
Secure Multi-party Computation for selecting a solution according to a uniform
distribution over all solutions of a general combinatorial problem

Marius-Călin Silaghi
Florida Tech

Abstract

Secure simulations of arithmetic circuit and
boolean circuit evaluations are known to save privacy
while providing solutions to any probabilistic function
over a field. The problem we want to solve is to select a
random solution of a general combinatorial problem.
Here we discuss how to specify the need of selecting a
random solution of a general combinatorial problem,
as a probabilistic function. Arithmetic circuits for find-
ing the set of all solutions are simple to design [24].

We know no arithmetic circuit proposed in the past,
selecting a single solution according to a uniform dis-
tribution over all solutions of a general constraint sat-
isfaction problem. The only one we are able to de-
sign has a factorial complexity in the size of the search
space (O(dm!dm) multiplications of secrets), where m
is the number of variables and d the maximal size of a
variable’s domain.

Nevertheless, we were able to develop a method-
ology combining secure arithmetic circuit evaluation
and mix-nets, able to compile the problem of select-
ing a random solution of a CSP to a n/2-private multi-
party computation assuming passive attackers. The
complexity of this solution is more acceptable, O(dm)
multiplications, being therefore applicable for some
reasonable problems, like meeting scheduling.

Constraint satisfaction is a framework extensively
used in some areas of artificial intelligence to model
problems like meeting scheduling, timetabling, the sta-
ble marriages problem, and some negotiation prob-
lems. It is based on abstracting a problem as a set
of variables, and a set of constraints that specify un-
acceptable combination of values for sets of distinct
variables.

X −

x y z

+ +

X

f

X

Figure 1. An arithmetic circuit, f=(xz +
yz)(yz+(x−z)). Each input can be the secret
of some participant. The output may not be
revealed to all participants. All intermediary
values remain secret to everybody.

1. Introduction

Secure multi-party computations can simulate any
arithmetic circuit [2] or boolean circuit [25, 20] evalu-
ation. An arithmetic circuit can be intuitively imag-
ined as a directed graph without cycles where each
node is described either by an addition/subtraction or
by a multiplication operator (see Figure 1). Each leaf
is a constant. In a secure arithmetic circuit evaluation,
a set of participants perform the operations of an arith-
metic circuit over some inputs, each input being either
public or an (encrypted/shared) secret of one of them.
The results of the arithmetic circuit are the values of
some predefined nodes. The protocol can be designed
to reveal the result to only a subset of the agents, while
none of them learns anything about intermediary val-
ues. We say that the multi-party computation simulates

1

the evaluation of the arithmetic circuit. A boolean cir-
cuit is similar, just that the leafs are boolean truth val-
ues, false or true, often represented as 0 and 1. The rest
of the nodes are boolean operators like AND or XOR.

In this work we only concentrate on arithmetic cir-
cuits. A function does not have to be represented in
this form to be solvable using general secure arith-
metic circuit evaluation. It only needs to have such an
equivalent representation. For example, the operation∑E

i=B f(i) is an arithmetic circuit if B and E are public
constants and f(i) is an arithmetic circuit. The same
is true about

∏E
i=B f(i). Such constructs are useful

when designing arithmetic circuits.
The arithmetic circuit evaluation can also imple-

ment probabilistic functions. A (probabilistic) func-
tion f over a finite field F is defined in [2] as f :
Fn × Rm → Fn, where R a random variable with
uniform distribution over F . For example, each partic-
ipant can provide a secret random number drawn with
uniform distribution over F, and the random input can
be taken as their sum.

The challenge is to apply secure arithmetic circuit
evaluation to find a solution to combinatorial problems
that are represented in the handy framework of Con-
straint Satisfaction Problems.

CSP. A constraint satisfaction problem (CSP) is de-
fined by three sets: (X , D, C). X = {x1, ..., xm}
is a set of variables and D = {D1, ..., Dm} is a set
of finite domains such that xi can take values only
from Di = {vi1, ..., vidi}. C = {φ1, ..., φc} is a set of
constraints. A constraint φi limits the legality of each
combination of assignments to the variables of an or-
dered subset Xi = {xi1 , ..., xiki} of the variables in
X , Xi ⊆ X . An assignment is a pair 〈xi, vik〉 meaning
that the variable xi is assigned the value vik.

A tuple is an ordered set. The projection of a tuple ε
of assignments over a tuple of variables Xi is denoted
ε|Xi . A solution of a CSP (X ,D,C) is a tuple of as-
signments ε with one assignment for each variable in
X such that each φi∈C is satisfied by ε|Xi . The search
space of a CSP is the Cartesian product of the domains
of its variables.
Example 1 In a problem P, one has to find a place
(x1) and time (x2) for meeting. x1 is either Paris
(P) or Quebec (Q), i.e. D1={P,Q}. x2 is either
Tuesday (T) or Wednesday (W), i.e. D2={T,W}.

T W

Q

P
x1

x2

0 1

1 0

Figure 2. A constraint be-
tween two variables, place (x1)
x1∈{Paris(P), Quebec(Q)}, and time (x2)
x2∈{Tuesday(T),Wednesday(W)}. The 0s
mark rejected tuples. I.e. this constraint
allows only the pairs (P,W) and (Q,T), and can
be written {(P,W), (Q,T)}.

There are two constraints: φ1={(P,W), (Q,T)}, and
φ2={(P,W), (Q,T), (Q,W)}. φ1 is depicted in Fig-
ure 2.

The problem is to find values for x1 and x2 satisfy-
ing both φ1 and φ2.
Example 2 The timetabling problem can be modeled
with CSPs by using a separate variable to model the
task to be allocated to each time slot. The constraints
specify the relations that have to be assured between
tasks in different slots.
Example 3 The stable marriages problem is the prob-
lem of finding a set of matches between a set of males
and a set of females such that if any person from the
set of females, Alice, prefers some male, Bob, to the
partner selected for her, then Bob prefers his current
partner to Alice. Also, if any male, Bob, prefers some
female, Alice, to the partner selected for him, then
Alice prefers her current partner to Bob.

In a CSP representation of the stable marriages
problem, there is one variable for each female, speci-
fying the male assigned to her by the solution, or the
state single. The constraints are obtain by preprocess-
ing the input of participants about their preferences.

Some simple arithmetic circuits can implement this
preprocessing. Let us give an example:

We can denote the females with A1,Am and the
males with B1, ...Bn−m

The input of each female Ai can specify a prefer-
ence value PAi(Bj , Bk) for each pair of males. Each
male Bi can specify a preference value PBi(Aj , Ak)

for each pair of females.
PAi(Bj , Bk)=1 if and only if Ai prefers Bj to

Bk. Otherwise PAi(Bj , Bk)=0. PBi(Aj , Ak)=1
if and only if Bi prefers Aj to Ak. Otherwise
PBi(Aj , Ak)=0.

Then, a constraint φij is defined between each two
variables xi and xj , specifying the males assigned to
the females Ai and Aj . φij [u, v] is the acceptance
value of the pair of matches: (Ai, Bu), (Aj , Bu).

One synthesizes m(m− 1)/2 constraints:

φi,j [u, v] = (1− PAi(Bv, Bu)) +

PAi(Bv, Bu) ∗ PBv(Aj , Ai)
φi,j [u, u] = 0

We consider that a set of participants are the source
of these problems, each agent has his own private con-
straint and one has to find agreements for a solution,
from the set of possible alternatives, that satisfies ev-
erybody. The handy formulation modeling this kind
of problems is called Distributed Constraint Satisfac-
tion [46, 7, 44]. There are several versions of this for-
malism, and we select one that explains best the secu-
rity problem.

Definition 1 A Distributed CSP (DisCSP) is defined
by five sets (A,X,D,C, M). A={A1, ..., An} is a set
of agents. X , D, C and the solution are defined like in
CSPs. Each constraint φi, i>0, is known only to one
agent, being the secret of that agent. There may exist
a public constraint in C, φ0, known to everybody. M
is a set of sets of agents from A, M={A1, ..., Am}. It
specifies a mapping of variables to their owners. Each
variable xi is owned by the set of agents Ai, that are
entitled to learn its assignment in the solution.

Example 4 In another view of the problem P, two per-
sons Alice (A1) and Bob (A2) want to find a common
place (x1) and time (x2) for meeting. x1 is either Paris
(P) or Quebec (Q), i.e. D1 = {P,Q}. x2 is either
Tuesday (T) or Wednesday (W), i.e. D2 = {T,W}.
Each of them has a secret constraint on the possible
time and place of their meeting. Alice accepts only
{(P, T), (P,W), (Q,T)} which defines φ1. Bob ac-
cepts either of {(P,W), (Q,T), (Q,W)}, defined by
φ2. There is also a publicly known constraint, φ0,

which due to an announced strike forbids a meeting
in Paris on Tuesday, φ0 = {(P,W), (Q,T), (Q,W)}.

The problem is to publish values for x1 and x2

satisfying all constraints and without revealing any-
thing else about φ2 to Alice or about φ1 to Bob.
A1=A2={A1, A2}

Remark 1 Note that once a distributed CSP has all
its secret parameters (i.e. constraints) shared among
agents (e.g. with Shamir’s scheme [37]) in view of
a multi-party computation, all differences between a
CSP and a DisCSP disappear, except for the existence
of the participants and of the sets of owner agents that
will receive the results of the computation.

Problem subtleties. The problem is how to formal-
ize the DisCSP as an arithmetic circuit! An arithmetic
circuit whose outcome is the set of all solutions was
designed in [24]. If one tries to use that approach when
only one solution is needed, the result returned by the
function will reveal to everybody a lot more informa-
tion than needed. For example, with meeting schedul-
ing it will tell that everybody is available and can reach
the corresponding places on the days in the alternative
solutions. It also suggest that at least one person is
busy on each alternative that is not a solution. Some
of this information can lead to undesired leaks of pri-
vacy. The approach of testing each alternative one by
one until a solution is found has similar potential leaks
of privacy.

In consequence, one needs to design arithmetic cir-
cuits returning only one solution. There is still the
problem of which solution should be returned. It is
possible to return the first solution in the lexicographi-
cal order on the search space [38]. However, knowing
that the solution was computed in this way leaks the
fact that the alternatives placed before it in the lexi-
cographical order on the search space are rejected by
some agent.

Therefore, what we need is a probabilistic arith-
metic circuit that returns a solution picked randomly
among the possible solutions to the problem. An alter-
native we considered is to compute the lexicographi-
cally first solution for all permutations of domains [44]
(and eventually variables). The solution will then be
selected randomly among the existing solutions. The
used permutation guarantees to give each solution a

chance to be returned, so that no secret about meeting
acceptance/rejection can be inferred from the returned
result. If there is no solution, this will intrinsically re-
veal to everybody that each alternative is constrained
by some agent, but this leak is inherent to the problem
and not to the algorithm.

The remaining problem is that permutations of do-
mains and variables do not always lead to a selection
of the solution with a uniform distribution over the
possible solutions. Therefore, when an agent uses his
constraints in several computations using the same al-
gorithm, some statistical information can be extracted
about his secrets, besides his acceptance of the solu-
tion. For example, if the returned solutions often spec-
ify a meeting in Quebec on Tuesday and rarely some
other alternatives, then it can be inferred that some par-
ticipant can go to Quebec only Tuesday, with higher
probability than what statistics ignorant of the used
permutation algorithm could infer.

In this paper we analyze this leak and design
schemes where the solutions are picked with a uniform
distribution over the possible solutions. Repeated use
of the same constraint in different problems will still
suggest that a certain meeting is the only one possible,
if it is always returned. However, the likelihood of the
inference is lower than in the previous techniques and
this time it is inherent to the problem and not to the
algorithm.

Moreover, it is easy to extend the technique such
that alternatives already known to be accepted by an
agent are verified first, if it is acceptable to save some-
one’s privacy in the detriment of the others.

Next we present the background techniques, then
we propose an arithmetic circuit that returns the lexi-
cographically first solution of a distributed CSP, which
will be used in subsequent algorithms. In Section 4
we present a set of theoretical results concerning the
properties of the distributions of solutions achieved
with different permutation methods. In Section 4.2 we
prove a method guaranteeing a uniform distribution of
the returned solutions over the set of all solutions. In
the subsequent sections we propose an arithmetic cir-
cuit and then a faster multi-party computation imple-
menting the method proposed in Section 4.2.

2. Background

CSPs. Constraint Satisfaction Problems are used to
modeling combinatorial problems. The have matured
as an area starting with the work of [33, 42, 29, 17, 12].
Distributed CSPs have been addressed under different
formulations in the past [35, 41, 26, 28, 46, 7, 44, 13,
8, 3, 27, 23, 47], and secrecy within DisCSPs has been
stressed several times [32, 16, 38, 36, 45, 15].

Secure Arithmetic Circuit Evaluation. We use the
technique for secure evaluation of functions with se-
cret inputs described in [2]. Several recent ver-
sions are based on (oblivious) boolean circuit evalu-
ation [25, 20]. There exists a large amount of work on
multi-party computations [18, 6, 1, 21, 22, 10, 11, 4,
9, 30, 14].

We use (+,×)-homomorphic encryption functions
EKE , i.e. respecting:

∀m1,m2, EKE (m1)EKE (m2) = EKE (m1 +m2).

Some encryption functions take a randomizing param-
eter r. However, we write Ei(m) instead of Ei(m, r),
to simplify the notation. A good example of a (+,×)-
homomorphic scheme with randomizing parameter is
the Paillier encryption [34].

To destroy the visibility of the relations between the
initial problem formulation and the formulation actu-
ally used in computations one can exploit random joint
permutations that are not known to any participant. In
one of the techniques presented here we reformulate
the initial problem by reordering its parameters. Such
permutations appeared in Chaum’s mix-nets [5] and
in [31]. The shuffling is obtained by a chain of permu-
tations (each being the secret of a participant) on the
encrypted secrets.

The secure arithmetic circuit evaluation in [2] ex-
ploits Shamir’s secret sharing [37]. This sharing is
based on the fact that a polynomial f(x) of degree t−1
with unknown parameters can be reconstructed given
the evaluation of f in at least t distinct values of x.
It can be done using Lagrange interpolation. Instead,
absolutely no information is given about the value of
f(0) by revealing the valuation of f in any at most t−1
non-zero values of x. Therefore, in order to share a se-
cret number s to n participantsA1, ..., An, one first se-
lects t−1 random numbers a1, ..., at−1 that will define

the polynomial f(x) = s+
∑t−1

i=1(aix
i). A distinct

non-zero number ki is assigned to each participant Ai.
The value of the pair (ki, f(ki)) is sent over a secure
channel (e.g. encrypted) to each participant Ai. This
is called a (t, n)-threshold scheme.

Once secret numbers are shared with a (t, n)-
threshold scheme, computations of an arbitrary agreed
function of a certain class can be performed over
the shared secrets, in such a way that all results re-
main shared secrets with the same security properties
(the number of supported colluders, t) [2, 43]. For
Shamir’s technique, one knows to perform addition
and multiplications when t ≤ (n − 1)/2. At multi-
plication, [2] proposes to perform a randomization of
the shares of the result by adding to them shares of 0.
We are going to exploit a related method in one of the
proposed protocols.

All Possible Schedules. It is pretty simple to de-
sign a technique revealing all possible solutions to
a constraint satisfaction problem. In [24] one tries
to solve meeting scheduling problems, computing
for each possible meeting, ε, a boolean circuit:∧
φk∈C φk(ε|Xk). The results of all these boolean cir-

cuits are revealed. Everybody learns whether each al-
ternative meeting is possible or not. As we discussed
in the introduction, this is more than what one may
want to leak when a single solution is searched for.

It is true that sometimes people think that is bet-
ter to see all solutions before choosing one. Neverthe-
less, the well-known book of Garey and Johnson [19]
claims that this is a typical example of an ill set prob-
lem. Namely, most often one should formulate such
a problem as an optimization problem. A way to ex-
tend the techniques propose here to some optimization
problems is straightforward but will not be presented
now.

3. Arithmetic Circuit for finding the first solu-
tion in lexicographic order

Let us now present an arithmetic circuit for finding
the lexicographically first solution of a (distributed)
CSP. This is a component of all the subsequent pro-
tocols proposed in this article.

A lexicographically first solution is the first solution
that would be found by traversing all the possible com-

function value-to-unary-constraint2(v, M)

1. Jointly, all agents build a vector u,
u = 〈u0, u1, ..., uM 〉
with 3M−1 multiplications of secrets, comput-
ing:
1. {xi}0≤i≤M , x0=1, xi+1=xi ∗ (v−i)
2. {yi}0≤i≤M , yM=1, yi−1=yi ∗ (i−v)

then, uk = 1
k!(M−k)!

xkyk, where 0!
def
= 1.

2. Return u.

Algorithm 1: Transforming secret value v ∈
{0, 1, 2, ...,M} to a shared secret unary constraint.

binations in the search space of the problem, ordered
lexicographically. The lexicographic order is defined
by the order on the variables, and then by the order
of each domain for each variable. It is similar to the
order used on words by dictionaries, considering that
each letter in a word is the value of a variable, the po-
sition of each letter in the word is induced by the order
on variables, and the alphabetical order is given by the
order on the domain of that variable. An arithmetic
circuit finding the lexicographically first solution of
a CSP was described in [38], but it is O(md) times
slower than the following one (m being the number
of variables and d the maximum domain size). Take
a CSP, P=(X,D,C). The size of the search space (total
number of tuples) is Θ =

∏m
k=1 dk.

We define p(ε) =
∏
φk∈C φk(ε|Xk), and εk denotes

the kth tuple in the lexicographic order.
A vector S’ is defined as S ′[k] = p(εk).

h1(P) = 1

hi(P) = hi−1(P) ∗ (1− S ′[i− 1])

The index of the lexicographically first solution can be
computed by accumulating the terms of the h series,
weighted as follows:

id(P) =
Θ∑

i=1

i ∗ S′[i] ∗ hi(P) (1)

A result of 0 means that there is no solution. The cost
of this computation is (c+ 1)dm multiplications of se-
crets, md times less than the technique in [38], which
is O((cm+m2)dm+1), where d= maxi(di).

One can then compute the values of the different
variables in the found solution. We first transform the
index id of the solution computed with the arithmetic
circuit in Equation 1 into a shared vector S of size Θ
where only the idth element is 1 and all other elements
are 0. This is achieved using the arithmetic circuits
called in Equation 2. The arithmetic circuits for trans-
forming the solution to a vector, shown in Algorithm 1,
has 3M .

The value of the uth variable in the tth tuple of the
search space is ηu(t), computed with Equation 3. The
arithmetic circuit, fi(P), (see Equation 4), can now be
used to compute the value of each variable xi in the
solution.

S=value-to-unary-constraint2(id, 1+Θ) (2)

ηu(t) = b(t− 1)/
u−1∏

k=1

dkc mod du (3)

fi(P) =
Θ∑

t=1

(ηi(t) + 1) ∗ S[t] (4)

It can be noticed that the space required for comput-
ing S isO(dm). This can be reduced by not reusing in-
termediary results in Algorithm 1 and computing S on
demand during the evaluation of f functions, but with
a significant efficiency loss, namely O(d2m) multipli-
cations of secrets.
Example 5 Let us see a full example of how this arith-
metic circuit is applied to Example 1.
The lexicographic order (using actually the inverse of
the order on variables) is {(P,T),(Q,T),(P,W),(Q,W)}
p(P, T)=0, p(Q,T)=1, p(P,W)=1, p(Q,W)=0.
h1(P)=1, h2(P)=1, h3(P)=0, h4(P)=0.

The index of the solution is computed with Equa-
tion 1, yielding id(P)=1. This is used according to
Equation 2 to generate the vector S={0,0,1,0,0}.

The vector S is used to compute the values of the
variables in the solution, using Equations 3 and 4:
η1(1)=0, η1(2)=1, η1(3)=0, η1(4)=1.
η2(1)=0, η2(2)=0, η2(3)=1, η2(4)=1.
f1(P)=2, f2(P)=1.

The solution chosen by this arithmetic circuit is
therefore x1=Quebec and x2=Tuesday.

Note that the solution leaks the fact that it is not
possible to meet in Paris on Tuesday.

A faster alternative to isolate a random element with
the desired value out of an array is to use the following
arithmetic circuit. We define:

h1(P) = 1

hi(P) = hi−1(P) ∗ (1− S ′[i− 1])

The lexicographically first solution can be isolated by
using the terms of the h series:

S[i] = S′[i] ∗ hi(P) (5)

4. A uniform distribution over the solutions of
a CSP

A question to be asked is whether a solution com-
puted over a random permutation of variables and do-
mains could help remove the aforementioned leaks
shown for the previous arithmetic circuit.

Theorem 1 For any CSP whose search space has size
Θ, and for any j, 0≤j<Θ there exists a shuffling of
the values in its domains such that a solution with any
initial lexicographic position i in this search space is
mapped into the position j of the obtained problem.

Proof. This can be proven by constructing the shuffling.
First, we find the positions pjk and pik of each value in the
domain of each variable xk for the tuples with lexicographic
positions j and i. This is done by iteratively computing for
k from n to 1, pjk := j%dk, j = bj/dkc. Next, the permuta-
tion, πk, for the domain of each variable xk is chosen such
that πk[pjk] = pik. The shuffling defined by permutations πk
satisfies the requirements and the theorem is proven.

Corollary 1.1 For any CSP and a given solution,
there exists a shuffling of the values in its domains
mapping that solution into the lexicographically first
tuple of the obtained problem.

As follows from the previous corollary, one cannot
extract with certitude any secret by an inference based
on the identity of the solution of the problem shuffled
with unknown permutations of the domains (except
that the solution is accepted by everybody). However,
statistical information may be leaked as seen further.

4.1. Shuffling Domains and Variables

The solution can be seen as being generated by
a random variable over the set of tuples ε that have
p(ε) = 1. Let us analyze this random variable for
the case where values and eventually variables are per-
muted randomly according to a uniform distribution
over the set of all possible permutations.

Theorem 2 Shuffling the domains for a CSP does not
guarantee that the first solution in the obtained lexico-
graphic order is selected according to a uniform dis-
tribution over the set of all solutions.

Proof. Consider the CSP induced by the DisCSP of Ex-
ample 4, without the constraint φ1.

Applying random permutation of domains drawn from a
uniform distribution over the set of possible distributions:

• the solution (P,W) appears 1/4% of the times.

• the solution (Q, T) appears 1/2% of the times.

• the solution (Q,W) appears 1/4% of the times.

It can be noticed that the frequency with which the solu-
tion is drawn is inverse proportional to the frequency of its
values among the other solutions.

The next question is whether adding random per-
mutations of variables could lead to a uniform distri-
bution.

Theorem 3 Shuffling variables and domains for a
CSP does not guarantee that the first solution in the
obtained lexicographic order is selected according to
a uniform distribution over the set of all solutions.

Proof. Consider again the CSP induced by the DisCSP of
Example 4, without the constraint φ1.

Applying random permutation of domains and variables
drawn from a uniform distribution over the set of possible
distributions:

• the solution (Q,W) appears 1/4% of the times.

• the solution (Q, T) appears 3/8% of the times.

• the solution (P,W) appears 3/8% of the times.

It can be noticed that the frequency with which the solu-
tion is drawn is inverse proportional to the frequency of its
values among the other solutions. The lack of uniformity
is slightly less accentuated than for the case where only do-
mains are reordered.

Therefore, if an agent participates with the same
constraints in several computations, statistical infor-
mation can be extracted concerning the occurrence of
the values in other solutions of the agent. Namely, a
solution that occurs very often indicates that some of
its assignments are rare.

4.2. Selection according to a uniform distribution
over all solution

Now we define an abstract method that will be
proven to select a solution of a constraint satisfaction
problem according to a uniform distribution over the
set of all solutions.

Theorem 4 Consider the application of the following
process to a CSP:

• Create a (big) vector S ′ containing the values
p(ε) for all search space tuples ε, in lexicographic
order.

• Shuffle the vector S ′ according to a permutation
π picked with a uniform distribution over the pos-
sible permutations.

• Pick the first value of S ′ having p(ε) = 1. Choose
ε as the solution to be returned.

The tuple returned by the three steps above is cho-
sen according to a uniform distribution over all solu-
tions (tuples having p(ε) = 1).

Proof. For any sufficiently large number of applications
of the described procedure, the possible permutations π ap-
plied to S′ are drawn a relatively equal number of times, due
to their uniform distribution. Therefore, all obtained per-
mutations of the values of S ′ will result a relatively equal
number of times. By symmetry, each ε with p(ε) = 1 will
be placed an equal number of times before all the other so-
lutions. Therefore, the method defines its outcome as a ran-
dom variable with uniform distribution over the set of all
solutions.

5. Arithmetic circuit for a uniform distribution
over all solutions

In the previous section we have constructed a
method that can select a solution with a uniform dis-
tribution over the set of solutions of a CSP, using a

random permutation. Here we explain ways in which
the random permutation can be achieved with an arith-
metic circuit. The technique has to perform the com-
putation for all possible permutation and the solution
is picked randomly in a way that hides the selected
permutation.

It is possible to design an arithmetic circuit that has
as input a set of coin tosses and the constraints, and
selects randomly a solution with a uniform distribu-
tion over the set of all solutions. We identify the next
solution.

Selecting among results computed for each permu-
tation. This approach requires O(Θ!Θ) multiplica-
tions. The arithmetic circuit is constructed as follows:

For each of the k ∈ [1..Θ!] possible permutations
πk of all tuples in the search space, evaluate securely
an arithmetic circuit that finds the first solution. The
result for each variable xi is stored in a vector Fi[k].

The agents generate a random shared secret r, uni-
formly distributed between 0 and Θ!−1. If the com-
putation is performed in a finite field not much larger
than Θ!, then r can be generated by simply having each
agentAi share a random secret number ri, picked with
a uniform distribution over the elements of the field.
r is computed by summing up all the ri numbers and
testing that the result is not larger or equal than Θ!. If r
does not pass the test, one starts from scratch building
a new r.

When a secret random number r, r ∈ [0..Θ!−1] is
obtained, it is transformed into a vector R with:

R = value-to-unary-constraint2(r,Θ!−1)

Each element R[k] of the vector R is multiplied to
each value Fi[k+1] for each i.

The values for each variable of all the Θ! solutions
are summed with each other: fi =

∑
k Fi[k]. The

results of fi are revealed to the agents owning xi.

Remark 2 If a uniform distribution is not desired, one
can create the previous circuit only for all permuta-
tions of domains and eventually of variables. The com-
plexity decreases accordingly.

Remark 3 Note that in the previous algorithm it is
possible to exploit the knowledge about tuples rejected
by the public constraint φ0, during the simulation of

the arithmetic circuit that computes the lexicograph-
ically first solutions. Namely the rejected tuples can
be permuted at the end of S’, with a permutation com-
puted similar to the permutation π from the next tech-
nique. After computing the vector S (Equation 2) over
the remaining tuples, the inverse of the π permutation
has to be applied before computing the functions fi.

In the following section we show a multi-party com-
putation combining simulations of arithmetic circuit
evaluation with a mix-net for creating and respectively
decoding the random permutation of the tuples.

6. Faster multi-party protocol for a uniform
distribution over all solutions

In the previous sections we have studied the un-
necessary leaks of secrets due to the way solutions
to constraint satisfaction problems can be picked by
multi-party computation protocols. We have proposed
a method proved to generate solutions of a CSP with
a uniform distribution over the set of all solution of
the CSP. We have also shown an implementation of
that method using arithmetic circuits, the complexity
being given by the factorial of the size of the search
space, O(Θ!Θ) multiplications of secrets. Now we are
going to propose another technique combining arith-
metic circuits with mix-nets [5] and whose complexity
is only O(Θ) multiplications of secrets.

We start by sharing the {0,1} encoded elements of
each constraint with the Shamir secret sharing scheme.
Then, a vector S ′ of size Γ =

∏m
k=1 dk is computed

by evaluating for each tuple ε compatible with φ0, the
arithmetic circuits:

p(ε) =
∏

φk∈C
φk(ε|Xk)

Each p(ε) is placed in the vector S ′ on the position
defined by the lexicographical position of ε among all
tuples. Each agent applies on its shares of S’ a com-
mon permutation π:

π : [1..Γ]→ [1..Γ],

that moves the tuples rejected by φ0 to the end of S’.
π is the permutation defined by a sort algorithm that
scans S’ from low indexes and exchanges each empty

element, S′[i] with the last non-empty element S ′[j]. If
the last i and j are stored such that scanning starts with
them and ends when i = j, then the cost of building
the permutation π is O(Γ). The number of tuples that
are not rejected by φ0 is denoted by Θ.

The problem is now shuffled and the shares are ran-
domized with a mix-net. One actually shuffles only
the first Θ elements of the vector S ′. Details are given
later. The shuffling performed by the mix-net is re-
versible since the agents remember the permutations
that they have performed. It can be undone, i.e. un-
shuffled.

The index of the lexicographically first solution can
be computed as in Equation 1. A result of 0 means that
there is no solution. As for the circuit in Section 3, the
cost of this computation is (c+ 1)Θ multiplications of
secrets.

After computing id(P) with the arithmetic circuit
defined by the Equation 1, the vector S is computed
with the arithmetic circuit defined by Equation 2.

One may check now whether the first element of
S, S[0], is 1, which would mean that no solution exists
and the computation can stop. However, this check can
enable attacks by participants that refuse to continue
after learning that a solution exists.

The vector S is then shifted one position to the left,
discarding the first element. S is then unshuffled by
traversing the mix-net in the inverse direction and with
the inverse permutations, randomizing the shares as at
shuffling.
π−1 is applied to S. Any index after the end of S, is

considered by π−1 to contain the value 0.
The value of the uth variable in the tth tuple of the

search space is ηu(t), computed with Equation 3. In
the end, the values in the solution are computed with
the arithmetic circuits defined by Equation 6.

fi(P) =
Θ∑

t=1

(ηi(t) + 1) ∗ S′[t−1] (6)

Each assignment in the solution is defined by the
results to the functions fi are revealed to the agents
owning it, namely those in Ai.

Mix-net for reordering shared secret DisCSPs. It
remained to detail the way in which the previous tech-
nique shuffles the vector S ′. Each agent Ai chooses

a random secret permutation πi, picked according to a
uniform distribution over the set of possible permuta-
tions:

πi : [1..Θ]→ [1..Θ].

Each agent Ai chooses a pair of keys for a (+,×)-
homomorphic public encryption scheme and publishes
the public key,Ki. The secret shares of the first Θ non-
empty values computed in the vector S’ are encrypted
by Ai with his public key and then are serialized.

The serialized encrypted vectors are passed along a
mix-net [2], mentioned in Section 2, and shuffled ac-
cording to the permutation π1 ofA1, then passed toA2

which applies π2, and so on, until the agent An which
applies πn. Then, each encrypted vector is sent shuf-
fled to the agent that originated it.

To avoid that agents get a chance to learn the fi-
nal permutation by matching final shares with the ones
that they submitted to the mix-net, a randomization
step is also applied at each shuffling. Each agent ap-
plies a randomization step on the set of shares for each
value of S’, by adding shares of 0, as in [2]. Because
of the encryption, this randomization step is based on
(+,×)-homomorphic encryption. Namely, each agent
Aj in the mix-net generates Θ sets of shares of 0, zjk,
k ∈ [1..Θ]. Aj first encrypts the ith share, zjk[i], of
each set of shares of 0 with the public key of Ai, Ki.
Then, Aj multiplies the encrypted zjk[i], EKi(z

j
k[i]), to

the encrypted shares of S ′[k] sent byAi, for each i and
each k.
Example 6 Let us see an example of how the new
multi-party computation is applied to the Example 4.
p(P, T) not computed, p(Q,T)=1, p(P,W)=1,
p(Q,W)=0.
S’=(,1,1,0)
After applying π = (4, 1, 2, 0).
S’=(0,1,1,)
Shuffle (0,1,1), assume it remains unchanged
h1(P)=1, h2(P)=1, h3(P)=0.
The index of the solution is computed with Equation 1,
yielding id(P)=2. This is used according to Equation 2
to generate the vector S={0,0,1,0}.
Unshuffle S[1-3]=(0,1,0)
Apply π−1 = (4, 1, 2, 0)
S=(,0,1,0)
The vector S is used to compute the values of the vari-
ables in the solution, using Equations 3 and 6:

η1(1)=0, η1(2)=1, η1(3)=0, η1(4)=1. η2(1)=0,
η2(2)=0, η2(3)=1, η2(4)=1. f1(P)=1, f2(P)=1.

This signifies that the solution chosen by this arith-
metic circuit is x1=Paris and x2=Tuesday.

7. Applications and Experiments

A set of applications of this approach to solving
auctions is presented in [39]. An implementation
within a new declarative programming language where
users only need to specify constraints and the multi-
party computation is assembled, is present at [40].
Tests show that a complex meeting scheduling can be
solved securely in approximatively 1 minute, the main
cost at this problem size being due to the mix-net (1
second/mixnet/participant).

8. Conclusions

In this article we have proposed a couple of multi-
party computation techniques for extracting securely
a solution selected according to a uniform distribution
over the set of all solutions of a combinatorial problem
formalized with the constraint satisfaction framework.

The constraint satisfaction framework is used to
model combinatorial problems like meeting schedul-
ing, timetabling, the stable marriages problem, and
some negotiations. Many of these problems involve
several participants and can involve secret constraints.
A formalization that makes these requirements explicit
is given by the distributed constraint satisfaction prob-
lem.

We have introduced subtleties related to how un-
necessary secrets are leaked due the way in which so-
lutions can be selected. We have proven that several
simple approaches leak more secrets then necessary
and we have identified some statistical attacks on such
schemes.

We have then described and proved an abstract
method for selecting a solution of a constraint satisfac-
tion problem according to a uniform distribution over
the set of all solutions. This distribution reduces the
leaks of statistical information due to the way a solu-
tion is selected. The secret information that still can
be extracted with such a method is no longer a charac-
teristic of the solving algorithm but a characteristic of
the problem.

The abstract method was then applied for designing
an arithmetic circuit for a probabilistic function that
can select randomly a solution for the problem. Its
complexity is factorial in the size of the search space
of the problem (i.e. the size of the Cartesian product
of the domains of its variables).

We have then proposed a multi-party computation
that also implements our abstract method by combin-
ing simulations of arithmetic circuits, with shuffling
and secret share randomization using a mix-net. The
obtained technique is much faster then the arithmetic
circuit, its complexity being given by the size of the
search space of the problem.

References

[1] M. Abadi and J. Feigenbaum. A simple protocol for
secure circuit evaluation. In STACS’88, pages 264–
272, 1988.

[2] M. Ben-Or, S. Goldwasser, and A. Widgerson.
Completeness theorems for non-cryptographic fault-
tolerant distributed computating. In STOC, pages 1–
10, 1988.

[3] C. Bessière, A. Maestre, and P. Meseguer. Distributed
dynamic backtracking. In Proc. IJCAI DCR Work-
shop, pages 9–16, 2001.

[4] C. Cachin. Modeling complexity in secure distributed
computing. In Future Directions in Distributed Com-
puting, pages 57–61, 2003.

[5] D. Chaum. Untraceable electronic mail, return ad-
dresses, and digital pseudonyms. Com. of ACM,
24(2):84–88, 1981.

[6] D. Chaum, I. Damgard, and J. Graaf. Multiparty com-
putations ensuring privacy of each party’s input and
correctness of the result. In CRYPTO’87, pages 87–
119, 1988.

[7] Z. Collin, R. Dechter, and S. Katz. On the feasibility
of distributed constraint satisfaction. In Proceedings
of IJCAI 1991, pages 318–324, 1991.

[8] S. E. Conry, K. Kuwabara, and V. R. Lesser. Mul-
tistage negotiation for distributed constraint satisfac-
tion. IEEE Trans. on systems, man, and cybernetics,
21(6):1462–1477, 1991.

[9] R. Cramer, I. Damgrd, and U. M. Maurer. General se-
cure multi-party computation from any linear secret-
sharing scheme. In EUROCRYPT, pages 316–334,
2000.

[10] R. Cramer, I. Damgrd, and J. B. Nielsen. Multi-
party computation from threshold homomorphic en-
cryption. In EUROCRYPT, pages 280–299, 2001.

[11] C. Crépeau, D. Gottesman, and A. Smith. Secure
multi-party quantum computation. In STOC, pages
643–652, 2002.

[12] R. Dechter and A. Dechter. Belief maintenance in
dynamic constraint networks. In Proc. 7th National
Conf. on Artificial Intelligence (AAAI), pages 37–42,
St. Paul, MN, 1988.

[13] J. Denzinger. Distributed knowledge based search.
IJCAI tutorial notes (MA2), 2001.

[14] S. Dziembowski. On the complexity of verifiable se-
cret sharing and multiparty computation. In STOC,
pages 325–334, 2000.

[15] B. Faltings. Incentive compatible open constraint op-
timization. In Electronic Commerce, 2003.

[16] E. Freuder, M. Minca, and R. Wallace. Pri-
vacy/efficiency tradeoffs in distributed meeting
scheduling by constraint-based agents. In Proc. IJ-
CAI DCR, pages 63–72, 2001.

[17] E. C. Freuder. A sufficient condition for backtrack-
free search. In JACM’82, volume 29, pages 24–32,
Jan 1982.

[18] Z. Galil, S. Haber, and M. Yung. Cryptographic
computation: Secure fault-tolerant protocols and the
public-key model. In CRYPTO’87, pages 135–155,
1988.

[19] M. R. Garey and D. S. Johnson. Computers
and Intractability - A Guide to the Theory of NP-
Completeness. W.H.Freeman&Co, 1979.

[20] O. Goldreich. Foundations of Cryptography, vol-
ume 2. Cambridge, 2004.

[21] O. Goldreich, S. Micali, and A. Wigderson. Proofs
that yield nothing but their validity and a methodol-
ogy of cryptographic protocol design. In FOCS, pages
174–187, Toronto, 1986.

[22] S. Haber. Multi-party Cryptographic Computation:
Techniques and Applications. PhD thesis, Columbia
University, 1988.

[23] Y. Hamadi. Optimal distributed arc-consistency. In
Proceedings of CP’99, Oct 1999.

[24] T. Herlea, J. Claessens, G. Neven, F. Piessens, B. Pre-
neel, and B. Decker. On securely scheduling a meet-
ing. In Proc. of IFIP SEC, pages 183–198, 2001.

[25] J. Kilian. Founding cryptography on oblivious trans-
fer. In Proc. of ACM Symposium on Theory of Com-
puting, pages 20–31, 1988.

[26] V. R. Lesser. A retrospective view of FA/C distributed
problem solving. IEEE Transactions on systems, man,
and cybernetics, 21(6):1347–1362, Nov/Dec 1991.

[27] J. Liu, H. Jing, and Y. Tang. Multi-agent oriented con-
straint satisfaction. Artificial Intelligence, 136:101–
144, 2002.

[28] J. Liu and K. P. Sycara. Exploiting problem structure
for distributed constraint optimization. In ICMAS,
1995.

[29] A. K. Mackworth. Consistency in networks of rela-
tions. Artificial Intellegence, 8(1):99–118, 1977.

[30] U. M. Maurer. Secure multi-party computation made
simple. In SCN, pages 14–28, 2000.

[31] M. Merritt. Cryptographic Protocols. PhD thesis,
Georgia Inst. of Tech., Feb 1983.

[32] P. Meseguer and M. Jiménez. Distributed forward
checking. In CP’2000 Distributed Constraint Satis-
faction Workshop, 2000.

[33] U. Montanari. Networks of constraints: Fundamen-
tal properties and applications to picture processing.
Information Sciences, (7):95–132, 1974.

[34] P. Paillier. Public-key cryptosystems based on com-
posite degree residuosity classes. In Eurocrypt’99,
volume 1592 of LNCS, pages 223–238, 1999.

[35] A. Sathi and M. Fox. Distributed Artificial Intelli-
gence, volume 2, chapter Constraint-Directed Nego-
tiations of Resource Reallocations, pages 163–193.
Morgan Kaufmann, California, 1989.

[36] S. Sen and E. Durfee. A formal study of distributed
meeting scheduling. Group Decision and Negotia-
tion, 7:265–289, 1998.

[37] A. Shamir. How to share a secret. Comm. of the ACM,
22:612–613, 1979.

[38] M.-C. Silaghi. Arithmetic circuit for the first solution
of distributed CSPs with cryptographic multi-party
computations. In IAT, Halifax, 2003.

[39] M.-C. Silaghi. Incentive auctions and stable mar-
riages problems solved with n/2-privacy of human
preferences. Technical Report CS-2004-11, FIT,
2004.

[40] M.-C. Silaghi, V. Rajeshirke, and
J. Nzouonta. Meeting scheduling with privacy.
http://www.cs.fit.edu/ msilaghi/secure/, 2004.

[41] K. Sycara, S. Roth, and M. Fox. Distributed con-
strained heuristic search. IEEE Transactions on
systems, man, and cybernetics, 21(6):1446–1461,
Nov/Dec 1991. To read.

[42] D. L. Waltz. The Psychology of Computer Vision,
chapter Understanding line drawings of scenes with
shadows, pages 19–91. McGraw-Hill, p.w. winston
edition, 1975.

[43] A. Yao. Protocols for secure computations. In FOCS,
pages 160–164, 1982.

[44] M. Yokoo, K. Suzuki, and K. Hirayama. Secure dis-
tributed constraint satisfaction: Reaching agreement
without revealing private information. In Proc. of the
AAMAS-02 DCR Workshop, Bologna, July 2002.

[45] M. Yokoo, K. Suzuki, and K. Hirayama. Secure dis-
tributed constraint satisfaction: Reaching agreement
without revealing private information. In CP, 2002.

[46] Y. Zhang and A. K. Mackworth. Parallel and dis-
tributed algorithms for finite constraint satisfaction
problems. In Proc. of Third IEEE Symposium on

Parallel and Distributed Processing, pages 394–397,
1991.

[47] H. Zhou and B. Choueiry. Characterizing the bahavior
of a multi-agent search by using it to solve a tight,
real-world resource allocation problem. In CP-03W:
Immediate Applications of CP, pages 79–99, 2003.

