is that messages may be arbitrary bit strings and
do not need to be encoded as group elements as in the original scheme.

16



10 years open problem, i.e. the security of the FDH variant of Chaum’s scheme
with NIZK protocols is equivalent to the GDH problem.

Following from Theorem 1, we have disproved their claim, and further proved
that the security of the FDH variant of Chaum’s scheme with NIZK protocols
is in fact equivalent to the CDH problem, a more difficult problem than GDH.
In the sequel, we first restate their claim and point out the major flaw in their
proof compared to the proof of Theorem 1 which we have shown earlier.

Their claim is as follows.

Claim 1. [24, Theorem 9] An existential forgery under adaptively chosen mes-
sage attack for the FDH variant of Chaum’s undeniable signature scheme is
equivalent to the GDH problem in the random oracle model, where the confirma-
tion and disavowal protocols are NIZK.

The correctness of the above claim was shown by proving the following [24]:

(1) If there exists an algorithm M that solves the GDH problem, then one can
construct a forger F that manage to forge a message-signature pair by run-
ning M as its subroutine.

(2) If there exists a forger F that forges a message-signature pair, then one can
construct an algorithm M that can solve the GDH problem by running F
as its subroutine.

The proof of (1) is wrong. In the proof, the forger F runs the algorithm M
as follows. At first, the forger F is given the public key (g, y,H, H ′) (H ′ is used
to transform HVZK to a non-interactive one). F then chooses m randomly and
runs M on input (g, y, H(m)). If M submits (g, y,H(m′), σ′) to the DDH oracle,
then F queries to its confirmation/disavowal oracle and returns the answer to
M . M finally outputs H(m)x with non-negligible probability from our assump-
tion. Therefore, F can forge the signature on m as H(m)x with non-negligible
probability.

However, suppose that M submits (g, y,H(m′), σ′) to the DDH oracle. Then
what F can query to its confirmation/disavowal oracle is (m′, σ′), but not (H(m′), σ′).
Since F cannot compute m′ from H(m′), so it cannot query (m′, σ′). More pre-
cisely, since a prover in the confirmation/disavowal protocol takes only the mes-
sage m′ and its signature σ′ as input, simulating the DDH oracle would require
to inverse the hash function H, which is obviously impossible! Therefore, F fails
to simulate the DDH oracle correctly. This is indeed a critical flaw.

The proof of (2) is redundant. In the proof, the confirmation/disavowal oracle
is simulated by the DDH oracle. More precisely, to decide whether the given
(m,σ) is a valid pair or not, M asks (g, y,H(m), σ) to the DDH oracle, and then
simulates the confirmation/disavowal oracle by itself. However, notice that M
can decide the validity of (m,σ), since it can simulate the signing oracle by itself
(as shown in [24]) and furthermore the signing algorithm is deterministic. Thus
the DDH oracle is totally redundant here as it plays no function at all.

17



7 Invisibility

There exists another security notion for undeniable signatures called invisibility
which was first introduced by Chaum et al. [12]. This notion is essentially the
inability to determine whether a given message-signature pair is valid for a given
signer. In the following, we prove the invisibility of the FDH variant of Chaum’s
scheme.

We review the formal definition of the notion of invisibility as given below.

Definition 4 (Invisibility). An undeniable signature scheme is said to have
the property of invisibility under adaptive chosen message attack if no PPT dis-
tinguisher D has a non-negligible advantage in the following game:

1. Let pk be the input to D.
2. The distinguisher D is permitted to issue a series of queries: signing queries

and confirmation/disavowal queries as in Definition 2 (based on whether a
passive attack or an active attack is mounted).

3. At some point, D outputs a message m∗ which has never been queried to the
signing oracle, and requests a challenge signature σ∗ on m∗. The challenge
signature σ∗ is generated based on the outcome of a hidden coin toss b. If
b = 1, then σ∗ is generated as usual using the signing oracle, otherwise σ∗

is chosen uniformly at random from the signature space S.
4. The distinguisher D performs some signing and confirmation/disavowal queries

again with the restriction that no signing query on m∗ is allowed, and no con-
firmation/disavowal query on the challenge message-signature pair (m∗, σ∗)
is allowed.

5. At the end of this attack game, D outputs a guess b′.

The distinguisher D wins the game if b′ = b. D’s advantage in this game is
defined to be Adv(D) = |Pr[b′ = b]− 1

2 |.

Theorem 7. The invisibility of the NIZK scheme holds if DDH problem is hard.

Proof. We show that if there exists a distinguisher D with advantage εD, then
one can construct a DDH distinguisher D′ with advantage εD′ , by running D as
a subroutine. Suppose the input to D′ is (g, gx, gr, gt). D′ then starts running
D by feeding D with the public key (g, y = gx,H,H ′) where H and H ′ are
random oracles that will be simulated by D′. D′ also simulates the signing oracle
and the confirmation/disavowal oracle itself. Let qS and qH be the number of
signing queries and H queries that D issues respectively. We assume that when
D requests a signature on a message mi, it has already made the corresponding
H query on mi.

When D makes a H query for a message mi, D′ responds with hi = H(mi) =
gαi with probability δ and hi = H(mi) = (gr)αi with probability 1 − δ, where
αi is chosen randomly from Zq and δ is a fixed probability which will be de-
termined later. Suppose that D makes a signing query for a message mi. If D′

has responded with hi = gαi to the H query for a message mi, then D′ returns

18



σi = yαi as the valid signature (since yαi = (gx)αi = hx
i = H(mi)x). Otherwise,

D′ aborts and it fails to solve the DDH problem.
Eventually, D outputs a message m∗. We assume that D has queried the H

oracle on m∗ and so m∗ = mi for some i. If hi = (gr)αi , then D′ returns the
challenge signature σ = (gt)αi . Otherwise, D′ aborts and it fails to solve the
DDH problem.

Next, D performs some H queries, H ′ queries, signing queries and confir-
mation/disavowal queries again with the restriction that no signing queries on
m∗ is allowed, and no confirmation/disavowal query on the challenge message-
signature pair (m∗, σ∗) is allowed.

Finally, D outputs a bit b′ which it thinks is equal to the hidden bit b. More
precisely, D outputs b′ = 1 if it finds that (m∗, σ∗) is a valid message-signature
pair and it outputs b′ = 0 if it finds that σ∗ is chosen uniformly at random from
the signature space S.

Subsequently, D′ outputs b′. Note that if (m∗, σ∗) is a valid message-signature
pair, then (g, gx, gr, gt) is a DH-tuple. Otherwise (g, gx, gr, gt) is not a DH-tuple.
Therefore, if D is an invisibility distinguisher then D′ is a DDH distinguisher.

Now, we show how to simulate the confirmation/disavowal oracle. If CDH
problem is easy, then DDH problem is easy. Hence D′ can solve the DDH problem
(without using D) in this case.

Suppose that CDH problem is hard. Then D cannot forge with non-negligible
probability because forgery is equivalent to CDH problem from Theorem 1. Now
assume that D queries (mi, σ

′
i) to the confirmation/disavowal oracle.

– If D has never made a signing query for mi, then D′ returns “no” and a
transcript of the disavowal protocol. This is justified because D cannot forge
as mentioned above.

– Otherwise, D has already made a signing query for mi, and D′ has answered
with a valid signature σi. If σi = σ′i then D′ returns “yes” and a transcript
of the confirmation protocol. Otherwise, D′ returns “no” and a transcript of
the disavowal protocol.

D′ can generate a transcript of the confirmation/disavowal protocol as shown in
the proof of Theorem 1.

To complete the proof, it remains to calculate the probability that D′ does
not abort. The probability that D′ answers to all the signing queries is δqS and
D′ succeeds in distinguishing the DDH problem with probability 1−δ. Therefore,
the probability that D′ does not abort during the simulation is δqS (1− δ). This
value is maximized at δopt = 1− 1/(qS +1). This shows that D′’s advantage εD′

is at least (1/e(1 + qS))εD, where e is the base of the natural logarithm. This is
because the value (1−1/(qS +1))qS approaches 1/e for large qS . This completes
our proof. ut

Theorem 8. The invisibility of the HVZK scheme holds against the passive
distinguisher if DDH problem is hard.

19



Proof. The proof is almost similar to Theorem 7 also except in the confirma-
tion/disavowal oracle simulation. Refer to Appendix B for the concrete perfect
simulation of the transcripts of confirmation/disavowal protocol. ut

Theorem 9. The invisibility of the ZKIP scheme holds against both the passive
and active distinguishers if DDH problem is hard.

Proof. The proof is almost similar to Theorem 7. The zero-knowledge property
of the protocols assures that D′ can simulate the confirmation/disavowal ora-
cle. Refer to Appendix A for the concrete simulation of confirmation/disavowal
oracle in an active attack, where the verifier is D. D′ can also simulate the con-
firmation/disavowal oracle in a passive attack since we have only to consider the
honest verifier in the simulation of Appendix A. ut

As a result, we can summarize the result for invisibility as follows:

Table 2. Invisibility

passive D active D

ZKIP DDH
(Theorem 9)

HVZK DDH ?
(Theorem 8)

NIZK DDH −
(Theorem 7)

8 Conclusion

In this paper, we introduced another new adversarial goal called forge-and-
impersonate in undeniable signature schemes, and this leads to a new adversary
model which is slightly stronger than the existing one. We also classified the
security of the FDH variant of Chaum’s undeniable signature scheme accord-
ing to three dimensions, the attacks, the adversarial goals and the ZK level of
confirmation and disavowal protocols, and then related each security to some
well-known computational problem. In addition, we also pointed out the flaw
in Okamoto and Pointcheval’s claim, i.e. we proved that the unforgeability of
the FDH variant of Chaum’s scheme with NIZK confirmation and disavowal
protocols is equivalent to the CDH problem, as opposed to the GDH problem
as claimed by them. Finally, we also discussed the notion of invisibility of the
scheme under various confirmation and disavowal protocols.

20



References

1. M. Abdalla, J. An, M. Bellare and C. Namprempre. From identification to sig-
natures via the Fiat-Shamir transform: minimizing assumptions for security and
forward-security. Advances in Cryptology — EUROCRYPT ’02, LNCS 2332, pp.
418–433, Springer-Verlag, 2002.

2. M. Bellare and A. Palacio. GQ and Schnorr identification schemes: proofs of
security against impersonation under active and concurrent attacks. Advances in
Cryptology — CRYPTO ’02, LNCS 2442, pp. 162–177, Springer-Verlag, 2002.

3. M. Bellare, C. Namprempre, D. Pointcheval and M. Semanko. The power of RSA
inversion oracles and the security of Chaum’s RSA-based blind signature scheme.
Financial Cryptography ’01, LNCS 2339, pp. 319–338, Springer-Verlag, 2002.

4. M. Bellare, C. Namprempre, D. Pointcheval and M. Semanko. The one-more-RSA-
inversion problems and the security of Chaum’s blind signature scheme. Journal
of Cryptology, vol. 16, no. 3, pp. 185–215, Springer-Verlag, 2003.

5. M. Bellare and P. Rogaway. The exact security of digital signatures – how to sign
with RSA and Rabin. Advances in Cryptology — EUROCRYPT ’96, LNCS 1070,
pp. 399–416, Springer-Verlag, 1996.

6. J. Boyar, D. Chaum, I. Damg̊ard and T. Pedersen. Convertible undeniable signa-
tures. Advances in Cryptology — CRYPTO ’90, LNCS 537, pp. 189–208, Springer-
Verlag, 1990.

7. J. Camenisch and V. Shoup. Practical verifiable encryption and decryption of
discrete logarithms. Advances in Cryptology — CRYPTO ’03, LNCS 2729, pp.
126–144, Springer-Verlag, 2003.

8. D. Chaum. Zero-knowledge undeniable signatures. Advances in Cryptology —
EUROCRYPT ’90, LNCS 473, pp. 458–464, Springer-Verlag, 1990.

9. D. Chaum. Designated confirmer signatures. Advances in Cryptology — EURO-
CRYPT ’94, LNCS 950, pp. 86–91, Springer-Verlag, 1995.

10. T. Chaum and T. P. Pedersen. Wallet databases with observers. Advances in
Cryptology — CRYPTO ’92, LNCS 740, pp. 89–105, Springer-Verlag, 1993.

11. D. Chaum and H. van Antwerpen. Undeniable signatures. Advances in Cryptology
— CRYPTO ’89, LNCS 435, pp. 212–216, Springer-Verlag, 1989.

12. D. Chaum, E. van Heijst and B. Pfitzmann. Cryptographically strong undeni-
able signatures, unconditionally secure for the signer. Advances in Cryptology —
CRYPTO ’91, LNCS 576, pp. 470–484, Springer-Verlag, 1991.

13. J. Coron. On the exact security of full domain hash. Advances in Cryptology —
CRYPTO ’00, LNCS 1880, pp. 229–235, Springer-Verlag, 2000.

14. R. Cramer, I. Damg̊ard and B. Schoenmakers. Proofs of partial knowledge and
simplified design of witness hiding protocols. Advances in Cryptology — CRYPTO
’94, LNCS 839, pp. 174–187, Springer-Verlag, 1994.

15. I. Damg̊ard and T. Pedersen. New convertible undeniable signature schemes. Ad-
vances in Cryptology — EUROCRYPT ’96, LNCS 1070, pp. 372–386, Springer-
Verlag, 1996.

16. A. Fiat and A. Shamir. How to prove yourself: practical solutions to identification
and signature problems. Advances in Cryptology — CRYPTO ’86, LNCS 263, pp.
186–194, Springer-Verlag, 1987.

17. S. Galbraith and W. Mao. Invisibility and anonymity of undeniable and confirmer
signatures. Topics in Cryptology — CT-RSA ’03, LNCS 2612, pp. 80–97, Springer
Verlag, 2003.

21



18. S. Galbraith, W. Mao and K. G. Paterson. RSA-based undeniable signatures for
general moduli. Topics in Cryptology — CT-RSA ’02, LNCS 2271, pp. 200–217,
Springer Verlag, 2002.

19. R. Gennaro, H. Krawczyk and T. Rabin. RSA-based undeniable signatures. Ad-
vances in Cryptology — CRYPTO ’97, LNCS 1294, pp. 132–149, Springer-Verlag,
1997.

20. S. Goldwasser, S. Micali and R. Rivest. A digital signature scheme secure against
adaptative chosen-message attacks. SIAM Journal of Computing, vol. 17, no. 2,
pp. 281–308, 1988.

21. M. Jakobsson, K. Sako and R. Impagliazzo. Designated verifier proofs and their
applications. Advances in Cryptology — EUROCRYPT ’96, LNCS 1070, pp. 143–
154, Springer-Verlag, 1996.

22. A. May. Computing the RSA secret key is deterministic polynomial time equivalent
to factoring. Advances in Cryptology — CRYPTO ’04, LNCS 3152, pp. 213–219,
Springer-Verlag, 2004.

23. M. Michels and M. Stadler. Efficient convertible undeniable signature schemes.
Selected Areas in Cryptography — SAC ’97, pp. 231–244, Springer-Verlag, 1997.

24. T. Okamoto and D. Pointcheval. The gap-problems: a new class of problems for the
security of cryptographic schemes. Public Key Cryptography — PKC ’01, LNCS
1992, pp. 104–118, Springer-Verlag, 2001.

25. D. Pointcheval and J. Stern. Security proofs for signature schemes. Advances in
Cryptology — EUROCRYPT ’96, LNCS 1070, pp. 387–398, Springer-Verlag, 1996.

A Simulation of ZKIP Confirmation/Disavowal protocol

If a protocol has zero-knowledge property, it is possible for the simulator to
convince the verifier that the given input is valid without knowing any special
information (such as the signing key) nor having infinitely computational power
provided that it can reset the verifier. The above argument holds for any verifier.

In this section, we give a concrete simulator for the ZKIP confirmation and
disavowal protocols respectively.

Simulator for the Confirmation Protocol on (m,σ).

1. Receive c from the verifier.
2. Compute z1 = cgr and z2 = yr for a random number r, and send z1, z2 to

the verifier.
3. Receive a and b from the verifier.
4. If c 6= gaH(m)b then abort. Otherwise, reset the verifier.
5. Receive c again.
6. Compute z′1 = ga+rH(m)b and z′2 = ya+rσb for a random number r, and

send z′1, z
′
2 to the verifier.

7. Receive a′ and b′ again.
8. Send r to the verifier.

Note that the c received in step 5 is the same as the c received in step 1. Also,
it is easy to see that z′1 = z1 and z′2 = z2. Hence a′ = a and b′ = b.

22



Simulator for the Disavowal Protocol on (m,σ). Repeat the following steps a
predetermined times.

1. Receive c, c′ from the verifier.
2. Choose s′ randomly from {0, 1, . . . , k} and send a commitment of s′ to the

verifier.
3. Receive a from the verifier.
4. Find s” such that c = gaH(m)s”.
5. If s” = s′, then decommit s′. Otherwise, reset the verifier and goto step 1.

In step 5, s” = s′ holds with probability 1/(k +1) because s′ is randomly chosen
from {0, 1, . . . , k}. Hence the simulator resets the verifier k +1 times in average.

B Simulation of Transcripts of HVZK
Confirmation/Disavowal Protocol

First, we describe how to simulate a transcript of HVZK confirmation protocol
for a valid message-signature pair (m, σ). We assume that m has already been
asked to the random oracle H and H(m) = gα for a random element α. (In the
rest of this paper, we assume the same situation.) Since (m,σ) is a valid pair,
σ = H(m)x = yα.

Recall that as depicted in Fig. 2-(a), a real transcript is (z1, z2, c, d) such that
c is a random number and

z1 = gr

z2 = H(m)r

d = r + cx mod q

for a random element r ∈ Zq. The check equations are as follows:

z1 = gd/yc

z2 = H(m)d/σc.

To compute a transcript, we first choose c and d randomly from Zq, and
compute z1 and z2 from the above equations. Then the distribution of (z1, z2, c, d)
is equivalent to that of a real transcript. Remember that it is enough to simulate
a transcript between a signer and an honest verifier, that is, c is always a random
value.

Next, we explain how to simulate a transcript of HVZK disavowal protocol
for an invalid message-signature pair (m,σ). Please refer to Fig. 2-(b) for the real
transcript of HVZK disavowal protocol. Since (m,σ) is not a valid pair, σ 6= yα.

To make a transcript which is indistinguishable from a real transcript, we
first choose s ∈ Zq randomly and compute w = (yα/σ)s. (Here, yα is a valid
signature of m.) Next, choose c, d, d′ ∈ Zq randomly, and compute

z1 = gd/yd′ ,

z2 = H(m)d/(wcσd′).

Then (w, z1, z2, c, d, d′) is a transcript for the disavowal protocol.

23



C Knowledge Extractor of HVZK Confirmation Protocol

First, the knowledge extractor K runs the signer (or the malicious prover) and
gets a view of the protocol (z1, z2, c, d). If they satisfy gd = z1y

c and H(m)d =
z2σ

c, then it resets the signer and runs it once more with a fresh c′. Otherwise,
K aborts. Let the second view be (z1, z2, c

′, d′). If they satisfy gd′ = z1y
c′ and

H(m)d′ = z2σ
c′ , moreover, if c 6= c′, then outputs x = (d − d′)/(c − c′) mod q,

otherwise aborts.
If K outputs x, then x is the discrete logarithm of y. The probability that

K outputs x is (ε− 1/q)2, where ε is the success probability of the prover [2].

24


