
Minimality of the Hamming Weight of the

τ -NAF for Koblitz Curves and Improved

Combination with Point Halving

Roberto Maria Avanzi1 ?, Clemens Heuberger2 ??, and
Helmut Prodinger3 ? ? ?

1 Faculty of Mathematics and Horst Görtz Institute for IT Security
Ruhr-University Bochum, Germany

roberto.avanzi AT ruhr-uni-bochum.de
2 Institut für Mathematik B, Technische Universität Graz, Austria

clemens.heuberger AT tugraz.at
3 Department of Mathematics, University of Stellenbosch, South Africa

hproding AT sun.ac.za

Abstract. In order to efficiently perform scalar multiplications on ellip-
tic Koblitz curves, expansions of the scalar to a complex base associated
with the Frobenius endomorphism are commonly used. One such expan-
sion is the τ -adic NAF, introduced by Solinas. Some properties of this
expansion, such as the average weight, are well known, but in the liter-
ature there is no proof of its optimality, i.e. that it always has minimal
weight. In this paper we provide the first proof of this fact.

Point halving, being faster than doubling, is also used to perform fast
scalar multiplications on generic elliptic curves over binary fields. Since
its computation is more expensive than that of the Frobenius, halving
was thought to be uninteresting for Koblitz curves. At PKC 2004, Avanzi,
Ciet, and Sica combined Frobenius operations with one point halving to
compute scalar multiplications on Koblitz curves using on average 14%
less group additions than with the usual τ -and-add method without in-
creasing memory usage. The second result of this paper is an improve-
ment over their expansion, that is simpler to compute, and optimal in
a suitable sense, i.e. it has minimal Hamming weight among all τ -adic
expansions with digits {0,±1} that allow one halving to be inserted in
the corresponding scalar multiplication algorithm. The resulting scalar
multiplication requires on average 25% less group operations than the

? This paper was in part written while this author was visiting the Institut für Mathe-
matik, Technische Universität Graz, supported by the START-project Y96-MAT of
the Austrian Science Fund. The author’s research described in this paper has been
supported in part by the European Commission through the IST Programme under
Contract IST-2002-507932 ECRYPT. The information in this document reflects only
the author’s views, is provided as is and no guarantee or warranty is given that the
information is fit for any particular purpose. The user thereof uses the information
at its sole risk and liability.

?? Supported by the grant S8307-MAT of the Austrian Science Fund.
? ? ? Supported by the grant NRF 2053748 of the South African National Research Foun-

dation.

Frobenius method, and is thus 12.5% faster than the previous known
combination.

Keywords. Koblitz curves, scalar multiplication, point halving, τ -adic
expansion, integer decomposition.

1 Introduction

The use of elliptic curves to design cryptosystems [8, 6] has
become increasingly relevant in the last years and it is nowadays regulated
by standards [15, 16]. The basic operation of such a cryptosystem is the
scalar multiplication, i.e. given a point P and an integer s, to compute
sP . Such an operation is usually performed by a method called double-
and-add: it consists in writing the scalar s as

∑`
i=0 si2

i and in evaluating

sP =
∑`

i=0 si2
iP by a Horner-like scheme.

Some families of elliptic curves have arithmetic properties that permit
very fast implementations of the scalar multiplication, making them espe-
cially attractive for the applications. Among them, the Koblitz curves [7]
defined by

Ea : y2 + xy = x3 + ax2 + 1 with a ∈ {0, 1} (1)

over a finite field F2n are of particular relevance. The good performance
of Koblitz curves is due to the Frobenius endomorphism τ . This is the
map induced on the curve by the Frobenius automorphism of the field
extension F2n/F2, that maps a field element to its square. The evaluation
of τ is much faster than the usual group law on the curve: τ is performed
by squaring the coordinates, and if a suitable representation of the field
F2n is chosen, this operation has almost negligible computational cost.
The basic idea is to rewrite the scalar to the “base of τ” instead of to the
base of 2, so that a “τ -and-add” scalar multiplication method using τ in
place of doublings [13, 14] can be deployed. In this paper we give a proof

that the commonly used expansion to the base of τ , Solinas’ τ -NAF, is

optimal, i.e. its weight is minimal among all the τ -adic representations

of the same integer with digits {0,±1} – in fact we prove the stronger

result that the sum of the absolute values of its digits is minimal among

all τ -adic expansions with rational integer coefficients.

Point halving [5, 10] is the inverse operation to point doubling and
applies to all elliptic curves over binary fields, not only to Koblitz curves.
Its evaluation is 2 to 3 times faster than that of a doubling and it is pos-
sible to rewrite the scalar multiplication algorithm using halving instead

of doubling. The resulting method is very fast, but on Koblitz curves it
is slower than the τ -and-add method.

In [2] it is proposed to insert a halving in the “τ -and-add” method
to further speed up scalar multiplication. This approach brings a non-
negligible speedup (on average 14% with suitable representations of the
fields) with respect to the use of the τ -NAF, but it is not optimal. We

show how to get an optimal representation of the scalar under the same

assumptions, and we analyse the complexity. The scalar multiplication
performed using our representation is now on average 25% faster than
the Frobenius method, up from 14%.

In the next section some mathematical background is recalled. Sec-
tions 3 and 4 are respectively devoted to the minimality of the τ -adic
expansion and to our optimal improvement of the results from [2]. In par-
ticular § 4.5 contains a simple analysis of the complexity of our method.
In Section 5 we conclude.

2 Background

2.1 Koblitz Curves

We consider a curve Ea defined over F2n by equation (1), with
a (unique) subgroup G of large prime order p (standards require the cofac-
tor to be at most 4). Set µ = (−1)1−a. Recall that τ is induced by the map
x 7→ x2. The equation of Ea is invariant under τ , hence the map permutes
the F2n -rational points on it. G is invariant, too. It is well-known [14,
Section 4.1] that for each P ∈ Ea(F2n), we have (τ 2 + 2)P = µτ(P).
Thus we can identify τ with a complex number satisfying

τ2 + 2 = µτ . (2)

For z ∈ Z[τ], a τ -expansion of z is an expression s = (. . . , s2, s1, s0) ∈
{−1, 0, 1}N0 where only finitely many sj 6= 0 and valτ (s) :=

∑

j≥0 sjτ
j =

z. The Hamming weight of s is the number of j ≥ 0 such that sj 6= 0.

For simplicity, when there is no risk of ambiguity, we write sP in place

of val(s)P =
∑

j≥0 siτ
i(P), for any point P and τ -adic expansion s.

The τ -adic non-adjacent form (τ -NAF for short) of an integer z ∈ Z[τ]
is a decomposition s as above with the non-adjacency property sjsj+1 = 0
for j ≥ 0, similarly to the classical NAF [9]. The average density (that is
the average ratio of non-zero bits related to the total number of bits) of
a τ -NAF is 1/3. Each integer z admits a unique τ -NAF. Its computation
is easy (see for example [14]).

If m ∈ Z has a τ -expansion s and P ∈ Ea(F2n), mP can be computed
by evaluating

∑

j≥0 sjτ
j(P) by a Horner-like scheme called τ -and-add.

Clearly, the Hamming weight corresponds to the number (plus 1) of ad-
ditions on the curve Ea.

Before using the τ -adic expansion in scalar multiplication we have
to reduce the integer m modulo (τn − 1)/(τ − 1) (note that τn is the
identity on the curve) to keep the length of the expansion bounded by
n plus a small constant. The τ -NAF of m mod (τ n − 1)/(τ − 1) is called
the reduced τ -NAF of m. Solinas [13, 14] has a different, in practice faster
approach.

2.2 Point Halving

Let now E/F2n be a generic elliptic curve defined by an equa-
tion

E : y2 + xy = x3 + ax2 + b with a, b ∈ F2n

(it is not necessarily a Koblitz curve) and a subgroup G ≤ E(F2n) of
large prime order. Halving a point P means to find a point R such that
2R = P . As described in [5, 10, 11], point halving can be performed by two
field multiplications (denoted by M) in the field F2n , solving an equation
of the type λ2+λ = c for λ (EQ) and extraction of a square root (

√
). An

elliptic curve addition (in affine coordinates, usually the fastest system
for elliptic curves in even characteristic) is done by one field inversion
(I), two multiplications and one squaring (S). A point doubling requires
I + 2M + 2S.

With a polynomial basis, according to [4], S ≈ 1
7.5M for n = 163

and 1
9M for n = 233. Following [3] we assume that, on average, I ≈ 8M

when n = 163 and I ≈ 10M when n = 233. In F2233 , a field defined by
a trinomial, a square root can be computed in ≈ 1

8M [3, Example 3.12].

For F2163 only a generic method is currently known, so
√

≈ 1
2M . EQ

takes, experimentally ≈ 2
3M . If a normal basis is used S,

√
and EQ

have negligible costs, I ≈ 3M . It is then clear that a point halving can
be performed in a fraction of the time required by an addition or of a
doubling.

According to the very thorough analysis in [3], halving is about two
times faster than doubling. We refer the interested reader to [5, 10, 11, 3]
for details.

2.3 Frobenius-cum-halving

Avanzi, Ciet, and Sica [2] combine the τ-NAF with a single
point halving, thereby reducing the amount of point additions from n/3
to 2n/7. They can therefore claim an asymptotic speed-up of ≈ 14.29%
on average. Their fundamental idea is that it is possible, using a sin-
gle point halving, to replace some sequences of a τ -NAF having density
1/2 and containing at least three non-zero coefficients with sequences
having weight 2. Their starting point is the observation that (2) implies
τ3 + 2τ = µτ 2 = µ(µτ − 2) = τ − 2µ, hence

2 = −µ
(

1 + τ2
)

τ . (3)

Therefore 2P can be computed as −µ
(

1 + τ2
)

τP – which is in fact com-
putationally more expensive, hence this relation is per se not useful. But
it can be used to build telescopic sums: In fact, if P = 2R and Q = τR,
then, for example, (1 − τ 2 + τ4 − τ6 + τ8)P = −µ(1 + τ 10)Q, and the
second expression requires less group operations than the first one even
if we consider the cost of computing Q.

In fact, in [2] there are three different types of sums like the one we
have just seen, each of arbitrary length. For example, the first such family
is given by the relation

(k−1
∑

j=0

(−1)jτ2j

)

P = −µ(1 + (−1)k−1τ2k)Q .

Their algorithm takes an input τ -NAF s. The output is a pair of τ -adic
expressions s(1) and s(2) with the property that

sP = s(1)P + s(2)Q = ((−µ)(1 + τ 2)s(1) + s(2))Q

= ((µ − τ)s(1) + s(2))Q = (τ̄s(1) + s(2))Q ,
(4)

where τ̄ denotes the complex conjugate of τ . Because of this, we call the

expression
(

s
(1)

s(2)

)

a (τ̄ , 1)-double expansion. Note that τ̄ , being an element
of Z[τ], operates on the points of the curve, and it is natural to ask what
it does: It corresponds to the operation, which we may also denote by τ̄ ,
such that τ(τ̄P) = τ̄(τP) = 2P .

The Hamming weight of a double expansion
(

s
(1)

s(2)

)

is defined to be the

sum of the Hamming weights of s(1) and s(2). The input is scanned from
right to left and whenever one of the above blocks is found in s, then
it is removed from s and the corresponding equivalent expression for Q

placed in s(2). At the end, what “remains” of s constitutes s(1). We call

the resulting expansion
(

s
(1)

s(2)

)

the ACS expansion, from the initials of its
inventors. The ACS expansion has an average density of 2/7.

The method can be interleaved with the τ -NAF recoding, because
the latter also operated from right to left, and can be performed twice
to generate s(1) and s(2) independently without having to store them.
A variant of the τ -and-add method is proposed that uses s(1) and s(2)

independently to perform the scalar multiplication without precomputing
Q or storing intermediate representations. We present it as Algorithm 1 in
a simpler “non interleaved” form for ease of reading, but also because we
shall use it with a different recoding in Subsection 4.2. Note that it uses
the inverse Frobenius operation τ−1 in place of τ , which is fine because
it is an operation of negligible cost (like squaring) in the cases when a
normal basis for F2n is used [1], and still very fast if the field extension is
defined by a trinomial [3, § 3.2].

Algorithm 1. Scalar multiplication algorithm from [2]

INPUT: A Koblitz curve Ea with corresponding parameter µ = (−1)1−a, a point P

of odd order on Ea and a joint expansion
`

s
(1)

s
(2)

´

of length approximately n

OUTPUT: s(1)P + s(2)Q

1. `i will contain the length of s(i)

2. X ← s
(2)
0 P

3. for j = 1 to `2 − 1 do

4. X ← τ−1X, and X ←X + s
(2)
j P

h

Now X = τ−`2+1s(2)P
i

5. X ← τ `2−nX, X ← 1
2
X

h

Now X = s(2)τ
`

1
2
P

´

i

6. X ←X + s
(1)
0 P

7. for j = 1 to `1 − 1 do

8. X ← τ−1X, and X ←X + s
(1)
j P

h

Now X = τ−`1+1
`

s(1)P + s(2)τ
`

1
2
P

´´

= τ−`1+1sP
i

9. X ← τ `1−1−nX

10. return (X)

Note that the values `i are NOT needed in advance. In fact, the re-
coding of s into s(2) first and s(1) later can be done without knowing `i

in advance: the results in [14] guarantee that the length of s will be ≈ n,
those in [2] that `i ≈ n and the value will be known at the end of the

recoding (and of the corresponding τ -and-add loop) so that they can be
used immediately after that.

For the other cases, a right-to-left method based on τ is proposed. In
this case the recoding must be stored first.

3 Optimality of the τ -NAF

Let τ-NAF(s) denote the τ-NAF of valτ (s). For any τ-expansion
s with any (rational) integer digits, define its cost function as c(s) :=
∑

j≥0 |sj|. As in the case of the binary nonadjacent form introduced by
Reitwiesner [9], the τ -NAF minimizes the Hamming weight. In fact, we
prove the following stronger result.

Theorem 1. Let z ∈ Z[τ]. The cost of the τ -NAF of z is minimum over

all τ -expansions of z. In particular, the τ -NAF has minimal Hamming

weight among all expansions with digits {0,±1}.

Proof. We prove this claim by induction on c(s).
Without loss of generality, we may assume that s0 > 0. We choose

k ∈ Z such that 1 ≤ s0 − 2k ≤ 2. We have

valτ (. . . , s3, s2, s1, s0) = valτ (. . . , s3, s2 − k, s1 + µk, s0 − 2k) =: valτ (s
′).

Of course, c(s′) = c(s) + |s2 − k| − |s2| + |s1 + µk| − |s1| + (s0 − 2k) −
s0 ≤ c(s). Since c(. . . , s′3, s

′
2, s

′
1) < c(s′) ≤ c(s), we may replace this

expansion by its τ -NAF by induction hypothesis without increasing its
cost c. We conclude that valτ (s) = valτ (s′′) for some s′′ such that s′′0 ∈
{1, 2}, (. . . , s′′3 , s

′′
2, s

′′
1) is in τ -NAF and c(s′′) ≤ c(s).

We note that for arbitrary t3, t4, we have

valτ (1, 0, 2) = valτ (0, µ, 0), (5a)

valτ (0,−µ, 2) = valτ (−1, 0, 0), (5b)

valτ (t3, 0, µ, 2) = valτ (−µ + t3, 0, 0, 0) (5c)

(note that the cost c of the left hand side is always larger than that of
the right hand side) and

valτ (t3, 0, 0, 2) = valτ (−µ + t3, 0,−µ, 0), (6a)

valτ (t4, 0,−1, 0, 2) = valτ (1 + t4,−µ, 0, µ, 0), (6b)

valτ (t3, 0, µ, 1) = valτ (−µ + t3, 0, 0,−1), (6c)

valτ (0,−µ, 1) = valτ (−1, 0,−1). (6d)

In the last four equalities, the cost c of the left hand side is not smaller
than that of the right hand side and the last three or two digits of the right
hand side are already in nonadjacent form. We consider the equivalences
(5) and (6) as replacement rules: “replace an occurrence of the left hand
side by the corresponding right hand side”. Applying these rules on s′′

and then using the induction hypothesis for the resulting expansion (in
the case of the rules in (5)) or on the left part of the resulting expansion
(i.e., excluding the last two or three digits) in the case of the rules in (6),
our claim is proved.

4 The τ -wide-NAF

4.1 Definition and uniqueness

We consider (τ̄ , 1)-double expansions
(

s
(1)

s(2)

)

, where s(1) and s(2) are
just any τ -expansions of arbitrary elements of Z[τ]. We say that two such

expansions
(

s
(1)

s(2)

)

and
(

s
′(1)

s′
(2)

)

are equivalent if τ̄ valτ (s
(1)) + valτ (s

(2)) =

τ̄ valτ (s
′(1)) + valτ (s

′(2)); in this case we write
(

s
(1)

s(2)

)

≡
(

s
′(1)

s′
(2)

)

.

If we have a point P ∈ Ea(F2n) and set Q = τ(1
2P), the relation

(

s
(1)

s(2)

)

≡
(

s
′(1)

s′
(2)

)

implies that valτ (s
(1))P + valτ (s

(2))Q = valτ (s
′(1))P +

valτ (s
′(2))Q.

The Hamming weight of a double expansion
(

s
(1)

s(2)

)

is defined to be the

sum of the Hamming weights of s(1) and s(2).

Let now s be the τ -NAF of an m ∈ Z. We will construct a dou-
ble expansion

(

s
(1)

s(2)

)

such that
(

s

0

)

≡
(

s
(1)

s(2)

)

and with minimal Hamming
weight.

Definition 1. A double expansion
(

s
(1)

s(2)

)

is called a wide-double-NAF, if

s
(i)
j = ±1 implies that sj+2 = sj+1 =

(

0
0

)

and s
(i′)
j = 0, where i′ = 3 − i

and j ≥ 0.

This means that in the language of regular expressions, a wide-double-
NAF can be written as

(

ε+
1

0
+

1̄

0
+

0

1
+

0

1̄
+

0

0

1

0
+

0

0

1̄

0
+

0

0

0

1
+

0

0

0

1̄

)(

0

0
+

0

0

0

0

1

0
+

0

0

0

0

1̄

0
+

0

0

0

0

0

1
+

0

0

0

0

0

1̄

)∗

. (7)

where as customary 1̄ denotes −1 (here, and in what follows the bar over
1 and µ will denote negation and not complex conjugation).

We first prove a uniqueness result.

Theorem 2. If s and s′ are equivalent wide-double-NAFs, then they are

equal.

The proof relies on the following extension of Solinas’ [14] Lemma 28,
that he used to prove the uniqueness of the τ -NAF.

Lemma 1. Consider z =
∑

j≥0 sjτ
j ∈ Z[τ]. Then

(i) z is divisible by τ in Z[τ] if and only if s0 ≡ 0 (mod 2),
(ii) z is divisible by τ 2 in Z[τ] if and only if s0 + 2s1 ≡ 0 (mod 4),
(iii) z is divisible by τ 3 in Z[τ] if and only if s0−2µs1−4s2 ≡ 0 (mod 8).

The first two assertions of Lemma 1 are in Solinas’ paper, the proof of
the third one is straightforward and we omit it.

Proof of Theorem 2. Let
(

s
(1)

s(2)

)

≡
(

s
′(1)

s′
(2)

)

be two wide-double-NAFs. With-

out loss of generality, we may assume that
(

s
(1)
0

s
(2)
0

)

6=
(

s′
(1)
0

s′
(2)
0

)

and that

s
(i)
0 = 1 for some i ∈ {1, 2}, which implies s

(i′)
0 = 0 for i′ = 3 − i by

definition of a wide-double-NAF. By (4), we have

∑

j≥0

(

s
(1)
j − s′

(1)
j

)

(−µ)(1 + τ 2)τ j +
∑

j≥0

(

s
(2)
j − s′

(2)
j

)

τ j = 0 . (8)

From Lemma 1(i) we conclude that
(

s
(1)
0 − s′

(1)
0

)

(−µ) +
(

s
(2)
0 − s′

(2)
0

)

≡ 0

(mod 2). Since s
(i)
0 = 1 and s

(i′)
0 = 0, we conclude that

(

s′
(1)
0

s′
(2)
0

)

6=
(

0
0

)

. This

implies that s
(k)
j = s′

(k)
j = 0 for 1 ≤ j, k ≤ 2. We set c = −µ(s

(1)
0 − s′

(1)
0)

and d = (s
(2)
0 − s′

(2)
0). From (8) we conclude that c(1 + τ 2)+ d is divisible

by τ3. Hence by Lemma 1

0 ≡ (c + d) − 4c ≡ d − 3c (mod 8) (9)

but, by assumption, (c, d) 6= (0, 0) and |c| + |d| = 2. This contradicts (9).

4.2 Existence and Use

One important property of the ACS expansion
(

s
(1)

s(2)

)

is that
for each column at most one digit is not vanishing. The same property
is, by definition, satisfied by the wide-double-NAF. Any (τ̄ , 1)-double ex-
pansion with this property can be easily viewed, by virtue of (4), as a
recoding of the number 2

τ z to the base τ with digit set {0,±1,±τ̄}. This
allows us to make a very simple computation of the wide-double-NAF.

We have the following result:

Lemma 2. Consider z = s0 + s1τ ∈ Z[τ]. Then 2
τ z = (µs0 + 2s1) − s0τ .

Also

(i) z ≡ 1 (mod τ 3) if and only if s0 − 2µs1 ≡ 1 (mod 8),

(ii) z ≡ −1 (mod τ 3) if and only if s0 − 2µs1 ≡ −1 (mod 8),

(iii) z ≡ τ̄ (mod τ 3) if and only if s0 − 2µs1 ≡ 3µ (mod 8),

(iv) z ≡ −τ̄ (mod τ 3) if and only if s0 − 2µs1 ≡ −3µ (mod 8).

Sketch of the proof. The first assertion is easily verified. For (i) we have
s0 + s1τ ≡ 1 (mod τ 3) if and only if τ 3 divides (s0 − 1)+ s1τ , and at this
point Lemma 1 can be applied. To prove (iii) and (iv) it is better to work
with µ − τ in place of τ̄ .

Note that there are eight congruence classes modulo τ 3 (cfr. [14]) of
which four correspond to elements that are divisible by τ (see Lemma 1
above). It is now clear how we can produce the wide-double-NAF of any
element of Z[τ]. We have the following algorithm thereby giving also an
existence proof.

Algorithm 2. Wide-double-NAF recoding

INPUT: An integer s0 + s1τ ∈ Z[τ]

OUTPUT: Its wide-double-NAF
`

s
(1)

s
(2)

´

1. (s0, s1)← (µs0 + 2s1,−s0)
ˆ

Multiply by 2
τ

˜

2. while ((s0, s1) != (0, 0)) do

3. if s0 ≡ 0 (mod 2)

4. output
`

0
0

´

5. (s0, s1)← (µ s0
2

+ s1,−
s0
2

) [Divide by τ]

6. else

7. switch (s0 − 2µs1 (mod 8))

8. case 1 : s0 ← s0 − 1, output
`

0
0

0
0

0
1

´

9. case −1 : s0 ← s0 + 1, output
`

0
0

0
0

0
1̄

´

10. case 3µ : s0 ← s0−µ, s1 ← s1+1, output
`

0
0

0
0

1
0

´

11. case −3µ : s0 ← s0+µ, s1 ← s1−1, output
`

0
0

0
0

1̄
0

´

12. (s0, s1)←
`

1
8
(−3µs0 − 2s1),

1
8
(s0 − 2µs1)

´ˆ

Divide by τ 3
˜

The correctness is easy to prove (it is an almost immediate conse-
quence of Lemmas 1 and 2 and of the definition of wide-double-NAF). The
termination proof follows the same arguments as in Solinas’ paper [14]
and in fact the length has a similar bound than that for the τ -NAF. The

recoding is easy to implement and can be used with Algorithm 1, because
all remarks following Algorithm 1 apply also here.

It must be noted that, in order for this recoding to be used efficiently,
the quantity s0 + s1τ should be reduced modulo τn − 1 as for the NAF
and the width-w τ -NAF, as explained in [14] (even partial reduction is
fine).

4.3 Optimality

In this section we prove that the wide-double-NAF minimizes
the Hamming weight in its equivalence class. This provides also a second,
but more complicated, construction of the form.

Theorem 3. Let s be a (τ̄ , 1)-double expansion. Then there exists a wide-

double-NAF that is equivalent to s. Its Hamming weight is not larger than

that of s.

Proof. We allow arbitrary (rational) integer digits in s and prove the
theorem by induction on

c(s) :=
∑

j≥0

(
∣

∣s
(1)
j

∣

∣ +
∣

∣s
(2)
j

∣

∣

)

.

By the proof of Theorem 1, we may replace (s
(i)
j)j≥0 by its τ -NAF (s′

(i)
j)j≥0

for i ∈ {1, 2} without increasing the costs c. Of course, we have s ≡ s′.

We easily check that for all t
(i)
j , we have

(

t
(1)
2

t
(2)
2

0

0

1

µ

)

≡
(

t
(1)
2

(µ̄+t
(2)
2)

0

0

0

0

)

,

(

0

0

1

µ̄

)

≡
(

0

1̄

0

0

)

,

(

0

1

t
(1)
1

0

0

1

)

≡
(

0

0

t
(1)
1

0

µ̄

0

)

,

(

0

t
(2)
2

1̄

0

0

1

)

≡
(

0

t
(2)
2

0

0

0

1̄

)

,

(

t
(1)
2

0

0

1

1

0

)

≡
(

t
(1)
2

0

0

0

0

µ

)

,

(

0

µ

0

0

1

0

)

≡
(

0

0

0

0

0

µ̄

)

,

(

t
(1)
5

t
(2)
5

t
(1)
4

t
(2)
4

t
(1)
3

0

0

1̄

1

0

0

1

)

≡
(

t
(1)
5

(µ+t
(2)
5)

t
(1)
4

t
(2)
4

t
(1)
3

0

0

0

0

0

0

1̄

)

.

(10)

We note that in all the above equivalences, the costs c decrease from the
left hand side to the right hand side (even if, occasionally, digits with
absolute value 2 may appear on the r.h.s). This means that if we find
one of the left hand sides (or its negatives, of course) as subblocks in our
double expansion s′, we can replace this subblock by the corresponding

right hand side and use the induction hypothesis to convert the resulting
expansion to a wide-double-NAF not increasing the costs.

So we may assume that the left hand sides of (10) do not occur (at
least in the rightmost digits). Furthermore, we have

(

t
(1)
4

t
(2)
4

t
(1)
3

t
(2)
3

0

0

0

1̄

1

0

)

≡
(

t
(1)
4

(µ+t
(2)
4)

t
(1)
3

t
(2)
3

0

0

0

0

1̄

0

)

,

(

t
(1)
3

t
(2)
3

0

0

1

0

0

1

)

≡
(

t
(1)
3

(µ̄+t
(2)
3)

0

0

0

0

µ

0

)

,

(

t
(1)
3

0

0

µ̄

0

0

1

0

)

≡
(

(µ̄+t
(1)
3)

0

0

0

0

0

0

µ̄

)

,

(

t
(1)
4

t
(2)
4

0

t
(2)
3

1̄

0

0

0

1

0

)

≡
(

t
(1)
4

(µ+t
(2)
4)

0

t
(2)
3

0

0

0

0

0

µ̄

)

,

(

0

t
(2)
3

1

0

0

0

1

0

)

≡
(

0

(1̄+t
(2)
3)

0

0

0

0

0

µ̄

)

,

(

t
(1)
3

0

0

1̄

0

0

0

1

)

≡
(

(1̄+t
(1)
3)

0

0

0

0

0

µ̄

0

)

,

(

0

t
(2)
3

µ

0

0

0

0

1

)

≡
(

0

(µ̄+t
(2)
3)

0

0

0

0

µ̄

0

)

,

(

t
(1)
4

t
(2)
4

0

t
(2)
3

µ̄

0

0

0

0

1

)

≡
(

t
(1)
4

(1+t
(2)
4)

0

t
(2)
3

0

0

0

0

µ̄

0

)

,

(

t
(1)
6

t
(2)
6

t
(1)
5

t
(2)
5

t
(1)
4

t
(2)
4

0

t
(2)
3

1̄

0

0

1̄

1

0

)

≡
(

t
(1)
6

(µ̄+t
(2)
6)

t
(1)
5

t
(2)
5

t
(1)
4

t
(2)
4

0

(1̄+t
(2)
3)

0

0

0

0

0

µ

)

.

(11)

Note that for every s′ found above, the least significant columns of s′

are found in the l.h.s. of exactly one of the equivalences (11). Thus we
can replace them with the corresponding block in the r.h.s. to obtain a
new expansion s′′. In each of these equivalences, the costs do not increase
from left to right and the last three digits of the right hand side always
form a block that is allowed in a wide-double-NAF. In particular s′′ has
cost not larger than s′ (and thus not larger than the cost of s). Hence
we can apply the induction hypothesis to s′′ with the last three digits
removed. This proves the Theorem. (Note that after applying one of the
replacements (11), patterns of the l.h.s.’s of (10) may appear again and
these should be replaced with the corresponding r.h.s.’s too, should one
desire to formulate a constructive version of this theorem.)

4.4 An Example

Let us consider the rational integer 195. If a = 1 in (1), then
the τ -NAF of 195 is τ 16 + τ14 + τ10 + τ7 − τ5 + τ2 − 1 or

valτ (101000100101̄00101̄) = 195 .

The weight is 7 and the ACS recoding has also weight 7 (in fact, no
subsequence of the given τ -NAF can be simplified by the ACS method,
hence the output is identical with the input).

However, Algorithm 2 gives the following wide-double-NAF
(

0

0

0

0

0

1̄

0

0

0

0

0

1̄

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1̄

0

0

0

0

0

0

0

0

1

)

,

that has weight 5.

4.5 Analysis

We now analyze the wide double NAF using methods from av-
erage case analysis of algorithms, cf. for instance [12].

To calculate the asymptotic density of the wide double NAF it is
sufficient to sum up the Hamming weights of all wide double NAF’s of a
certain length N and divide it by the number of all wide double NAF’s
of the same length. A more detailed analysis based on the τ -NAF or the
unique expansion with digits {0, 1} for the input statistics is beyond the
scope of this paper, but the main term would agree.

We define aM,N to be the number of wide double NAF’s of length N
and Hamming weight M and consider the generating function

G(Y,Z) :=
∑

N≥0

∑

M≥0

aM,NY MZN .

This function can be derived from our regular expression in (7) by la-
belling contributions to the Hamming weight by Y and to the length by
Z and by transforming (· · ·)∗ to (1 − (· · ·))−1. Thus we get

G(Y,Z) =
1 + 4Y Z + 4Y Z2

1 − (Z + 4Y Z3)
.

Obviously, the number WN of wide double NAF’s of length N equals
the coefficient of ZN in

G(1, Z) =
1 + 4Z + 4Z2

1 − Z − 4Z3
=

2

1 − 2Z
− 1

1 + Z + 2Z2
.

We obtain
WN = 2N+1 + O(2N/2) .

We differentiate G(Y,Z) with respect to Y and set Y = 1,

∂G(Y,Z)

∂Y

∣

∣

∣

∣

Y =1

=
1

2(1 − 2Z)2
+

1

4(1 − 2Z)

+
−3 − Z

4(1 + Z + 2Z2)2
+

Z

4(1 + Z + 2Z2)
,

and extract the coefficient of ZN to obtain the sum HN of the Hamming
weights of all wide double NAF’s of length N as

HN =

(

N +
3

2

)

· 2N−1 + O(N2N/2) .

Dividing HN by WN , we proved

Theorem 4. The expected Hamming weight of a wide double NAF of

length N equals
1

4
N +

3

8
+ O

(

N

2N/2

)

.

Hence the wide-double-NAF achieves an average improvement of 25 %
over the τ -and-add algorithm.

5 Final Remarks and Conclusions

In this paper we consider a few problems related to τ-adic
expansions associated to Koblitz curves.

The first problem is the optimality of Solinas’ τ -NAF. We give the first
proof that the τ -NAF has minimal weight among all the τ -adic expansions
with digit set {0,±1}. In fact we prove a stronger result, namely that the
τ -NAF has cost (sum of the absolute values of the digits) minimal among
the costs of all τ -adic representations with arbitrary rational integer digits
(Theorem 1).

Then we consider a result presented at PKC 2004. There, Avanzi,
Ciet, and Sica [2] showed that one could perform a scalar multiplication
on Koblitz curves by “inserting” a point halving in a τ -and-add scalar
multiplications, thereby reducing the number of group additions required.
They attained, under suitable conditions, a reduction of 14.3% of the
number of group additions with respect to the plain τ -and-add method on
average without increasing memory requirements. The method is thus just
a faster drop-in replacement for the τ -and-add method. We improve on
this result under the same assumptions they made, bringing the reduction
to 25% on average. The corresponding expansion of the scalar is the wide

double NAF: we construct it (cf. Subsection 4.2), we prove its uniqueness
(Theorem 2) and a suitable minimality property (Theorem 3), and we
carefully analyse its expected Hamming weight (Theorem 4).

A speed-up is achieved using the new recoding together with the scalar
multiplication algorithm from [2] (cf. Algorithm 1). Due to the increased
number of Frobenius applications, the speed-up in a real world implemen-
tations may be smaller than 25%: in [2] an effective speedup of 12.5% was
found on standard Koblitz curves over the field F2233 using normal bases.
By repeating the computations done in [2, § 4.2] using the new density 1/4
in place of 2/7 we expect our method to bring at least an improvement
of 23% on average under the same conditions.

We also note that the decrease of group operations from 2/7n to 1/4n
represents a reduction of 12.5%, i.e. our method can perform on average

12.5% faster than the previous combination of the Frobenius with the
halving.

Acknowledgements. The authors wish to express their gratitude to the
anonymous reviewers for their remarks and suggestions.

References

1. D.W. Ash, I. F. Blake and S. Vanstone. Low complexity normal bases. Discrete
Applied Math. 25 (1989), pp. 191–210.

2. R.M. Avanzi, M. Ciet, and F. Sica. Faster Scalar Multiplication on Koblitz Curves

combining Point Halving with the Frobenius Endomorphism. Proceedings of PKC
2004, LNCS 2947, 28–40, Springer 2004.

3. K. Fong, D. Hankerson, J. Lopez and A. Menezes. Field inversion and point halving

revisited. Available from http://www.cs.siu.edu/~kfong/research/ECCpaper.ps,
Unpublished Manuscript.

4. D. Hankerson, J. Lopez-Hernandez, and A. Menezes. Software Implementatin of

Elliptic Curve Cryprography over Binary Fields. In: Proceedings of CHES 2000.
LNCS 1965, pp. 1–24. Springer, 2001.

5. E. W. Knudsen. Elliptic Scalar Multiplication Using Point Halving. In: Proocedings

of ASIACRYPT 1999, LNCS 1716, pp. 135–149. Springer, 1999.
6. N. Koblitz. Elliptic curve cryptosystems. Mathematics of computation 48 (1987),

pp. 203–209.
7. N. Koblitz. CM-curves with good cryptographic properties. In: Proceedings of

CRYPTO 1991, LNCS 576, pp. 279–287. Springer, 1991.
8. V. S. Miller. Use of elliptic curves in cryptography. In: Proceedings of CRYPTO

’85. LNCS 218, pp. 417–426. Springer, 1986.
9. G. W. Reitwiesner. Binary arithmetic. Advances in Computers, 1:231–308, 1960.

10. R. Schroeppel. Point halving wins big. Talks at: (i) Midwest Arithmetical Geom-
etry in Cryptography Workshop, November 17–19, 2000, University of Illinois at
Urbana-Champaign; and (ii) ECC 2001 Workshop, October 29–31, 2001, Univer-
sity of Waterloo, Ontario, Canada.

11. R. Schroeppel. Elliptic curve point ambiguity resolution apparatus and method.

International Application Number PCT/US00/31014, filed 9 November 2000.
12. R. Sedgewick and P. Flajolet. An Introduction to the Analysis of Algorithms.

Addison-Wesley, 1996.
13. J. A. Solinas. An improved algorithm for arithmetic on a family of elliptic curves.

In: Proceedings of CRYPTO 1997, LNCS 1294, pp. 357–371. Springer, 1997.
14. J. A. Solinas. Efficient Arithmetic on Koblitz Curves. Designs, Codes and Cryp-

tography, Vol. 19 (2000), No. 2/3, pp. 125–179.
15. IEEE Std 1363-2000. IEEE Standard Specifications for Public-Key Cryptography.

IEEE Computer Society, August 29, 2000.
16. National Institute of Standards and Technology. Digital Signature Standard. FIPS

Publication 186-2, February 2000.

