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Abstract. Recently new types of differential power analysis attacks
(DPA) against elliptic curve cryptosystems (ECC) and RSA systems
have been introduced. Most existing countermeasures against classical
DPA attacks are vulnerable to these new DPA attacks which include re-
fined power analysis attacks (RPA), zero-value point attacks (ZPA), and
doubling attacks. The new attacks are different from classical DPA in
that RPA uses a special point with a zero-value coordinate, while ZPA
uses auxiliary registers to locate a zero value. So, Mamiya et al proposed
a new countermeasure against RPA, ZPA, classical DPA and SPA at-
tacks using a basic random initial point. His countermeasure works well
when applied to ECC, but it has some disadvantages when applied to
general exponentiation algorithms (such as RSA and ElGamal) due to
an inverse computation. This paper presents an efficient and improved
countermeasure against the above new DPA attacks by using a random
blinding concept on the message different from Mamiya’s countermeasure
and show that our proposed countermeasure is secure against SPA based
Yen’s power analysis which can break Coron’s simple SPA countermea-
sure as well as Mamiya’s one. The computational cost of the proposed
scheme is very low when compared to the previous methods which rely on
Coron’s simple SPA countermeasure. Moreover this scheme is a general-
ized countermeasure which can be applied to ECC as well as RSA system.

Keywords: Side channel attack, DPA, RPA, ZPA, doubling attack,
SPA, ECC, RSA.

1 Introduction

Since P. Kocher introduced power analysis attacks against cryptographic devices
[10], many countermeasures have been proposed to prevent power analysis at-
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tacks using various hardware and software techniques. Specifically, for elliptic
curve cryptosystems (ECC), there are several types of countermeasures includ-
ing random exponentiation algorithms [2], blinding methods on a point [2, 5],
random projective coordinates algorithms [2], and some approaches using spe-
cial forms of certain elliptic curves (Montgomery form [16], Jacobian form [11],
and Hessian form [6]). However, the above countermeasures have some disad-
vantages; they have a high computational load and some security weaknesses.

First of all, although Coron’s countermeasures in [2] seem to provide security
against DPA attacks, some papers have shown that these cryptosystems can be
broken by new DPA attacks [3]. Also, Coron’s first countermeasure increases
the computational load as it requires an additional random number k. The sec-
ond countermeasure, the point blinding method, which adds a secret random
point R, can also be broken by a doubling attack as proposed by Fouque [3].
Furthermore, most of the widely accepted randomization techniques (Coron’s
third countermeasure, random elliptic curve isomorphisms and random field iso-
morphisms) which were thought to protect against differential power analysis
attacks (DPA) can be broken by a refined power analysis (RPA) attack as pro-
posed by Goubin [4]. Moreover, an extension of the RPA attack is proposed by
T. Akishita et al (called ZPA) [1]. None of Coron’s three countermeasures with
a SPA countermeasure protect against this attack which uses auxiliary registers
to find a zero-value.

More recently, two papers have proposed countermeasures to protect against
these new DPA attacks. First, Smart analyzed the RPA attack in detail and dis-
counted its effectiveness in a large number of cases [17]. He also presented two
defense methods (randomization of the private exponent and point blinding).
However, these methods are not efficient from the viewpoint of computational
load. Second, Mamiya et al proposed a countermeasure (called BRIP) which
uses a random initial point (RIP) R [13]. This method, however, is vulnerable to
power analysis by exploiting specially chosen input messages [18]. Moreover, it is
not a suitable method to be applied to RSA because it requires an inversion com-
putation. To solve the above problems of computational load and vulnerability,
this paper presents an improved and efficient countermeasure.

The rest of this paper is organized as follows. In the next section, we sum-
marize the basic operation of ECC and review power analysis attacks including
SPA, classical DPA, doubling attacks, RPA, and ZPA. Section 3 presents our
proposed countermeasure which uses a random point blinding technique. Sec-
tion 4 presents an enhancement to protect against SPA, while Section 5 presents
an analysis of its performance. Finally, we conclude with Section 6.

2 Preliminary

2.1 Elliptic Curve Cryptosystems

In 1985 Miller and Koblitz first introduced an elliptic curve cryptosystems, inde-
pendently [14,9]. They provided a methology for obtaining high-speed, efficient,
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and scalable implementations for a secure cryptographic device. The security of
ECC depends on the intractability of the elliptic curve analogue of the discrete
logarithm problem. This problem has been extensively studied and is well known
to be computationally hard.

An elliptic curve is a set of points (x,y) which are solutions of a bivariate
cubic equation over a field K. An equation of the form

2 + ar1zy + asy = 2% + asx® + asx + ag (1)

where a; € K, defines an elliptic curve over K. As an example, an elliptic curve
FE defined over the binary field Fsq is transformed to

v 4oy =23 +ax® +b (2)

with a,b € K. This curve has one point O at infinity, which is the identity
element of the group.

Let P = (x1,y1) # O be a point, the inverse of P is —P = (x1,—y1). Let
Q = (z2,y2) # O be a second point with @ # —P, the doubling of point P is
2($1,y1) = (x3,y3)a where

r3=M4+A+a (3)
Y3 = (21 +23)A\ + 23 + 11

with A = 21 + (y1/1). The addition of two points P and Q is (x3,ys3), where

r3=a+ N+ N+x + 20 (4)
ys = (x1 + x3) A+ 23 + 11

with A = (y1 + y2)/(x1 + z2). To subtract the point P = (z,y), one adds the
point —P.

2.2 Power Analysis Attacks

Power analysis attacks are usually divided into two types. The first type, a
SPA attack, is based on a single observed power consumption, while the second
type, a DPA attack combines a SPA attack with an error-correcting technique
using statistical analysis [10]. Most importantly, classical DPA attacks have been
extensively researched for each cryptosystem and new types of DPA have been
introduced. Many existing countermeasures are vulnerable to the new attacks
which include RPA, ZPA, and a doubling attack [3]. In the next section, the
above mentioned attacks are described in more detail.

Simple Power Analysis A SPA attack consists of observing the power con-
sumption during a single execution of a cryptographic algorithm. The power
consumption analysis may also enable one to distinguish between point addition
and point doubling in the non-immune Left to Right (L-R) binary method.
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To protect against SPA, Coron [2] proposed a simple SPA countermeasure
which consisted of modifying the binary method as in Fig. 1. Since none of the
instructions in this cryptographic algorithm depend on the data, this algorithm
is resistant to a SPA attack. Note that step 2 of the algorithm in Fig. 1 computes
a point addition and point doubling without regard to the secret key d. However,
even though this scheme is resistant to a SPA attack, it remains vulnerable to a
DPA attack.

Input: d, P
Output: dP
1. Qo]=0
2. Fori=n—1 downto 0 do:
2.1 Q[0] = 2QI0].
2.2 Q[1] = Q[0] + P.
23 Qo] = Qldi].

3. Return Q0]

Fig. 1. Scalar multiplication to resist a SPA attack.

Classical Differential Power Analysis A DPA attack is based on the same
basic concept as a SPA attack, but uses error correction techniques and statistical
analysis to extract very small differences in the power consumption signals. To be
resistant to a DPA attack, some system parameters or computation procedures
must be randomized. Coron suggested three countermeasures to protect against
a classical DPA: randomizing the private exponent, blinding the point P, and
randomizing the projective coordinates. For Coron’s 3rd suggestion, the method
of randomizing the projective coordinates, let P = (X,Y, Z) be an elliptic point.
Then point P is equal to (rX,rY,rZ) for all r € K, where r is a random number.
An enhanced version of Coron’s 3rd countermeasure has been proposed by Joye-
Tymen [7]. It uses an isomorphism of an elliptic curve, thereby transposing
the computation into another curve through a random morphism. The elliptic
point P = (X,Y, Z) and parameters (a, b) of the defined curve equation can be
randomized like (r2X,7%Y, Z) and (r*a, r°b) for all » € K. However, all of the
above countermeasures add computational overhead and are still vulnerable to
RPA, ZPA, and doubling attacks as described in the subsections below.

Doubling Attack The doubling attack is able to obtain the secret scalar using
binary elliptic scalar multiplication [3]. It only works for the L-R binary method.
The main idea of this attack is based on the fact that, even if an adversary cannot
see whether the computation being done is doubling or addition, he can still
detect when the same operation is done twice. More precisely, if a smartcard
computes 2A and 2B in any operations, the attacker is not able to guess the
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value of A or B but he can check if A = B or A # B. This assumption is
reasonable since this kind of computation usually takes many clock cycles and
depends greatly on the value of the operands. If the noise is negligible, a simple
comparison of the two power traces during the doubling will be efficient to detect
this equality.

Two of Coron’s three proposed countermeasures against DPA attacks fail
to protect against a doubling attack: randomizing the private scalar (exponent)
and blinding the point. However, his third countermeasure, the randomized pro-
jective coordinate does protect against a doubling attack as does a randomized
exponentiation algorithm such as the Ha-Moon algorithm which maps a given
scalar to one of various representations. Since the positions of the zeros in the
Ha-Moon algorithm vary in each representation, the doubling attack cannot de-
tect the positions of the zeros for the doubling operation.

Remark 1. Basically, to protect against a doubling attack, the random blinding
point R should be randomly updated. A regularly updated method shouldn’t
be chosen. A method similar to Coron’s 3rd countermeasure or a random field
isomorphism should be used.

Refined Power Analysis Attack Goubin proposed a new power analysis
in 2003, namely the refined power analysis (RPA), which works even if one of
the three countermeasures with a SPA countermeasure is applied [4]. The RPA
attack assumes that the attacker can input adaptively chosen messages or elliptic
curve points to the victim exponentiation algorithm. Smart analyzed the RPA
attack in detail and discounted its effectiveness in a large number of order. For
the remaining cases Smart proposed a defense against the RPA attack based on
isogenies of small degree [17]. However, the RPA attack is still a threat to most
elliptic curve cryptosystems.

Zero-value Point Attack The zero-value point attack is an extension of the
RPA attack [1]. In a RPA attack, the attacker uses a special point which has a
zero-value coordinate. In a ZPA attack, on the other hand, he utilizes an auxiliary
register which might take a zero-value in the definition field. As a result, Coron’s
3rd or random field isomorphism countermeasures do not protect against ZPA
attacks.

Remark 2. To protect against RPA and ZPA attacks, the base point P or the
secret scalar d should be randomized. For example, Coron’s first two counter-
measures (but not the 3rd) protect against these attacks.

2.3 Mamiya’s Countermeasure

To protect against these new DPA attacks, Mamiya et al recently proposed a
countermeasure (called BRIP) which uses a random initial point (RIP) R. He
computes dP + R using the simple algorithm depicted in Fig. 2, and subtracts
R to get dP. In order to protect against SPA, they compute dP + (111---11)P.
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Input: d, P
Qutput: dP
R =randompoint/()
T0]=R, T[l]=—-R, T[2]=P—-R
For i from n — 1 downto 0 do

T[0] = 277[0]

T[0] = T[0] + T[d; + 1]
Return(Q = T[0] + T'[1])

Ll Sl i il e
N =

Fig. 2. The binary expansion with RIP(BRIP).

Since BRIP assures that all variables T[0], T[1], and T[2] differ at each exe-
cution, no special point or zero-value register will appear during all operations.
In the same way, C. K. Kim et al proposed a RSA version to protect against
power attacks in RSA system [8]. But in their countermeasure (RSA version al-
gorithm) they have to compute an inversion of a random number r with respect
to a negative random point —R for ECC. Furthermore, even though we can de-
velop a more computationally efficient countermeasure in which an attacker can
not distinguish between a point addition and a point doubling (This assumption
comes from [12] and their idea is called by side-channel atomicity). Unfortu-
nately, BRIP is of no use in the side-channel atomicity because it is based on an
add-and-double always algorithm.

3 New Countermeasure against Side-channel Attacks

In this section, we describe our new countermeasure which is able to protect
against existing power attacks including the classic DPA, the RPA, the ZPA, and
the doubling attack. Not only does our countermeasure protect against protect
against the above attacks, it is also computationally more efficient than existing
alternative countermeasures. Finally, our method can be applied to RSA without
any problems as it does not require any inversion computations of some integers
to be used.

3.1 The Proposed Countermeasure

The basic idea of the proposed countermeasure is to blind a point using a random
point R. We finally compute dP + #<c R, where #e¢ is the number of points of the
curves. Now, let s = #e — d, then we compute d(P + R) the related secret scalar
d and sR the related an integer s. The core of the algorithm is the simultaneous
computation of the above two operations d(P+ R) and sR as described in Fig. 3.
By using a random blinding point technique, the intermediate values of points
and registers which are used in each iteration randomly change.

In Fig. 3, to compute d(P + R) and sR simultaneously we modified a multi-
scalar multiplication algorithm used in an elliptic curve cryptosystem for signa-
ture verification of ECDSA [15]. In this case the final result dP is obtained by
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computing

dP = {d;(P+ R) + s;R}

=dP+ (d+s)R
=dP + #<cR

where #eR is equal to a point O at infinity.

Input: d, P
Qutput: dP

Pre-computation
1. s=H#He—d
. Choose a random elliptic point R
3. T[00]=0, T[01] =R, T[10)= P+ R,
T[11] =P+ 2R

Evaluation
4.  Q =T]00]
5. For i from n — 1 downto 0 do
5.1 Q=2Q

6. Return(Q = dP)

Fig. 3. The proposed scalar multiplication for ECC.

Input: d, m

OQutput: md

o

Pre-computation
s = ¢(IN) — d, where ¢(N) is Euler phi-function.
Choose a random number 7.
T00] =1, T[01] =7, T[10]=m -,
T[1] = m-r?
Evaluation
C = T[00].
For ¢ from n — 1 downto 0 do
C=C? mod N
CcC=C- T[dlsz] mod N
Return(C = m?)

Fig. 4. The proposed exponentiation algorithm for RSA.
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Although an attacker inputs special points to attempt an attack using RPA
and ZPA, he cannot bypass the proposed countermeasure because the point P
is blinded by the random point R in Eq. 5. The point R is changed at each
execution, otherwise can be applied the randomized projective coordinates tech-
nique. Therefore, the proposed countermeasure in Fig. 3 satisfies the conditions
in remark 1 and remark 2 and can protect against the new DPA attacks (RPA,
ZPA, and doubling attacks) as well as classical DPA attacks.

Moreover, our proposed countermeasure can be applied to RSA as in Fig. 4.
Notice that it is not necessary to compute an inverse of the random number 7. It
is very important to speed up the RSA computation and implementation. From
this point of view, our proposed countermeasure is a more efficient and general
method than Mamiya’s countermeasure.

4 The Low Cost Countermeasure to Resist SPA

In order to protect against SPA, instructions performed during a cryptographic
algorithm should not depend on the data being processed. In our proposed coun-
termeasure as in Fig. 5, when d; and s; are equal to zero simultaneously, there
is no power difference for a pair of digits d;s; because T[00] is not a point O but
a certain point which is a 2-torsion point.

Input: d, P
Output: dP
Pre-computation
1. s=#e—d
. Choose a random elliptic point R
3. T[00)=GeE2, T0]]=R+G, T[10]=P+ R+G,
T[11]=P+2R+G

Evaluation
4. Q = T100]
5. For i from n — 1 downto 0 do
5.1 Q=2Q
5.2 Q = Q + T[dzsz]

6. Q=Q+TI[00]
7. Return(Q = dP)

Fig. 5. The enhanced countermeasure to protect against SPA for ECC.

Let E be an elliptic curve defined over a field K. E[2] is defined as follows.

E[2] = {G € E(R)|2G = 0} (6)

where K is an algebraic closure of K.
In the pre-computation stage as in step 3, all temporary values T[ij] are
added to the point G. However the point G does not affect the final result dP
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and vanishes by a doubling operation (step 5.1) at the (¢ + 1)-th iteration. For
example, the point Q;11 at step 5.1 is obtained by computing

Qit1 =20Q; =2(Q; + G) =2Q; +2G (7)
=2Q;

where @; is the result of step 5.2. Although the T[00] is only added to the point
G, there is little problem to obtain the correct result dP by modifying the step
6 (if doso = 00 then @ = @ + T'[00]). However, this means has some weakness
that a conditional jump, the step 6, will definitely leak dy. Therefore, all T'[ij]
in step 3 should be added by G and this makes the step 6 is unconditionally
necessary and leaks nothing.

Input: d, m
Output: m?
Pre-computation
1.  s=¢(N)—d, where ¢(N) is Euler phi-function
. Choose a random number r
3. T[00]=N-1, T0l]=r-(N—-1), T10]=m -7 - (N — 1),
Tl =m-r*>- (N —1)

Evaluation
4. C = T00].
. for i from n — 1 downto 0 do
5.1 C =C?mod N
5.2 C =C-Tld;isi] mod N

6. C=C-T[00] mod N
7. Return(C =m?)

Fig. 6. The enhanced countermeasure to protect against SPA for RSA.

RSA is also implemented in a similar way to ECC. In Fig. 6, The N — 1
substitutes for T[00] to satisfy T[00]> = 1 mod N. Notice that an inverse r~! is
not needed for the enhanced countermeasure to protect against SPA for RSA. In
Figs. 5 and 6, the computation amount of the dummy operation to resist SPA
is %, because the probability of d;s; = 00 is i.

Now, we consider our countermeasure with respect to running time. As one
can see, the proposed algorithm above requires approximately n loop iterations
to insert the dummy operations. Such a solution, however, is unsatisfactory from
a computational perspective because the insertion of these dummy operations
which are required to protect against SPA increases the execution time. In 2004,
B. Chevallier-Mames et al introduced simple techniques to reduce the computa-
tional load in ECC or RSA systems [12]. In this technique, we assume that the
squaring in RSA system is processed using the multiplication algorithm in Fig. 7.
This algorithm reduces the number of iterations to 1.75n operations on average.
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So we can save 12.5% in computational load compared to previous methods
including Mamiya’s countermeasure.

Input: d, m
Output: m?
Pre-computation
1.  s=¢(N)—d, where ¢(N) is Euler phi-function
. Choose a random number r
3. T[00]=1, T[01] =7, T[10] =m -,
T[] =m-r?
Evaluation
4. k=0,C=T]00]
5. While (s > 0) do {

5.1 C =C-Tldis;] mod N
5.3 i=i——k}

6. Return(C =m?)

Fig. 7. The side channel atomic squaring and multiplication exponentiation for RSA.

Fig. 8 shows a side channel atomic doubling and addition multiplication
procedure for ECC. In this algorithm, our assumption is that the doubling is
processed using the same algorithm as the addition as you see in Fig. 8. As
before, we can reduce the number of loop iterations to 1.75n operations on
average.

Input: d, P
Output: dP
Pre-computation
1. s=#e—d
Choose a random elliptic point R
3. T[00]=0, T[01l] =R, T[10]= P+ R,
T[11] =P+ 2R
Evaluation
4. k=0,Q ="T]00]
5. While (¢ > 0) do {

N

5.2 k:k@(dlvsl)
5.3 i=1— -k }

6. Return(Q = dP)

Fig. 8. The side channel atomic doubling and addition multiplication for ECC.
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Note that the step 5.1 in Fig. 8 is either doubling or addition according to
d; and s;. However, this operation should only be operated by an algorithm.
For example, we know that the operation for doubling and addition of points is
very similar according to section 2. As a result, we can choose either doubling or
addition since each operation uses the same successive codes (see Fig. 8). Only
two extra field additions are needed for doubling compared to addition. These
operations are negligible with respect to computational load. From this fact, an
efficient algorithm for step 5.1 in Fig. 8 can be derived as described in Fig. 10
of Appendix.

5 Security Consideration

5.1 SPA on the BRIP

The BRIP is recently considered effective countermeasures against DPA by using
randomization onto the input message and into the computational process of the
algorithm in order to remove correlation between the secret key and the power
consumption. However, Yen et al pointed out a vulnerability of it by exploiting
specially chosen input message [18]. Yen’s attack can apply to not only Coron’s
simple SPA countermeasure, but also the BRIP.

In the context of RSA system, given the modulus N, an attacker can observe
the power trace of (N — 1) =1 (mod N). It can be extended as follows.

1 (mod N if k is even integer
(NopE gL lmod M)k even ®
N —1 (mod N) if k is odd integer.
Input: d, m

Output: C = m? mod n
r = random integer
TO]=r, T[] =r"*mod N, T[2] =m -7~ mod N
For i from n — 1 downto 0 do
T[0] = T[0]*> mod N
T[0] =T[0] - T'[d; + 1] mod N
Return(C = T[0] - T[1] mod N)

W
b =

Fig. 9. BRIP countermeasure for RSA.

Given message m = N — 1, the exponentiation algorithm in Fig. 9 will have
T[0] = (N — 1){dn-1-4)s .- mod N after the Step 3.2 of iteration 7. If T[0] = r,
then (dy—1...d;)2 is an even integer and d; = 0. Otherwise, T[0] = (N — 1) -
r mod N, (dy—1...d;)2 is an odd integer and d; = 1.

By observing a collected power trace of performing the algorithm in Fig.9,
he can try to identify the value of T'[0] (it can only be either 1 or N — 1) after
each iteration and to conduct the aforementioned derivation of each d;.
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5.2 1Is the Proposed Countermeasure Secure against Yen’s Attack?

Although our proposed countermeasure is similar in a message blinding method
using a random number r to the BRIP, our countermeasure is secure against
Yen’s attack because the basic concept of the proposed one is not 1 = r -
(r~ 112 mod N but 1 = V) mod N. More clearly, as shown in the
following enumeration, there is only one possible pattern of C' at the beginning
of each iteration in Fig. 6.

Step 5.1: C = r(di-1+si-1) yod N
Step 5.2: Vd;s;, C = (N —1)-74+%) mod N

In the case of BRIP, there are only two possible output values of C' (either
ror (N —1)-r mod N) depending on the value of d; no matter what the value
of C was at the beginning of this iteration, while in the case of our proposed
countermeasure, there are many possible output values of C' depending on the
value of r(4i+5i) _ Although there is only one possible pattern of C, possible output
values of C' differ from not only each other but also each iteration. Therefore,
our proposed countermeasure is resistant against Yen’s attack.

6 Conclusion

Most existing countermeasures to protect against DPA attack are vulnerable
to the new types of DPA attacks such as RPA, ZPA, and doubling attacks. In
addition, the more recently proposed countermeasure, BRIP, is also vulnerable
to Yen’s SPA-based power analysis. In this paper, our proposed countermeasure
protects against the new types of DPA as well as Yen’s power analysis. Moreover,
the computational cost of the proposed scheme is very low when compared to
the previous methods which rely on Coron’s simple SPA countermeasure. Notice
especially that the proposed countermeasure is a more general countermeasure
which can be applied to ECC as well as RSA systems.
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Appendix

Input: P = (01,02)7 P2(037C4)
Output: P + P», or 2P,

Addition : P + P Doubling : 2P

Ci=Ci1+Cs(=z1+22) | Cs =C1+Cs
Cy=Cr+Ca(=y1 +1y2) | Co = C3+ Co(=21)

Cs = C2/Ci(=A) Cs = C2/Cr(=y1/21)
Ci=C1+Cs Cs =C1+Cs(= )

Cs = C3(=X?) Ci1=C3(=X?)
C(;:Ce+a(:)\2+a) ClzCl+a(:)\2+a)
C1 = C1 + Cs(= x3) C1=C1 + Cs(=x3)
Co=C1+Cu(=xz3+y2) | Co=C1+Co(=2x3+y1)
Ce =C1+Cs(=x2+123) | C6 =C1+ Cs(=z1 + x3)
C5:C5'C(; CSZCS'C(S

Co =Ch + Cs(=y3) Cy = Cy 4 Cs5(= y3)

(a) Side channel atomic elliptic curve.

Input: Q = (C4,C2),T[disi] = (Cs,Cy)
Output: Q = Q + T'[d:si] = (C1,C2)

5.1.1 l=(d;iV s;)
5.1.2 CG—E)l = Cl + C‘i
5.1.3 Co—a1 = Cs_1 + Cs_9;

5.1.4 Cs =C2/Cq

5.1.5 05_41 = Cl + C5
5.1.6 Ciis1 = (Cs)?
5.1.7 Citsi=Ciysi+a
5.1.8 Cr=C1+Csqi
5.1.9 Co=C1+ Cajor
5.1.10 Ce = C1 + Co_3k
5.1.11 Cs=0C5-Cs
5.1.12 Ce =Cy + Cs

(b) Doubling or addition algorithm of step 5.1 in Fig. 8.

Fig. 10. Side channel double and addition algorithm.



