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Abstract

In this paper we analyze the combinatorial properties related to the Walsh spectra
of rotation symmetric Boolean functions on even number of variables. These results are
then applied in studying rotation symmetric bent functions.
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1 Introduction

Recently the class of rotation symmetric Boolean functions (RSBFs) has received a lot of
attention in terms of their cryptographic properties [1, 2, 4, 5, 6, 7, 8, 11, 12, 3]. Initial
study on these functions has been made in [4], where nonlinearity was the main focus. Later
nonlinearity and correlation immunity of such functions have been studied in detail in [1, 5,
6, 7, 11, 12]. Applications of such functions in hashing has also been demonstrated [8]. The
set of RSBFs are interesting to look into as the space is much smaller (≈ 2

2n

n ) than the total
space of Boolean functions (22n

) and the set contains functions with very good cryptographic
properties. It has been experimentally demonstrated that there are functions in this class
which are good in terms of balancedness, nonlinearity, correlation immunity, algebraic degree
and algebraic immunity (resistance against algebraic attack) [3] at the same time.

The combinatorial analysis of such functions is also very interesting as they possess certain
nice structures. It has been demonstrated in [12] that analysis of Walsh spectra of such
functions gives rise to certain matrix with interesting combinatorial properties that helps in
fast calculations of different properties of the functions. Later this matrix has been studied in
detail in [6, 7] for odd number of variables and new structures have been discovered. However,
the problem remained open for even variable case. In this paper we identified important
structural patterns in the matrix that helps in analyzing the Walsh spectra of RSBFs in a
more efficient way.

It is well known that bent functions only exist on even number of variables [9]. The
rotation symmetric bent functions have been studied in detail in [1, 4, 12, 11]. We apply the
matrix structure discovered here in studying the rotation symmetric bent functions. Further,
this structure provides efficient methods in sieving rotation symmetric bent functions.
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1.1 Preliminaries

To save space we refer to [12] for basic definitions related to Boolean functions. Let xi ∈ {0, 1}
for 1 ≤ i ≤ n. For 1 ≤ k ≤ n, we define the permutation ρk

n(xi) as ρk
n(xi) = xi+k, if i + k ≤ n

and ρk
n(xi) = xi+k−n, if i + k > n. Let (x1, x2, . . . , xn−1, xn) ∈ Vn. Then we extend the

definition as ρk
n(x1, x2, . . . , xn−1, xn) = (ρk

n(x1), ρk
n(x2), . . . , ρk

n(xn−1), ρk
n(xn)). Hence, ρk

n acts
as k-cyclic rotation on an n-bit vector.

Definition 1 A Boolean function f is called rotation symmetric if for each input

(x1, . . . , xn) ∈ {0, 1}n, f(ρk
n(x1, . . . , xn)) = f(x1, . . . , xn) for 1 ≤ k ≤ n.

That is, the rotation symmetric Boolean functions are invariant under cyclic rotation of
inputs. The inputs of a rotation symmetric Boolean function can be divided into partitions
so that each partition consists of all cyclic shifts of one input. A partition is generated
by Gn(x1, x2, . . . , xn) = {ρk

n(x1, x2, . . . , xn)|1 ≤ k ≤ n} and the number of such partitions is
denoted by gn. Thus the number of n-variable RSBFs is 2gn . Let φ(k) be Euler’s phi -function,
then it can be shown by Burnside’s lemma that (see also [11]) gn = 1

n

∑
k|n φ(k) 2

n
k .

By gn,w we denote the number of partitions with weight w. For the formula of how to
calculate gn,w for arbitrary n and w, we refer to [11, 6, 7].

A partition, or group, is completely determined by its representative element Λn,i, which is
the lexicographically first element belonging to the group [12]. These representative elements
are again arranged lexicographically. The rotation symmetric truth table (RSTT) is defined as
the gn-bit string [f(Λn,0), f(Λn,1), . . . , f(Λn,gn−1)]. For our purpose (the reason will be clearer
later) we will arrange the representative elements in a permuted way to represent the RSTT
and will refer that to as RSTTπ.

In [12] it was shown that the Walsh transform takes the same value for all elements
belonging to the same group, i.e., Wf (u) = Wf (v) if u ∈ Gn(v). In analyzing the Walsh
spectra of RSBFs, the nA matrix has been introduced [12]. The matrix nA is defined as
nAi,j =

∑
x∈Gn(Λn,i)

(−1)x·Λn,j , for an n-variable RSBF. Using this gn× gn matrix, the Walsh

spectra for an RSBF can be calculated from the RSTT as Wf (Λn,j) =
∑gn−1

i=0 (−1)f(Λn,i)
nAi,j .

The structure of nA has been studied in detail for odd n in [6]. Define Λ̂n,i as representative
element of Gn(x1, x2, . . . , xn) that contains complement of Λn,i. For odd n, there is a one-to-
one correspondence between the classes of even weight Λn,i’s and the classes of odd weight
Λn,i’s by Λn,i → Λ̂n,i. Hence, the set of groups can be divided into two parts (of same
cardinality) containing representative elements of even weight and odd weight, respectively.
The authors of [6] permuted the rows of the matrix nA using a permutation π such that the
first gn

2 rows correspond to the representative elements, Λn,i, of even weights (arranged in
lexicographical order of representative elements and recognized as Λn,i for i = 0 to gn

2 − 1)
and the next gn

2 rows correspond to the complements of them (these are of odd weights) and
recognized as Λn,i = Λ̂n,i− gn

2
for i = gn

2 to gn − 1. In the permutation, the corresponding
rows and columns of nA are swapped. The resulting matrix is denoted by nAπ, which has the

form nAπ =
(

nH nH
nH −nH

)
. Using this matrix nAπ, the authors of [6] showed that Walsh

spectra calculation could be reduced by almost half of the amount compared to [12]. Let
σ1 = ((−1)f(Λn,0), . . . , (−1)

f(Λn,
gn
2 −1)

) and σ2 = ((−1)
f(Λn,

gn
2

)
, . . . , (−1)f(Λn,gn−1)) be vectors

of dimension gn

2 . Remember that these Λn,i’s are numbered after the permutation π takes
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place, i.e., σ1 ‖ σ2 is basically (−1)RSTTπ

. Let us now consider the values w1 = σ1 nH, w2 =
σ2 nH. Then the Walsh spectra of f have (w1 + w2) for the first gn

2 many representative
elements (which are of even weights) and (w1 − w2) for the next gn

2 many representative

elements (which are of odd weights). Using this strategy [6], one needs 2 ·
(gn

2

)2 +gn = g2
n
2 +gn

operations, whereas g2
n operations are needed using matrix nA as in [12].

2 Walsh spectra of RSBFs on even number of variables

In this section we derive combinatorial results related to the Walsh spectra of RSBFs on
even number of variables and then use the results in the analysis of rotation symmetric bent
functions. For the analysis we need to concentrate on the classes where the complement
(coordinate wise complement) of each vector of that class falls in the same class. Such
situation does not happen when n is odd [6], and that is the reason the situation is more
complicated when n is even. When n is odd, if the weight of a vector is even (respectively
odd) then the weight of its complement is odd (respectively even). However, for n even, there
are some classes (vectors from this class have weight n

2 ) where the complement of each vector
falls in that same class. For example, for n = 4, G4((0, 0, 1, 1)) and G4((0, 1, 0, 1)) are such
type of classes.

From now on we assume that n is even. Note that if the vectors of Gn(Λn,i) have even
(respectively odd) weight, then the vectors of Gn(Λ̂n,i) have weight even (respectively odd),
since n is even. Also, there are some classes of weight n

2 such that Gn(Λn,i) = Gn(Λ̂n,i). Now
we partition the class representatives into 5 ordered sets Mn, Un, Ûn, Vn and V̂n as follows:

Mn = {Λn,i|wt(Λn,i) = n
2 & Gn(Λn,i) = Gn(Λ̂n,i)},

Divide the set {Λn,i|wt(Λn,i) = n
2 & Gn(Λn,i) 6= Gn(Λ̂n,i)} into two disjoint sets M1

n and
M2

n such that Λn,i ∈ M1
n iff Λ̂n,i ∈ M2

n.
Un = {Λn,i|wt(Λn,i) ≤ n

2 & wt(Λn,i) is even} \ (Mn ∪M2
n), Ûn = {Λ̂n,i|Λn,i ∈ Un},

Vn = {Λn,i|wt(Λn,i) ≤ n
2 & wt(Λn,i) is odd} \ (Mn ∪M2

n), V̂n = {Λ̂n,i|Λn,i ∈ Vn}.
Consider that the elements in Un, Vn and Mn are ordered in lexicographical manner and

the elements in Ûn and V̂n (they are basically the representatives of the groups that contain
elements which are complements of Un, Vn) are ordered according to the ordering of Un and
Vn (that is Λ̂n,i of Ûn or V̂n comes corresponding to Λn,i of Un or Vn in the ordering). We
permute the rows and columns of nA using a permutation π such that the elements in any
row and column will be in the order: Un, Vn,Mn, V̂n, Ûn. In the permutation we swap rows
and the corresponding columns of nA. We denote the resulting matrix by nAπ, which will
give a useful submatrix structure presented in Theorem 1. For this we first need the following
technical result.

Proposition 1 Let x = (x1, x2, · · · , xn), y = (y1, y2, · · · , yn) ∈ {0, 1}n, where n is even.
Then, the following hold:

1. If wt(x) and wt(y) are both even,⊕n
i=1(xi ∧ yi) =

⊕n
i=1(xi ∧ yi) =

⊕n
i=1(xi ∧ yi) =

⊕n
i=1(xi ∧ yi).

2. If wt(x) is even and wt(y) is odd,⊕n
i=1(xi ∧ yi) = 1⊕

⊕n
i=1(xi ∧ yi) =

⊕n
i=1(xi ∧ yi) = 1⊕

⊕n
i=1(xi ∧ yi).

3. If wt(x) and wt(y) are both odd,⊕n
i=1(xi ∧ yi) = 1⊕

⊕n
i=1(xi ∧ yi) = 1⊕

⊕n
i=1(xi ∧ yi) =

⊕n
i=1(xi ∧ yi)
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Proof : The proof of above claims follows directly from the following observations: (i)⊕n
i=1((ai∧bi)

⊕
(ai∧bi)) =

⊕n
i=1 bi, (ii)

⊕n
i=1((ai∧bi)

⊕
(ai∧bi)) =

⊕n
i=1 ai, (iii)

⊕n
i=1((ai∧

bi)
⊕

(ai ∧ bi)) =
⊕n

i=1 bi.

Theorem 1 When n is even, the matrix nAπ is of the form

nAπ
=

Un Vn Mn V̂n Ûn

Un
Vn

Mn

V̂n

Ûn

0BBBBB@
nG1

nG2
nG3

nG2
nG1

nG4
nG5

nG6 = 0 −nG5 −nG4

nG7
nG8 = 0 nG9 (−1)n/2

nG8 = 0 (−1)n/2
nG7

nG4 −nG5 (−1)n/2
nG6 = 0 nG5 −nG4

nG1 −nG2 (−1)n/2
nG3 −nG2

nG1

1CCCCCA

where nG1, nG2, nG3, nG4, nG5, nG6, nG7, nG8 and nG9 are matrices of size |Un| ×
|Un|, |Un| × |Vn|, |Un| × |Mn|, |Vn| × |Un|, |Vn| × |Vn|, |Vn| × |Mn|, |Mn| × |Un|, |Mn| × |Vn|
and |Mn| × |Mn|. Further nG9 is a zero matrix if n ≡ 2 (mod 4) is odd.

Proof : Consider the element nAπ
r,c in matrix nAπ as the element corresponding to the row

representer element Λn,r and column representer element Λn,c. Similarly, the element nAπ
r,c

in matrix nAπ is the element corresponding to the row representer element Λ̂n,r and column
representer element Λn,c. Similarly, we define nAπ

r,c and nAπ
r,c. Now,

nAπ
r,c =

∑
x∈Gn(Λn,r)(−1)x.Λn,c =

∑
x∈Gn(Λn,r)(−1)⊕

n
i=1(xi∧Λ(n,c)i

),

nAπ
r,c =

∑
x∈Gn(Λn,r)(−1)x.Λn,c =

∑
x∈Gn(Λn,r)(−1)⊕

n
i=1(xi∧Λ̂(n,c)i

),

nAπ
r,c =

∑
x∈Gn(Λn,r)(−1)x.Λn,c =

∑
x∈Gn(Λn,r)(−1)⊕

n
i=1(xi∧Λ(n,c)i

),

nAπ
r,c =

∑
x∈Gn(Λn,r)(−1)x.Λn,c =

∑
x∈Gn(Λn,r)(−1)⊕

n
i=1(xi∧Λ̂(n,c)i

).

Since wt(Λn,i) and wt(Λ̂n,i) are even for Λn,i ∈ Un, it follows from Proposition 1 that
nAπ

r,c = nAπ
r,c = nAπ

r,c = nAπ
r,c for Λn,r,Λn,c ∈ Un. Similarly from Proposition 1 we get, for

Λn,r ∈ Un and Λn,c ∈ Vn, nAπ
r,c = nAπ

r,c = − nAπ
r,c = − nAπ

r,c. Further, considering other
possibilities we will get the matrix nAπ in required structure.

Note that, Λn,i ∈ Mn implies Λn,i = Λ̂n,i. Now for any odd weight v ∈ {0, 1}n and any
w ∈ Mn,

(1) nAπ
v,w =

∑
x∈Gn(v)(−1)x.w =

∑
x∈Gn(v)(−1)x.w = −nAπ

v,w ⇒ nAπ
v,w = 0.

(2) nAπ
w,v =

∑
x∈Gn(w)(−1)x.v =

∑
x∈Gn(w)(−1)x.v = −nAπ

w,v ⇒ nAπ
w,v = 0.

Further, using these two results we get nG6 = nG8 = 0 and nG9 = 0 if n ≡ 2 (mod 4).
We will present an example for 6-variables. Note that the matrix structure presented here

extracts the regularity from the basic structure presented in [12, Section 3].

Example 1 U6 = {(0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 1, 1), (0, 0, 0, 1, 0, 1), (0, 0, 1, 0, 0, 1)},
V6 = {(0, 0, 0, 0, 0, 1), (0, 0, 1, 0, 1, 1)},M6 = {(0, 0, 0, 1, 1, 1), (0, 1, 0, 1, 0, 1)},
Û6 = {(1, 1, 1, 1, 1, 1), (0, 0, 1, 1, 1, 1), (0, 1, 0, 1, 1, 1), (0, 1, 1, 0, 1, 1)}
and V̂6 = {(0, 1, 1, 1, 1, 1), (0, 0, 1, 1, 0, 1)}.

6A
π

=

U6 V6 M6 V̂6 Û6

U6

V6

M6

V̂6

Û6

0BBBBBBBBBBBBBBBBBBBBB@

1 1 1 1 1 1 1 1 1 1 1 1 1 1
6 2 −2 −2 2 −2 2 −6 2 −2 6 2 −2 −2
6 −2 2 −2 2 −2 −2 6 2 −2 6 −2 2 −2
3 −1 −1 3 1 1 −3 −3 1 1 3 −1 −1 3
6 2 2 2 4 0 0 0 −4 0 −6 −2 −2 −2
6 −2 −2 2 0 −4 0 0 0 4 −6 2 2 −2
6 2 −2 −6 0 0 0 0 0 0 −6 −2 2 6
2 −2 2 −2 0 0 0 0 0 0 −2 2 −2 2
6 2 2 2 −4 0 0 0 4 0 −6 −2 −2 −2
6 −2 −2 2 0 4 0 0 0 −4 −6 2 2 −2
1 1 1 1 −1 −1 −1 −1 −1 −1 1 1 1 1
6 2 −2 −2 −2 2 −2 6 −2 2 6 2 −2 −2
6 −2 2 −2 −2 2 2 −6 −2 2 6 −2 2 −2
3 −1 −1 3 −1 −1 3 3 −1 −1 3 −1 −1 3

1CCCCCCCCCCCCCCCCCCCCCA
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The structure of the matrix nAπ helps in analyzing the Walsh spectra for RSBFs on even
number of variables. For notational purposes, divide the (−1)RSTTπ

into five partitions
represented as vectors σ1, σ2, σ3, σ4, σ5 by: σ1 = {(−1)f(Λn,0), . . . , (−1)f(Λn,|Un|−1)},

σ2 = {(−1)f(Λn,|Un|)}, . . . , (−1)f(Λn,|Un|+|Vn|−1)},
σ3 = {(−1)f(Λn,|Un|+|Vn|), . . . , (−1)f(Λn,|Un|+|Vn|+|Mn|−1)},
σ4 = {(−1)f(Λn,|Un|+|Vn|+|Mn|), . . . , (−1)f(Λn,gn−|Un|−1)}, and
σ5 = {(−1)f(Λn,gn−|Un|), . . . , (−1)f(Λn,gn−1)}.

Then we define, w1 = σ1 nG1, w2 = σ1 nG2, w3 = σ1 nG3,
w4 = σ2 nG4, w5 = σ2 nG5, w6 = σ2 nG6 = 0,
w7 = σ3 nG7, w8 = σ3 nG8 = 0, w9 = σ3 nG9,
ŵ4 = σ4 nG4, ŵ5 = σ4 nG5, ŵ6 = σ4 nG6 = 0,
ŵ1 = σ5 nG1, ŵ2 = σ5 nG2, ŵ3 = σ5 nG3.
The Walsh spectra of the function can be seen as: ((w1 +w4 +w7 + ŵ4 + ŵ1) ‖ (w2 +w5−

ŵ5− ŵ2) ‖ (w3 +w9 +(−1)n/2ŵ3) ‖ (w2−w5 + ŵ5− ŵ2) ‖ (w1−w4 +(−1)n/2ŵ7− ŵ4 + ŵ1)).
To compute the Walsh spectra using the structure of nAπ, one needs a little more than

half of the total computation than using nA as described in [12]. Here, using the submatrices
of nAπ, we need 2|Un|(|Un| + |Vn| + |Mn|) + 2|Vn|(|Un| + |Vn|) + |Mn|(|Un| + |Mn|) + gn =
|Un|(2|Un|+2|Vn|+ |Mn|)+ |Vn|(2|Un|+2|Vn|)+ |Mn|(2|Un|+ |Mn|)+gn = |Un|gn + |Vn|(gn−
|Mn|)+ |Mn|(gn−2|Vn|)+gn = gn(|Un|+ |Vn|+ |Mn|

2 )+(gn

2 −3|Vn|)|Mn|+gn ≤ g2
n
2 +gn many

operations. Now we study the cardinality of Un, Vn,Mn.

Lemma 1 When n is even, the number of classes Gn(Λn,i) such that Gn(Λn,i) = Gn(Λ̂n,i) is∑
k|n

2

1
2k

dk where dk = 2k −
∑

k
k1

=odd>1 dk1.

Proof : Let x = Λn,i be the leader of one of such classes where Gn(Λn,i) = Gn(Λ̂n,i).
So, for x = (x1, x2, · · · , xn), x = (x1, x2, · · · , xn), there exists a k, 0 < k < n, such
that ρk

n(x) = x, i.e., (x1, x2, · · · , xn) = ρk
n(x1, x2, · · · , xn). This implies, (x1, · · · , xn) =

(xk+1, · · · , xn, x1, · · · , xk) and hence,

(x1, · · · , xn−k) = (xk+1, · · · , xn), (1)

(x1, · · · , xk) = (xn−k+1, · · · , xn). (2)

Now, we will get from (1) that

(x1, · · · , xk) = (xk+1, · · · , x2k) = (x2k+1, · · · , x3k) = · · · (3)

(xn−k+1, · · · , xn) = (xn−2k+1, · · · , xn−k) = (xn−3k+1, . . . , xn−2k) = · · · (4)

Then, from (1), (2) and (3), we deduce x = bbbb · · · bb, where b is a block of length k. Thus,
k must divide n

2 . Now, we need to count the strings of above form where b is the smallest
block. There could be 2k different patterns and hence the number of strings of form bbbb · · · bb
is also 2k. Next, we need to take care of the double counting when b is of the form cccc · · · cc
where c is of length k1 and k

k1
is odd. Thus, the count of such strings for a fixed k is

dk = 2k −
∑

k
k1

=odd>1 dk1 . The string bbbb · · · bb has cycle length 2k. So, each class contains

2k many elements. So, we have 1
2k (2k −

∑
k

k1
=odd>1 dk1) many classes where length of b is k.

Since we need to count for every k such that k|n2 .
The next result follows from the count gn,w in [12, 7] and the count in Lemma 1.
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Theorem 2 |Mn| =
∑

k|n
2

1
2kdk where dk = 2k −

∑
k

k1
=odd>1 dk1.

If n
2 is even, |Un| = |Ûn| =

∑
w≤n

2
&even gn,w − |Mn|, |Vn| = |V̂n| =

∑
w< n

2
&odd gn,w.

If n
2 is odd, |Un| = |Ûn| =

∑
w< n

2
&even gn,w, |Vn| = |V̂n| =

∑
w≤n

2
&odd gn,w − |Mn|.

Now we look for further symmetry in the nA and nAπ. Note that this result works for
both even and odd n.

Theorem 3 nAi,j = nAi,0

nAj,0
nAj,i and nAπ

i,j = nAπ
i,0

nAπ
j,0

nAπ
j,i for any positive integer n.

Proof : Let ki = |Gn(Λn,i)| = nAi,0 and ni = n
ki

for 0 ≤ i < n. Note that nAi,j =∑
x∈Gn(Λn,i)

(−1)x.Λn,j = (−1)ρ0
n(Λn,i).Λn,j + · · ·+ (−1)ρ

ki−1
n (Λn,i).Λn,j = (−1)ρ

ki
n (Λn,i).Λn,j + · · ·+

(−1)ρ
2ki−1
n (Λn,i).Λn,j = . . . = (−1)ρ

(ni−1)ki
n (Λn,i).Λn,j + · · · + (−1)ρ

niki−1
n (Λn,i).Λn,j . As niki = n,

ni nAi,j =
∑

x∈Gn(Λn,i)
(−1)x.Λn,j + · · · +

∑
x∈Gn(Λn,i)

(−1)x.Λn,j = (−1)ρ0
n(Λn,i).Λn,j + · · · +

(−1)ρn−1
n (Λn,i).Λn,j . Since (−1)ρt

n(Λn,i).Λn,j = (−1)Λn,i.ρ
n−t
n Λn,j , we can write, (−1)ρ0

n(Λn,i).Λn,j +
· · · + (−1)ρn−1

n (Λn,i).Λn,j = (−1)Λn,i.ρ
n
n(Λn,j) + · · · + (−1)Λn,i.ρ

1
n(Λn,j) = (−1)Λn,i.ρ

0
n(Λn,j) + · · · +

(−1)Λn,i.ρ
kj−1
n (Λn,j)+(−1)Λn,i.ρ

kj
n (Λn,j)+ · · ·+(−1)Λn,i.ρ

2kj−1
n (Λn,j)+ · · ·+(−1)Λn,i.ρ

(nj−1)kj
n (Λn,j)+

· · ·+ (−1)Λn,i.ρ
njkj−1
n (Λn,j) = nj

(
(−1)Λn,i.ρ

0
n(Λn,j) + · · ·+ (−1)Λn,i.ρ

kj−1
n (Λn,j)

)
= nj nAj,i.

Thus, nAi,j = nj

ni
nAj,i = ki

kj
nAj,i = nAi,0

nAj,0
nAj,i. Since nAπ is generated by permuting

rows and columns of nA simultaneously using the permutation π, nAπ also preserves the
symmetry.

So by this way we can reduce the computation time by around half to compute nA and
nAπ for any n. The computation time to construct the submatrices of nAπ is reduced. Since
this result works for both even and odd n, this gives further insight to the matrix structure
for odd n over the results presented in [6].

3 Rotation Symmetric Bent Functions

Construction and enumeration of bent RSBFs have been studied in [4, 11, 12, 1]. It is easy
to see that [9, 12] an RSBF f is bent iff Wf (Λj) =

∑gn−1
i=0 (−1)f(Λn,i)

nAπ
i,j = ±2

n
2 for 0 ≤

j ≤ gn − 1. As we find interesting regular structure in nAπ
i,j , we may apply that in studying

rotation symmetric bent functions (RSBNFs). Once again we recall remind that the order
of representative elements are according to the order: Un, Vn,Mn, V̂n, Ûn. Let us define the
following five elements which are basically partial values of the Walsh spectra:

Q1,j =
∑|Un|−1

i=0 (−1)f(Λn,i)
nAπ

i,j , Q2,j =
∑|Un|+|Vn|−1

i=|Un| (−1)f(Λn,i)
nAπ

i,j ,

Q3,j =
∑|Un|+|Vn|+|Mn|−1

i=|Un|+|Vn| (−1)f(Λn,i)
nAπ

i,j , Q4,j =
∑|Un|+2|Vn|+|Mn|−1

i=|Un|+|Vn|+|Mn| (−1)f(Λn,i)
nAπ

i,j ,

Q5,j =
∑2|Un|+2|Vn|+|Mn|−1

i=|Un|+2|Vn|+|Mn| (−1)f(Λn,i)
nAπ

i,j . Note that Wf (Λn,j) =
∑5

k=1 Qk,j . Based on
these notations, we get the following results:

1. Let Λn,j ∈ Mn then
∑

Λn,i∈Un
S

Mn
S

Ûn
(−1)f(Λn,i)

nAπ
i,j = ±2

n
2 as nG6 = nG8 = 0.

Further if n
2 is odd, since, nG9 = 0, we have

∑
Λn,i∈Un

S
Ûn

(−1)f(Λn,i)
nAπ

i,j = ±2
n
2 .

That is, if Λn,j ∈ Mn then for n
2 even, Q1,j + Q3,j + Q5,j = ±2

n
2 and for n

2 odd,
Q1,j + Q5,j = ±2

n
2 .
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2. Let Λn,j ∈ Vn then Q1,j + Q2,j + Q4,j + Q5,j = ±2
n
2 . Also, Λ̂n,j = Λn,k ∈ V̂n. Then

Q1,k + Q2,k + Q4,k + Q5,k = Q1,j −Q2,j −Q4,j + Q5,j = ±2
n
2 . From these two equations

we will get either Q1,j + Q5,j = 0 and Q2,j + Q4,j = ±2
n
2 or Q1,j + Q5,j = ±2

n
2 and

Q2,j + Q4,j = 0

3. Let Λn,j ∈ Un, i.e., Λ̂n,j ∈ Ûn. Then one can check that if n
2 is odd, either Q1,j +Q5,j =

±2
n
2 and Q2,j + Q3,j + Q4,j = 0 or, Q1,j + Q5,j = 0 and Q2,j + Q3,j + Q4,j = ±2

n
2 .

If n
2 is even, then either Q1,j + Q3,j + Q5,j = ±2

n
2 and Q2,j + Q4,j = 0 or, Q1,j + Q3,j +

Q5,j = 0 and Q2,j + Q4,j = ±2
n
2 .

The above results are necessary conditions on partial Walsh spectra for a function to be
RSBNF. Consequently, this gives a sieving strategy for RSBNFs. We have already divided
(−1)RSTTπ

into five parts as σ1, σ2, σ3, σ4, σ5. Let us describe the case when n
2 is even with

a continuing example n = 8.
We first choose the string patterns for σ1, σ3, σ5 and select the patterns that satisfy Q1,j +

Q3,j + Q5,j = ±2
n
2 when Λn,j ∈ Mn. The size of this string is 2|Un| + |Mn|. As example for

8-variables this is 2 · 8+4 = 20. We can also fix f(x) = 0 for wt(x) = 0 for the search of bent
functions. Thus basically we need to search all the 19-bit patterns. Out of these 219 patterns
we found only 4954 many that satisfy the property.

Then we concentrate on Λn,j ∈ Vn. The conditions to be satisfied here are Q1,j +Q5,j must
be ±2

n
2 or 0. In this case we need to consider only σ1, σ5 (but not σ3). Thus we search 15

bit subpattern out of the 19 bits and found that out of 4954, only 602 satisfy this condition.
Out of these 602, we again filter the patterns corresponding to σ1, σ3, σ5 using the condition

Q1,j + Q3,j + Q5,j must be ±2
n
2 or 0 for Λn,j ∈ Un. Then we get only 400 patterns. We put

them in DATABASE 1.
Then we concentrate on Λn,j ∈ Un∪Vn. The conditions to be satisfied here are Q2,j +Q4,j

must be ±2
n
2 or 0. In this case we need to consider σ2, σ4 for calculating the Walsh spectra.

This size is 2|Vn|. For 8-variables we find this 2 · 8 = 16. We can also fix f(x) = 0 for
wt(x) = 1 for the search of bent functions. Thus we need to search strings of length 15 only.
Among the 215 patterns, we find that there are only 420 patterns that satisfy the condition.
We put them in DATABASE 2.

Now we create the σ1, σ2, σ3, σ4, σ5 pattern by concatenating the elements of DATABASE
1 and 2, i.e., we need to check for 400 · 420 elements which is < 216. Then we check whether
Wf (Λn,j) =

∑5
k=1 Qk,j = ±2

n
2 for Λn,j ∈ Un ∪ Vn and find 3776 many patterns. So there are

3776 many RSBFs with the constraint f(x) = 0 for wt(x) = 0 and f(x) = 0 for wt(x) = 1.
Thus there are 4 × 3776 many RSBNFs as we can take f(x) = 0 or 1 for wt(x) = 0 and
f(x) = 0 or 1 for wt(x) = 1.

The sieving strategy presented here is much more efficient than that of [12, Page 14]. Due
to space constraint we cannot explain the complete details of improvement. Just to make a
comparison we refer to the example for 8-variable case, where the computation needs only
2 seconds compared to 1 minute in [12] under the exactly same hardware, operating system
and programming strategy. We are currently working to enumerate 10-variable RSBNFs
(this is an open question till date) which looks feasible using this sieving strategy. Only a
few 10-variable RSBNFs have been reported by heuristic search (simulated annealing) till
date [1].
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3.1 Modifying Symmetric Bent to RSBNF

A small subclass of Boolean functions is the set of symmetric Boolean functions where the
output of the function depends only on the weight of the input vector. It is known that for
any even n there are exactly 4 symmetric bent functions and these are quadratic [10]. As
they are symmetric, by definition, they are rotation symmetric too. It is possible to modify
these functions such that the symmetry of the functions will be disturbed, but the rotational
symmetry property will be maintained and at the same time the bentness property will be
preserved. For µ ∈ Mn, weight of all elements in Gn(µ) is n

2 . Also there exists ν ∈ Un for
n ≡ 0 mod 4 (respectively ν ∈ Vn for n ≡ 2 mod 4) such that weight of elements in Gn(ν) is
n
2 . We change the function by modifying the outputs corresponding to the inputs in Gn(µ).
This breaks the symmetry property as there are now different outputs at the inputs of weight
n
2 . However, by this technique the function stays at least rotation symmetric. Due to space
constraint, it is not possible to explain the complete details here, but we present an example
corresponding to 6-variable functions. Note that if we take a symmetric bent function on
6-variables and complement the outputs corresponding to the inputs G6(µ), where µ ∈ M6,
the functions becomes RSBNF, but not symmetric.

References

[1] J. Clark, J. Jacob, S. Maitra and P. Stănică. Almost Boolean Functions: The Design
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