
Badger - A Fast and Provably Secure MAC

Martin Boesgaard, Ove Scavenius, Thomas Pedersen, Thomas Christensen, and Erik
Zenner

CRYPTICO A/S
Fruebjergvej 3

2100 Copenhagen
Denmark

info@cryptico.com

Abstract. We present Badger, a new fast and provably secure MAC based on universal
hashing. In the construction, a modified tree hash that is more efficient than standard tree
hash is used and its security is being proven. Furthermore, in order to derive the core hash
function of the tree, we use a novel technique for reducing ∆-universal function families to
universal families. The resulting MAC is very efficient on standard platforms both for short
and long messages. As an example, for a 64-bit tag, it achieves performances up to 2.2 and
1.3 clock cycles per byte on a Pentium III and Pentium 4 processor, respectively. The forgery
probability is at most 2−52.2.

Keywords. MAC, universal hash, tree, pseudo-random generator

1 Introduction

A Message Authentication Code (MAC) provides a way to detect whether a message has
been tampered with during transmission. The usual model for authentication includes
three participants: a transmitter, a receiver and an opponent. The transmitter sends a
message over an insecure channel, where the opponent can introduce new messages as well
as alter existing ones. Insertion of a new message by the opponent is called impersonation,
and modification of an existing message by the opponent is called substitution. In both
cases the opponent’s goal is to deceive the receiver into believing that the new message is
authentic.

In many applications, it is of significant importance that the receiver can verify the
integrity of a message. In some cases this is even more important than encryption [12]. Of-
ten encryption and authentication are both required. With the emergence of fast software-
based encryption algorithms like Rijndael [8], SNOW [10], Rabbit [6] etc., the need for
fast software-based message authentication codes is increasing. Some attempts have been
made to construct integrated MAC and encryption algorithms, e.g. Helix [13]. However,
such approaches make it hard to prove the security of the MAC part. In contrast, MACs
that can be proven secure with respect to an underlying cryptographic primitive exist.
Prominent examples are HMAC [16] and the universal hashing approach [7].

The construction presented here is based on the universal hashing paradigm introduced
by Carter and Wegman [7, 23]. They proposed to hash a given message with a randomly
chosen function from a strongly universal family of hash functions, whereafter the output
is encrypted with a one-time-pad (OTP) in order to obtain the MAC tag. Since universal
hash functions are only required to fulfill, in a cryptographical sense, a rather simple
combinatorial property, they can usually be constructed to be very fast. Recent research

has been successful in achieving high speed for long messages. Notable examples can be
found in [19, 3, 11, 4, 14]. However, for short messages, these algorithms lose some of their
efficiency due to initialization and finalization overhead; a problem that was addressed e.g.
by new versions of UMAC [17].

It is the aim of this paper to construct a Wegman-Carter based MAC which is fast on
both short and long messages. The performance on short messages is important, as e.g. the
MAC function used in IPsec operates on 43-1500 bytes (see chapter 3 of [17]) and the MAC
function used in TLS operates on 0-17 kilobytes. In addition, the setup procedure must
be simple and fast, as the number of messages and amount of data processed per setup is
small in many applications, e.g. TLS. Finally, the MAC should provide verifier-selectable
assurance1.

In order to achieve high performance we introduce new families of universal hash
functions especially well suited for tree-like hashing. These are obtained using a novel
technique for reducing ∆-universal hash families to universal hash families. This results in
significant performance gains for small compressions. Furthermore, we develop an effective
tree-like hashing procedure which basically consists of combining a tree hash with a linear
hash. The construction is provably secure (relative to a cryptographic primitive) with
simple proofs.

Organization: The paper is organized as follows. In section 2 we present the definitions of
the different classes of universal hash families, we review composition theorems and sketch
our construction. In section 3 we introduce a simple method to reduce ∆-universal hash
families to universal hash families. A modification of the standard tree hashing scheme is
presented in section 4. Section 5 discusses how to build a strongly universal hash family
from this scheme. Section 6 contains the specification of Badger, and performance results
are presented in section 7. We conclude in section 8.

2 Universal Hashing and Message Authentication

In 1981, Wegman and Carter [23] showed that randomly chosen elements from a strongly
universal hash function family can be used to compress a given message and encrypt the
output using a OTP2. We describe briefly in the following why this is possible, and how
it will be used in our design.

Universal hash function families: The following definitions of universal hash function
families are well-known from the literature.

Definition 1. [7, 20] An ε-almost universal (ε-AU) family H of hash functions maps from
a set A to a set B, such that for any distinct elements a, a′ ∈ A:

Pr
h∈H

[h(a) = h(a′)] ≤ ε (1)

H is universal (U) if ε = 1/|B|.

1 For a more detailed description of verifier-selectable assurance, see [17]. In short, this means that the
receiver can choose to verify to lower assurance levels than for the full tag in order to increase perfor-
mance.

2 Of course, a cryptographic pseudo-random generator (PRG) can also be used to generate a pseudo-
random pad, but then the security depends on the security of the PRG.

Definition 2. [15, 22] Let (B, +) be an Abelian group. A family H of hash functions that
maps from a set A to the set B is said to be ε-almost ∆-universal (ε-A∆U) w.r.t. (B, +),
if for any distinct elements a, a′ ∈ A and for all δ ∈ B:

Pr
h∈H

[h(a) − h(a′) = δ] ≤ ε (2)

H is ∆-universal (∆U) if ε = 1/|B|.

Definition 3. [23, 20] An ε-almost strongly-universal (ε-ASU) family H of hash functions
maps from a set A to a set B, such that for any distinct elements a, a′ ∈ A and all b, b′ ∈ B:

Pr
h∈H

[h(a) = b] = 1/|B| and (3)

Pr
h∈H

[h(a) = b, h(a′) = b′] ≤ ε/|B| (4)

H is strongly universal (SU) if ε = 1/|B|.

The Wegman-Carter MAC: From the definitions it follows that strongly universal hashing
can be used for message authentication. If we denote the probability for an impersonation
attack to succeed by Pi and the probability for a substitution attack to succeed by Ps, we
have the following theorem:

Theorem 1. [23, 21, 18] There exists an ε-ASU family of hash functions from A to B if
and only if there exists an authentication code with |A| messages, |B| authenticators and
k = |H| keys, such that Pi = 1/|B| and Ps ≤ ε.

The particular Wegman-Carter MAC can be defined as follows:

Definition 4. Given an ε-ASU family H of hash functions mapping from a set A to a set
B, a nonce n, and an OTP r(n), then the Wegman-Carter MAC is

MACWC(M ; h, r(n)) = h(M) ⊕ r(n), (5)

where h is a random hash function from H and M is the message.

A new nonce must be used for each application of the MAC to ensure the unconditional
security of the construction.

Composition rules: Hash families can be combined in order to obtain new hash families.
The below composition rules (see [21]) describe what happens to the resulting ε, domains,
and ranges.

Composition 1 If there exists an ε1-AU family H1 of hash functions from A to B and
an ε2-AU family H2 of hash functions from B to C, then there exists an ε-AU family H of
hash functions from A to C, where H = H1 ×H2, |H| = |H1| · |H2|, and ε = ε1 + ε2 − ε1ε2.

Composition 2 If there exists an ε1-AU family H1 of hash functions from A to B and an
ε2-ASU family H2 of hash functions from B to C, then there exists an ε-ASU family H of
hash functions from A to C, where H = H1 ×H2, |H| = |H1| · |H2|, and ε = ε1 + ε2 − ε1ε2.

Our construction: In the following, we will use composition rule 2 to construct a Wegman-
Carter MAC. First, we will use an εH∗-AU universal function family H∗ to hash messages
of all sizes onto a fixed size. Subsequently, we will use an εF -ASU function family F
to guarantee for the strong universality of the overall construction. Thus, the strongly
universal hash family used for our MAC can be described as H = H∗ × F . Note that the
following theorem follows immediately from composition rule 2:

Theorem 2. The hash function family H = H∗ × F is εF + (1 − εF)εH∗-ASU.

We proceed by describing H∗ in sections 3 and 4 and F in section 5.

3 Reducing A∆U Families to AU Families

Reducing function families: Note that for the classes of hash function families defined in
definitions 1-3, the latter are contained in the former, i.e. an A∆U family is also an AU
family a.s.o. On the other hand, a stronger family can be reduced to a weaker one. This
is, of course, only relevant when a performance gain can be achieved. In the following, we
will describe a method to reduce ∆-universal hash functions to universal hash functions.
It turns out that these new universal hash families are particularly well-suited for tree
structures.

Theorem 3. Let H∆ be an ε-A∆U hash family from a set A to a set B. Consider a
message (m, mb) ∈ A × B. Then the family H consisting of the functions h(m, mb) =
h∆(m) + mb is ε-AU.

Proof. From the definitions above we have

Pr
h∈H

[h(m, mb) − h(m′, m′
b) = 0] = Pr

h∆∈H∆
[h∆(m) + mb − h∆(m′) − m′

b = 0]

= Pr
h∆∈H∆

[h∆(m) − h∆(m′) = m′
b − mb].

If m 6= m′, then this probability is at most ε, since H∆ is an ε-A∆U family. If m = m′

but mb 6= m′
b, then the probability is trivially 0. ut

Constructing the ENH family: A very fast universal hash family is the NH family used in
UMAC [17]:

NHK(M) =

l/2
∑

i=1

(k2i−1 +w m2i−1) · (k2i +w m2i) mod 22w, (6)

where ’+w’ means ’addition modulo 2w’, and mi, ki ∈ {0, ..., 2w−1}. It is a 2−w-A∆U hash
family. In [17], the A∆U property is mentioned, but only the AU property is explicitly
proven.

Lemma 1. The following version of NH is 2−w-A∆U:

NHK(M) = (k1 +w m1) · (k2 +w m2) mod 22w. (7)

Proof. This proof is just a slight modification of the one presented in [17]. We must show
that

Pr
k1,k2

[(k1 +w m1)(k2 +w m2) − (k1 +w m′
1)(k2 +w m′

2) = δ] ≤ 2−w.

where all arithmetic is carried out modulo 22w. Assume that m2 6= m′
2. Define c = k2 +m2

and c′ = k2 + m′
2. By assumption it follows that c 6= c′. So we have

Pr
k1,k2

[(k1 +w m1)c − (k1 +w m′
1)c

′ − δ = 0] ≤ 2−w.

since from lemma 2.4.3 in [17], the equality will only be satisfied by one k1. ut

Choosing w = 32 and applying theorem 3, we obtain the 2−32-AU function family ENH,
which will be the basic building block of our MAC:

ENHk1,k2
(m1, m2, m3, m4)

= (m1 +32 k1)(m2 +32 k2) +64 m3 +64 232m4, (8)

where all arguments are 32-bit and the output is 64-bit.

4 The Modified Tree Construction

The standard tree construction: The ENH function family maps 128-bit inputs to 64-bit
outputs. An immediate use of such a function is in a tree-like structure that allows hashing
of messages of arbitrary length. More generally, assume a block length b, a universal hash
family H that maps from bc to b bits, and a message of length |M | = b · cn, for some
suitable value n. Let m||m′ denote the concatenation of two strings m, m′, and let f ◦ f ′

denote the successive execution of function f ′ and f . Then a hash tree can be defined by
a succession of n parallel hashes, as follows [7, 1]:

Definition 5. Let H be a universal hash family, taking bc bits to b bits. Given a message
M = m1||...||mcn with length |M | = bcn, we hash c blocks at a time with a function h ∈ H
and concatenate the results. The result is a string of length bcn−1. We denote the hash
family by Hpar and a member by hpar.

hpar(M) = h(m1, ..., mc)||...||h(mcn−c+1, ..., mcn) (9)

It is easy to see that if H has a collision bound of ε then so does the parallel hash, Hpar.
We define the standard tree construction as follows:

Definition 6. Let M and H be as in definition 5. We define a new hash family by applying
hpar

i n times, each time with a new random hi ∈ H. We denote the resulting function family
by Htree

n and a member by htree
n :

htree
n (M) = hpar

n ◦ hpar
n−1 ◦ ... ◦ hpar

1 (M).

Theorem 4. The function family H tree
n is a 1−(1−ε)n-universal family of hash functions

for equal length messages.

m
1

m
2

m
3

m
4

m
5

m
6

m
7

m
8

m
9

m
10

m
11 0

0

h
par

h
par

h
par

h
par

1

2

3

4

a

m
1

m
2

m
3

m
4

m
5

m
6

m
7

m
8

m
9

m
10

m
11

h
mpar

h
mpar

h
mpar

h
mpar

1

2

3

4

b

Fig. 1. Figure (a) illustrates the standard tree construction using the parallel hash and figure (b) illustrates
the modified tree construction using the modified parallel hash.

Proof. Let us define εi as the collision bound for H tree
i , then we have for Htree

i+1 :

Pr[hpar
i+1(h

tree
i (m)) − hpar

i+1(h
tree
i (m′)) = 0] ≤ εi(1 − ε) + ε.

Solving the recurrence we get:

Pr[hpar
n (htree

n−1(m)) − hpar
n (htree

n−1(m
′)) = 0]

≤ (1 − ε)n−1ε + ε
n−2∑

i=1

(1 − ε)i + ε

= 1 − (1 − ε)n

ut

The modified tree construction: Consider, as an example, the case c = 2, yielding a binary
tree. Then the message length must be b · 2n, for some suitable n. If that is not the case,
Wegman and Carter propose [23] to break the message into substrings of length 2b and
if necessary pad the last substring with zeroes. The resulting string is hashed with the
parallel hash. If necessary, the resulting string is again padded with zeroes. This is repeated
until the resulting string has length b. This procedure is illustrated in fig. 1a.

Note that this algorithm is not always optimal, because for message lengths not equal
to a power of two, extra applications of the universal hash function are required. Of course,
this is only significant for short messages. We start constructing a modified tree hash by
defining a modified parallel hash, as follows:

Definition 7. Given a universal hash family, H, whose members h take bc bits to b bits,
consider the message M = m1||..||mq where |M | = bq. Let r = q mod c, then the modified
parallel hash can be defined as:

hmpar(M) =
{

h(m1, .., mc)||..||h(mq−c+1, .., mq) if r = 0

h(m1, .., mc)||..||h(mq−c−r+1, .., mq−r)||mq−r+1||..||mq if r 6= 0
(10)

Lemma 2. The modified parallel hash is ε-AU on equal length messages.

Proof. In the first case, where q is a multiple of c we simply have a parallel hash and the
bound on the collision probability is ε. In the case where q is not a multiple of c, there
are two possible situations. Either the difference in the messages M and M ′ is in the part,
which is processed by h, or in the part which is not processed but simply concatenated to
the result. In the first situation the bound on the collision probability is ε. In the second
situation the collision probability is trivially zero. Thus, the collision probability is at most
ε. ut

It is straightforward to define a modified tree hash, i.e. define it as in Definition 6 but use
the modified parallel hash instead of the usual parallel hash.

Corollary 1. Given a message with length |M | = bq, where cn−1 < q ≤ cn, the modified
tree hash defines a 1 − (1 − ε)n-AU family of hash functions on equal length messages.

Proof. This follows from theorem 4, when the usual parallel hash is replaced by the mod-
ified parallel hash, since both are ε-AU, and the number of levels is the same in both
cases3. ut

The binary case: Again, consider c = 2. The message is divided into blocks of size b. If
the message length is not a multiple of b, zeros are appended to the message such that
the length becomes a multiple of b. If the length hereafter is a multiple of 2b, the hash
function is applied to each block and the results are concatenated. If the length is an odd
multiple of b, the hash function is applied to each block except the last block. The results
and the last block are concatenated. The procedure is repeated until the size of the result
is b. The construction is illustrated in Fig. 1b.

A different view: Note that the construction can be defined in an alternative way. Con-
sidering again the case c = 2, the message length can be described by |M | ≡ b

∑n
i=0 ai2

i

with ai ∈ {0, 1}. To each term ai = 1 in the sum there corresponds a tree with i levels.
We order these trees according to size with the largest tree first. More precisely, we use
the tree hash for each group of data corresponding to a term in the sum, concatenate the
result, and linearly hash it backwards, i.e. take the b-bit block as output from the last tree
and hash it with the result of the second to last tree and so on, until only one b-bit string
is left. In other words, the construction consists of a series of concatenated tree hashes
followed by a linear hash [1]. For the example in Fig. 1b, the message length can be written
as: |M | = b(23 + 21 + 20). There is one tree with 3 levels, one with 1 level and one with 0
levels. The hash results if the outputs of those trees are linearly hashed starting with the
result from the smallest tree.

The function family H∗: The above construction is only AU for equal length messages.
To ensure universality for different length messages, we simply concatenate the length of
the given message in a fixed z-bit format [17, 1]:

3 In a Wegman-Carter binary tree hash, a message consisting of an odd number of blocks is padded such
that the number of blocks is even. This is done after each application of the parallel hash. The number
of levels is equal to the number of levels for a message whose length is the nearest larger power of two.
Now it is easy to convince oneself that the number of levels of the modified tree hash is exactly the
same.

Definition 8. Fix z > 0 and let the message M (before padding) have any length less
than 2z. Define Lz = |M | to be the z-bit representation of the length and define the family
H∗ by its members h∗, as follows:

h∗(M) = Lz||h(M). (11)

We then have the following property:

Lemma 3. The hash function family H∗ is 1 − (1 − ε)n-AU.

Proof. In the case |M | 6= |M ′|, the collision probability is trivially zero. In the case |M | =
|M ′|, the collision probability is defined according to corollary 1 by the number of levels
necessary to compress the message. ut

Note that for Badger, we will use H = ENH. This immediately yields a binary tree with
a block size of 64 bit. The input size of the function family H∗ is defined to be between 0
and 264 − 1 bit. Consequently, the output size is 128 bit, 64 bit each for the hash and for
the message length. Also note that the tree will contain between 1 and 58 levels, yielding
a collision probability between εH∗ ≤ 2−32 for small and εH∗ = 1 − (1 − 2−32)58 ≤ 2−26.14

for large trees.

5 The function family F

Strenghtening a function family: What is left now according to theorem 1 is to construct
a suitable SU family F , such that the overall function family H = H∗×F is both efficient
and secure. Note that without considering the details of H∗, the input size of F is b + z
bit, and its output size should be equivalent to the security of the overall scheme.

In section 3, we reduced a strong class of universal hash functions to a weaker one. In
order to construct the strongly universal function familiy F , we will do the opposite: In
accordance with lemma 1 from [11], we will transform the ∆-universal hash family, MMH∗,
proposed by Halevi and Krawczyk [14] based on [7], into a strongly universal hash family.
This is accomplished by adding an additional key, kl+1, in the following way:

MMHsu
K (M) =

l∑

i=1

miki + kl+1 mod p, (12)

where p is a prime number, M = m1||...||mn, and mi, ki ∈ {0, ..., p − 1}.

Key material: It is easily seen that for a given message M , the amount of key material,
NH(M), needed to choose a function from the family H is defined by

NH(M) = NHdlogc(|M |/b)e + NF , (13)

where NH is the amount of key material needed for the H-function in the tree and NF

is the amount of key material needed for the F -function. Note that the amount of key
material required is the same as for the usual tree MAC.

The choice for Badger: Remember from section 4 that H∗ produces a 128-bit output,
which is also the minimum input size for F . Also remember that the collision probability
for the H∗-function ranges from 2−32 to 2−26.14, depending on the size of the tree. Since
the overall security can not get better than that (according to theorem 2), an output size
of 32 bit for the F -function is sufficient, since additional bits do not improve the security.

Consequently, we use a 32-bit version of the MMHsu-construction. We take p to be the
largest 32-bit prime number, which is p = 232 − 5. In order to process a 128-bit input, we
have to choose n = 5 and obtain:

FK(M) =

5∑

i=1

qiki + k6 mod
(
232 − 5

)
. (14)

Note that the 128-bit output of H∗ has to be divided into five input blocks qi in some
way. For Badger, it is padded with 7 leading zeroes and then split into 27-bit blocks4. The
rationale for this design and an efficient way to implement it is given in section A in the
appendix. In section B of the appendix, a mathematical simplification of the F -function
is discussed, along with an explanation why it is not used for Badger.

6 The Badger Specification

For the algorithmic description of Badger, the following pseudocode calls to external func-
tions are made:

– PRG KeySetup(K): Initializes pseudorandom generator with the 128-bit key K.
– PRG IVSetup(N): Initializes pseudorandom generator with the 64-bit nonce N .
– PRG Nextbit(n): Returns n bit of pseudorandom output.

Key generation: To generate the key material for the H∗- and F -functions, any secure PRG
can be used, as long as the key length is at least 128 bit. Since the height of the tree is 58
for maximum size messages, we require 58 64-bit keys for the H∗-function. Furthermore,
6 keys from the interval {0, ..., 232 − 6} have to be generated for the F -function. Note
that (as opposed to the key material for the pseudo-random pad), this key material can
be computed once and then be re-used for the computation of all future MACs. The full
procedure is given in figure 2.

Message processing: Pseudo-code for Badger is presented in figure 3. To process the mes-
sage, it is first divided into 64-bit blocks and padded with zeroes if necessary. The resulting
bit string is then compressed into one 64-bit block, using the H∗-function. The length of
the message in bit (before padding) is represented as a 64-bit number and concatenated
to the 64-bit result. The resulting 128-bit block is prefixed with 7 zeroes, divided into five
27-bit blocks and run through the F -function.

The final tag is generated by xor-ing the output of the hash function with a pseudo-
random pad, according to Definition 4. Note that no output of the PRG must ever be
re-used; this can be achieved by running the PRG without resetting, or by using a new
nonce for every new message.

4 Note that the security claims for the SU function family also hold if not all messages from {0, ..., 232−6}
are actually used as inputs, as long as all keys from {0, ..., 232 − 6} occur with equal probability.

PRG KeySetup(K)
words used = 0

// Assign 32-bit values to finalize keys
for j = 1 to 6:

for i = 1 to u:
final key[j][i] = PRG Nextbit(32)
words used++

// Test whether they are in Zp

for j = 1 to 6:
for i = 1 to u:

while(final key[j][i] ≥ p)
final key[j][i] = PRG Nextbit(32)
words used++

// Empty buffer
while(words used mod 4 6= 0):

discard PRG Nextbit(32)
words used++

// Assign 64-bit values to level keys
for j = 1 to v:

for i = 1 to u:
level key[j][i] = PRG Nextbit(64)

Fig. 2. Pseudo-code of the key setup

Forgery probability: The forgery probability is ε ≤ εF +(1− εF)εH∗ , according to theorem
2. Remember that depending on the message length, the upper bound on εH∗ can range
from 2−32 to 2−26.14. Also note that εF = 1/(232 − 5) ≈ 2−32. Using these values, it can
be seen that the overall forgery probability has an upper bound ranging from 2−31 for
extremely short to 2−26.12 for extremely long messages.

Forgery probabilities of up to 2−26.12 are insufficient for most applications. However,
a simple method to reduce the forgery probability is to hash the message u times with
independent keys and concatenate the results. This results in a forgery probability of εu.
To obtain 128-bit security, we need to hash the message 5 times, yielding bounds on the
forgery probability of between 2−155 and 2−130.6 and a tag size of 160 bits. In particular, this
leads to the verifier-selectable assurance as each 32-bit tag can be verified independently.5

5 At first glance, it seems that the Toeplitz construction (proposed by Krawczyk in [15]) is applicable
here, i.e. that the u parallel MACs are calculated using (k1, . . . , k58), (k2, . . . , k59) etc. However, this
only makes sense if the resulting forgery probability is at most εu, and experiments with smaller versions
of the H∗-function indicate that this is not the case here. Thus, the Toeplitz construction is not used
with Badger.

Function h(k, m1, m2)
1. return (m1 +32 k) · ((m1 � 32) +32 (k � 32)) +64 m2

Function Keygen(k)
1. generate kF

1 , . . . , kF
6 ∈ {0, . . . , 232 − 6} from PRG(k)

2. generate k1, . . . , k58 ∈ {0, . . . , 232 − 1} from PRG(k)
3. return kF

1 , . . . , kF
6 , k1, . . . , k58

Function Badger(k, M, N)
1. L = |M |
2. while |M | mod 64 6= 0 do: M = M ||0
3. for i = 1 to i = dlog2(L/64)e do:
4. divide M into 64-bit blocks, M = m1|| . . . ||mt

5. if t is even:
M = h(ki, m1, m2)|| . . . ||h(ki, mt−1, mt)

else:
M = h(ki, m1, m2)|| . . . ||h(ki, mt−2, mt−1)||mt

6. set Q = 07||L||M
7. divide Q into 27-bit blocks , Q = q5|| . . . ||q1

8. S =
�

5

i=1
qik

F
i + kF

6 mod � 232 − 5 �
9. return S ⊕ PRG(k, N)

Fig. 3. Pseudo-code of the Badger algorithm

7 Performance

On the testing environment: Performance of the Badger algorithm was measured on a 1.0
GHz Pentium III and on a 1.7 GHz Pentium 4 processor. The speed-optimized versions
were programmed in assembly language inlined in C and compiled using the Intel C++ 7.1
compiler. All performance results in this section are based on generating a 2 · 32 bit tag.
The pseudo-random material required for the algorithm was generated using the stream
cipher Rabbit [6, 5], which is very fast in software. Note that since Badger is designed with
speed being a main objective, it makes sense to use a fast stream cipher (instead of, e.g.,
using a block cipher like AES in a suitable stream cipher mode).

On IV-setup: Note that the pseudo-random pad can be generated either with or without an
explicit IV-setup. If an explicit IV is used, the stream cipher has to be re-initialized for each
message. Without an explicit IV, the key material for successive messages is produced by
continuous extraction of bytes from the stream cipher, yielding a performance advantage.
This corresponds to interpreting the message number as the IV. However, this technique is
only applicable if messages are guaranteed to be received in the same order as generated,
which is often not the case (e.g. in IPsec communication). Table 1 gives performance
numbers both with and without explicit IV-setup.

On short messages: Since the amount of key material required for Badger depends on the
length of the message, optimized versions can be used in applications where the message
length is upper bounded. For example, in typical IPsec applications, the message length
cannot exceed 1500 bytes and when authenticating TLS protected data, each message

Table 1. Performance results with and without IV-setup. “Key setup” generates all keys for the ε-AU and
SU hash functions, “Universal hash” processes the tree, and “Finalization” includes the F -function and
generates the pseudo-random pad.

Function Pentium III Pentium 4

Key setup 4093 cycles 5942 cycles
Universal hash 2.2 cycles/byte 1.3 cycles/byte
Finalization without IV 175 cycles 220 cycles
Finalization with IV 433 cycles 892 cycles

Table 2. Badger properties for various restricted message lengths. “Memory req.” denotes the amount
of memory required to store the internal state including key material and the inner state of the Rabbit
stream cipher. “Setup” denotes the key setup, and “Fin.” denotes finalization with IV-setup.

Max. Forgery Memory Pentium III Pentium 4

message size prob. req. Setup Fin. Setup Fin.

211 bytes (e.g. IPsec) 2−57.7 400 bytes 1133 cycles 409 cycles 1862 cycles 868 cycles
215 bytes (e.g. TLS) 2−56.6 528 bytes 1370 cycles 421 cycles 2190 cycles 880 cycles
232 bytes 2−54.2 1072 bytes 2376 cycles 421 cycles 3576 cycles 880 cycles
261 − 1 bytes 2−52.2 2000 bytes 4093 cycles 433 cycles 5942 cycles 892 cycles

cannot exceed 17 kilobytes [9]. Furthermore, the evaluation of the F -function is simplified
since part of the input is zero, see eq. (12). The properties of Badger when the message
length is limited are shown in Table 2.

Note that the performance numbers for the key setup and finalization (which are
dependent on the PRG in use) are partially based on estimates. The numbers for the
universal hash function, however, are independent of the PRG and are fully based on
measurements.

On comparing performance: It has become common practice in scientific papers proposing
new cryptographic primitives to provide performance comparisons with competing designs.
However, there are numerous problems associated with such comparisons. For example, in
the case of MACs, the performance figures given would be influenced by, e.g.,

– the amount of optimization done on the algorithm implementation,

– the exact choice of the message lengths under consideration6,

– the choice of the underlying cryptographic primitive (like Rabbit, AES etc.),

– the amount of optimization done on the implementation of this primitive,

– the amount of memory used to optimize, e.g. by using lookup tables, and

– the processor the performance tests have been conducted on.

When using performance numbers provided by others, it is often not clear how at least
some of the above parameters have been chosen. On the other hand, when implementing
the competitor’s algorithm oneself, it is quite likely that one would (even if inadvertedly)

6 Many algorithms have criticals lengths where the performance suddenly decreases dramatically by in-
creasing the message length by just one bit. This is simply due to the fact that computers have limited
register and cache sizes and that by exceeding those sizes by just one bit, things suddenly get more
complicated. For an example of such critical message sizes, see e.g. the performance tables of the POLY-
1305 MAC given in appendix B of [2]. By deliberately choosing the message lengths in one’s own favour,
the outcome of a performance comparison could be severely influenced.

optimize one’s own brainchild better than the competitor’s. Thus, we conclude that a
fair performance comparison can only be based on the implementation by an independent
entity, and will thus refrain from giving such comparisons here.

8 Conclusion

We presented a new fast and provably secure MAC called Badger, based on universal
hashing. In the construction, a modified tree hash was introduced that basically combines
a tree hash with a linear hash. The modified tree hash is more efficient than the standard
tree hash, and its security has being proven. Furthermore, in order to derive the core hash
function of the tree, we introduced a novel technique for reducing ∆-universal function
families to universal families. The resulting MAC is very efficient on standard processors
both for short and long messages. As an example, for a 64-bit tag, it achieves performances
of up to 2.2 and 1.3 clock cycles per byte on a Pentium III and Pentium 4 processor,
respectively. The key material necessary for the hash functions is only 976 bytes, and the
forgery probability is at most 2−52.2.

References

1. M. Bellare and P. Rogaway. Collision-resistant hashing: Towards making UOWHFs practical. In
B. Kaliski, editor, Proc. Crypto ’97, volume 1294 of LNCS, pages 470–484. Springer, 1997.

2. D. Bernstein. The Poly1305-AES message-authentication code. In Proc. Fast Software Encryption

’05.
3. J. Bierbrauer, T. Johansson, G. Kabatianskii, and B. Smeets. On families of hash functions via

geometric codes and concatenation. In D. Stinson, editor, Proc. Crypto ’93, volume 773 of LNCS,
pages 331–342. Springer, 1994.

4. J. Black, S. Halevi, H. Krawczyk, T. Krovetz, and P. Rogaway. UMAC: Fast and secure message
authentication. In M. Wiener, editor, Proc. Crypto ’99, volume 1666 of LNCS, pages 216–232. Springer,
1999.

5. M. Boesgaard, T. Pedersen, M. Vesterager, and E. Zenner. The Rabbit stream cipher - design and
security analysis. In Workshop Record of the State of the Arts of Stream Ciphers Workshop, pages
7–29. ECRYPT Network of Excellence in Cryptography, October 2004.

6. M. Boesgaard, M. Vesterager, T. Pedersen, J. Christiansen, and O. Scavenius. Rabbit: A new high-
performance stream cipher. In T. Johansson, editor, Proc. Fast Software Encryption 2003, volume
2887 of LNCS, pages 307–329. Springer, 2003.

7. J. Carter and M. Wegman. Universal classes of hash functions. Journal of Computer and System

Sciences, 18:143–154, 1979.
8. J. Daemen and V. Rijmen. AES proposal: Rijndael.

http://csrc.nist.gov/encryption/aes/rijndael/Rijndael.pdf, 1999.
9. T. Dierks and C. Allen. The TLS protocol version 1.0, IETF RFC 2246. http://www.ietf.org/rfc.html,

1999.
10. P. Ekdahl and T. Johansson. A new version of the stream cipher SNOW. In H. Heys and K. Nyberg,

editors, Proc. SAC 2002, volume 2595 of LNCS, pages 47–61. Springer, 2002.
11. M. Etzel, S. Patel, and Z. Ramzan. Square Hash: Fast message authentication via optimized universal

hash functions. In M. Wiener, editor, Proc. Crypto ’99, volume 1666 of LNCS, pages 234–251. Springer,
1999.

12. N. Ferguson and B. Schneier. Practical Cryptography. Wiley, 2003.
13. N. Ferguson, D. Whiting, B. Schneier, J. Kelsey, S. Lucks, and T. Kohno. Helix: Fast encryption

and authentication in a single cryptographic primitive. In T. Johansson, editor, Proc. Fast Software

Encryption 2003, volume 2887 of LNCS, pages 330–346. Springer, 2003.
14. S. Halevi and H. Krawczyk. MMH: Software message authentication in the Gbit/second rates. In

E. Biham, editor, Proc. Fast Software Encryption ’97, volume 1267 of LNCS, pages 172–189. Springer,
1997.

15. H. Krawczyk. LFSR-based hashing and authentication. In Y. Desmedt, editor, Proc. Crypto ’94,
volume 839 of LNCS, pages 129–139, Berlin, 1994.

16. H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-hashing for message authentication IETF
RFC 2104. http://www.ietf.org/rfc.html, 1997.

17. T. Krovetz. Software-Optimized Universal Hashing and Message Authentication. PhD thesis, UC
Davis, September 2000.

18. W. Nevelsteen and B. Preneel. Software performance of universal hash functions. In J. Stern, editor,
Proc. Eurocrypt ’99, volume 1592 of LNCS, pages 24–41. Springer, 1999.

19. P. Rogaway. Bucket hashing and its application to fast message authentication. In D. Coppersmith,
editor, Proc. Crypto ’95, volume 963 of LNCS, pages 29–42. Springer, 1995.

20. D. Stinson. Universal hashing and authentication codes. In J. Feigenbaum, editor, Proc. Crypto ’91,
volume 576 of LNCS, pages 74–85. Springer, 1992.

21. D. Stinson. Universal hashing and message authentication codes. Designs, Codes, and Cryptography,
4(4):369–380, 1994.

22. D. Stinson. On the connection between universal hashing, combinatorial designs and error-correcting
codes. In Proc. Congressus Numerantium 114, pages 7–27, 1996.

23. M. Wegmann and J. Carter. New hash functions and their use in authentication and set equality.
Journal of Computer and System Sciences, 22:265–279, 1981.

r = 5 * a;

r += b;

if (r < b)

r -= 0xFFFFFFFB; // if overflow has occured

else if (r >= 0xFFFFFFFB)

r -= 0xFFFFFFFB; // if result ≥ 232 − 5

Fig. 4. Computing modulus 232 − 5 in the F -function

A Efficient computation of the F -function

Computation of the modular reduction: Remember from section 5 that the F -function is
of the form

FK(M) =
5∑

i=1

qiki + k6

︸ ︷︷ ︸

t

mod
(
232 − 5

)
,

where a 128-bit input has to be divided into five variables q1, . . . , q5. Assuming that addi-
tions of 64-bit variables and multiplications of 32-bit values can be implemented efficiently
on standard processors, the major problem is the calcuation of the modular reduction.

Also remember that the 128-bit output of H∗ is padded with 7 leading zeroes and
divided into 5 blocks qi of length 27 bit. This has the effect of guaranteeing that t <
(264−1)/5. In particular, the result of the full addition can be calculated as a 64-bit value
without any need to handle of carry bits. All that remains is to calculate t mod

(
232 − 5

)
.

Here, we use the well-known fact that

(a · 2n + b) mod (2n − k) = (a · k + b) mod (2n − k) .

In the concrete case, if we write t = (a||b), with a being the upper and b being the
lower word, then the output can be computed as 5a + b mod

(
232 − 5

)
. Note that since

t < (264 − 1)/5, we have a < (232 − 1)/5 and thus 5 · a < 232 − 1. Again, not carry occurs,
this time for a 32-bit addition. In fact, the only carry that can occur is when adding the
32-bit words 5a and b. If this happens, we subtract 232 − 5 from the result, as described
in figure 4.

Finally, we have to check whether the result is ≥ 232 − 5. If this is the case, again, we
have to subtract 232 − 5. Close examination reveals that if an addition overflow occurs,
then the value of r is in the range {0, . . . , 0xC7FFFFE0}, which means that the second
condition can not be true. Thus, only one of the conditions can hold.

Saving additions for short messages: For Badger, the input was padded to 135 bits by
prefixing zeroes. Thus, the total input to the F -function is of the form 07||L||M , where L
is the 64-bit representation of the message length, and M is the output of the H∗-function.
Note that if the first 20 bits of L are zero (i.e., L < 244), then the term q5k5 is zero and
can be left out to increase performance. Likewise, if the first 47 bits of L are zero (i.e.,
L < 217 bit), then the term q4k4 can be left out, too. This possible saving in computing
time (both in key generation and in finalizing) is the reason for choosing 27-bit blocks qi

instead of 26-bit blocks, as would have been possible.

B A mathematical simplification of the F -function

MAC from ∆-universal families: An obvious generalization of the Wegman-Carter MAC
is as follows:

Definition 9. Let (B, �) be an Abelian group, and H be an ε-A∆U function family map-
ping from a set A to the set B. Using a nonce n and a random pad r(n), the ∆-MAC is
defined as

MAC∆(M ; h, r(n)) = h(M) � r(n),

where h is a random hash function from H and M is the message.

Then in a fashion similar to the proof on ε-AXU function families [15], the following can
be shown:

Theorem 5. The probability of an impersonation attack to succeed against the ∆-MAC
is 1/|B|, and the probability of a substitution attack to succeed is at most ε.

Also note that in a fashion similar to [21], the following composition rule can be proven:

Composition 3 If there exists an ε1-AU family H1 of hash functions from A to B and an
ε2-A∆U family H2 of hash functions from B to C, then there exists an ε-A∆U family H of
hash functions from A to C, where H = H1 ×H2, |H| = |H1| · |H2|, and ε = ε1 + ε2 − ε1ε2.

Thus, the construction presented in the paper could be simplified by using an F -function
from an ε-A∆U family, as long as its output is combined with the pseudo-random pad by
using the group operation �.

Possible simplification 1: Remember that the family MMH∗ (without the final key addi-
tion) is ∆U. Thus, we could also use the following F -function for our construction:

F∆
K (M) =

5∑

i=1

qiki mod
(
232 − 5

)
,

i.e. we could leave out the final key addition altogether. In this case, we would have to
implement the pseudo-random pad over the group ({0, . . . , 232 − 6}, �), where � denotes
the addition modulo 232 − 5. This, however, means that for all ki and all pseudo-random
words from the PRG, it has to be checked whether they are < 232 − 5. This introduces
more computational overhead than generating and adding one additional key k6; thus, we
chose the solution proposed in section 5.

Possible simplification 2: Another possible use for theorem 5 is to use a function F that
is ∆-universal with regards to the group ({0, 1}n,⊕). A possible solution would be to use
a version of MMH∗ that operates over GF(232). In fact, it can be shown that this version
of MMH∗ is ∆U, too. If ⊕ and � denote the addition and multiplication in GF(232),
respectively, then we have

F⊕

K (M) = (q1 � k1) ⊕ . . . ⊕ (q4 � k4).

However, this involves four polynomial multiplications, which are much less efficient on
standard processors than additions over the integers. Thus, we discarded this solution,
too.

