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Abstract. We introduce a new cryptographic primitive called tiiasnd coupon
mechanism(BCM). In effect, the BCM is an authenticated bit commitmseiteme,
which is AND-homomorphic. It has not been known how to camnstsuch com-
mitments before. We show that the BCM has natural and impbéjplications.

In particular, we use it to construct a mechanism for trattémgi alerts unde-
tectably in a message-passing systemwbdes. Our algorithms allow an alert to
quickly propagate to all nodes without its source or existelpeing detected by
an adversary, who controls all message traffic. Our proofeoiirity are based
on a newsubgroup escape problemwhich seems hard on certain groups with
bilinear pairings and on elliptic curves over the rifig
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1 Introduction

MOTIVATION. As more computers become interconnected, chances iecgeaatly
that an attacker may attempt to compromise your system atvabrieresources. It
has become common to defend the network by running an Intmi3etection System
(IDS) on several of the network nodes, which we call sengin€hese sentinel nodes
continuously monitor their local network traffic for susipigs activity. When a sentinel
node detects an attacker’s presence, it may want to alestral network nodes to the
threat. However, issuing an alert out in the open may scarattacker away too soon
and preclude the system administrator from gathering nmboernation about attacker’s
rogue exploits. Instead, we would like to propagate thet aléhout revealing the ids
of the sentinel nodes or the fact that the alert is being shrea

* An extended abstract of this paper will appear in the pracgsdof ASIACRYPT 2005, De-
cember 2005.
** Supported in part by NSF grants CCR-0098078, CNS-030528BC&S-0435201.
*** Supported by NSF grants CCR-0098078, ANI-0207399, CN$P38, and CNS-0435201.
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Fig. 1. Abstract group structure used in our BCM construction.

We consider a powerful (yet computationally bounded) &#aevho observes all
message traffic and is capable of reading, replacing, ayidel circulating messages.
Our work provides a cryptographic mechanism that allowslert ® spread through a
population of processes at the full speed of an epidemidewbimaining undetectable
to the attacker. As the alert percolates across the netatinkpdes unwittingly come
to possess the signal, making it especially difficult to tifgrihe originator even if the
secret key is compromised and the attacker can inspect tesshiinal states.

A NEw TooL: A BLIND CouPON MECHANISM. The core of our algorithms is a
new cryptographic primitive called lalind coupon mechanism(BCM). The BCM is
related, yet quite different, from the notion of commitmdnhtonsists of a seDgsk of
dummy couponsand a sefsk of signal coupons(Dsk N Ssk = 0). The owner of the
secret keySK can efficiently sample these sets and distinguish betwesndlements.
We call the set of dummy and signal coupobsk U Ssk, the set ofvalid coupons.

The BCM comes equipped witherification algorithm 7pg (x) that checks i
is indeed a valid coupon. There is also a probabilistimbining algorithm cpk (X,Y),
that takes as input two valid coupoxiy and outputs a new coupon which is, with high
probability, a signal coupon if and only if at least one of thputs is a signal coupon.
As suggested by the notation, both algorithms can be cordputeanyone who has
access to the public keBK of the blind coupon mechanism.

We regard the BCM secure if an observer who lacks the secyetke(a) can-
not distinguish between dummy and signal coupandigtinguishability ); (b) can-
not engineer a new signal coupon unless he is given anottpealstoupon as input
(unforgeability); and (c) cannot distinguish randomly chosen coupons froopons
produced by the combining algorithrolinding).

OUR MAIN CONSTRUCTION Our BCM construction uses an abstract group structure
(U,G,D). Here U is a finite setG C U is a cyclic group, an® is a subgroup o&. The
elements oD will represent dummy coupons and the element& §D will be signal
coupons (see also Figure 1). The combining operation wilpgf be a group operation.
To make verification possible, there will need to be an eagyterdistinguish elements
of G (valid coupons) from elements bf\ G (invalid coupons).

In order for the BCM to be secure, the following two problemsstrbe hard on this
group structure:

— Subgroup Membership Problem Given generators fo& andD and an element
y € G, decide whethey e D ory € G\ D.



— Subgroup Escape ProblemGiven a generator fdD (but notG), find an element
of G\ D.

The subgroup membership problem has appeared in manyedifflarms in the lit-
erature [CS02, GM84,NS98, 0U98, Pai99, Gjg05, NBDO1]. Thimysoup escape prob-
lem has not been studied before. To provide more confidenite Vralidity, we later
analyze it in the generic group model.

Notice that the task of distinguishing a signal coupon froduanmy coupon (indis-
tinguishability) and the task of forging a signal couponf(ugeability) are essentially
the subgroup membership and subgroup escape problemshalenge thus becomes
to find a concrete group structuflg, G, D) for which the subgroup membership and the
subgroup escape problems are hard.

We provide two instantiations of the group structure: oriegigroups with bilinear
pairings, and one using elliptic curves over composite riodu

WHY 1s A BCM UseruL? The BCM can potentially be useful in various applications.
If signal coupons are used to encode a “1” and dummy coupo@¥ éhen a BCM can
be viewed as an OR-homomorphic bit commitment scheme. Théd BGndeedhid-
ing because dummy and signal coupons appear the same to arecultsierver. It is
alsobinding because the sets of dummy and signal coupons are disjoiatdition,
the BCM's verification function ensures the commitment ithaunticated. By switch-
ing signal coupons to encode a “0” and dummy coupons to enaddé we get an
AND-homomorphic bit commitment. As far as we know, it has heen known how
to construct such commitments before. The BCM thus provédesssing link in pro-
tocol design. Using BCM together with techniques of Bragsdal. [BCC88], we can
obtain short non-interactive proofs of circuit satisfidpjlwhose length is linear in the
number of AND gates in the circuit. Other potential usesudeli-voting (voting over
the Internet) [CRS04].

SPREADING ALERTS WITH THE BCM. Returning to our original motivation, we
demonstrate how a BCM can be used to propagate alerts qaictlguietly throughout
the network. During the initial network setup, the netwodkranistrator generates the
BCM'’s public and secret keys. He then distributes signapoms to sentinel nodes. All
other nodes receive dummy coupons. In our mechanism, naagimgously transmit
either dummy or signal coupons with all nodes initially saritting dummy coupons.
Sentinel nodes switch to sending signal coupons when thectihe attacker’s pres-
ence. The BCM’s combining algorithm allows dummy and sigrmlpons to be com-
bined so that a node can propagate signal coupons withoirtghtorknow that it has
received any, and so that an attacker (who can observe adbgesraffic) cannot detect
where or when signals are being transmitted within the streedummy messages.

In addition, the BCM's verification algorithm defends agsiByzantine nodes [LSP82]:
While Byzantine nodes can replay old dummy messages instiesglaying signals,
they cannot flood the network with invalid coupons, theretsvpnting an alert from
spreading; at worst, they can only act like crashed nodes.

We prove that if the underlying BCM is secure, then the attacknnot distinguish
between executions where an alert was sent and executicere wb alert was sent.



The time to spread the alert to all nodes will be determinedhigycommunications
model and alert propagation strategy. At any point in tirhe, network administrator
can sample the state of some network node and check if it pessa signal coupon.

PAPER ORGANIZATION. The rest of the paper is organized as follows. We begin with
a discussion of related work in Section 2. In Section 3, wenadly define the notion of

a blind coupon mechanism and sketch an abstract groupwsteyethich will allow us

to implementit. Then in Section 4, we provide two concresantiations of this group
structure using certain bilinear groups and elliptic csroeer the ringZ,. In Section 5,

we show how the BCM can be used to spread alerts quietly thiamutga network. In
Section 6, we analyze the hardness of the subgroup escagerprio the generic group
model. Conclusions and open problems appear in Section 7.

2 Related Work

Our motivating example of spreading alerts is related togtablem of anonymous
communication. Below, we describe known mechanisms fongmmus communica-
tion, and contrast their properties with what can be obthiinem the blind coupon
mechanism. We then discuss literature on elliptic curves awing, which are used in
our constructions.

2.1 Anonymous Communication

Two basic tools for anonymous message transmission arediJ-idining-cryptographers”
nets) [Cha88, GJ04] and mix-nets [Cha81]. These tools tocptaeal who the message
sender and recipient are from an adversary that can motiitoetavork traffic. While
our algorithms likewise aim to hide who the signal’s origora are, they are much less
vulnerable to disruption by an active adversary that caaydel alter messages, and
they can also hide the fact that a signal is being spread dihrthe network.

DC-nets enable one participant to anonymously broadcasissage to others by
applying a dining cryptographers protocol. A disadvant@igeC-nets for unstructured
systems like peer-to-peer networks is that they requirstaniial setup and key man-
agement, and are vulnerable to jamming. In contrast, th@limation of our alert-
spreading application involves distributing only a pulkey used for verification to
non-sentinel nodes and requires only a single secret kagdleetween the sentinels
and the receiver, jamming is prevented by the verificatigo@hm, and outsiders can
participate in the alert-spreading (although they canmitiate an alert), which further
helps disguise the true source. As the signal percolatessathe network, all nodes
change to an alert state, further confounding the identifinaof an alert's primary
source even if a secret key becomes compromised.

The problem of hiding the communication pattern in the nekweas first addressed
by Chaum [Cha81], who introduced the concept afig, which shuffles messages and
routes them, thereby confusing traffic analysis. This basieme was later extended
in [SRG00, SGR98]. A further refinement isvax-net [Abe99, Jak99, Jak98], in which
a message is routed through multiple trusted mix nodes,hntnycto hide correlation



between incoming and outgoing messages. Our mechanismrésefficient and pro-
duces much stronger security while avoiding the need fatédinodes; however, we
can only send very small messages.

Beimel and Dolev’s [BDO1] proposed the concept of busesclvhide the mes-
sage’s route amidst dummy traffic. They assume a synchrayaism and a passive
adversary. In contrast, we assume both an asynchronoessgsid very powerful ad-
versary, who in addition to monitoring the network traffimémls the timing and con-
tent of delivered messages.

2.2 Elliptic Curves over a Ring

One of our BCM constructions is based on elliptic curves dher ring Zn, where

n = pqis a product of primes. Elliptic curves ové&p, have been studied for nearly
twenty years and are usedter alia, in Lenstra’s integer factoring algorithm [HWL87]
and the Goldwasser-Kilian primality testing algorithm [@¥. Other works [Dem93,
KMOV92, 0U98] exported some factoring-based cryptosystéRSA [RSA78], Ra-
bin [Rab79]) to the elliptic curve setting in hopes of avaglisome of the standard
attacks. The security of our BCM relies on a special feattith® group of points on
elliptic curves modulo a composite: It is difficult to find nelements of the group
except by using the group operation on previously known el@s This problem has
been noted many times in the literature, but was previousigiclered a nuisance rather
than a cryptographic property. In particular, Lenstra [H8]L.chose the curve and the
point at the same time, while Demytko [Dem93] used twists)andordinate only com-
putations to compute on the curve withgetoordinates. To the best of our knowledge,
this problem’s potential use in cryptographic construtiovas first noted in [Gjg04].

2.3 Epidemic Algorithms

Our alert mechanism belongs to the class of epidemic algost(also called gossip
protocols) introduced in [DGH87]. In these algorithms, each process chooses to part-
ner processes with which to communicate randomly. The daatwbf gossip protocols

is the number of messages they send, which is in principleundbed if there is no way

for the participants to detect when all information has biedy distributed.

3 Blind Coupon Mechanism

The critical component of our algorithms that allows infation to propagate unde-
tectably among the processes is a cryptographic primiglea ablind coupon mech-
anism (BCM). In Section 3.1, we give a formal definition of the BCMcdhits security
properties. In Section 3.2, we describe an abstract grauptate that will allow us to
construct the BCM.

3.1 Definitions

Definition 1. Ablind coupon mechanisnis a tuple of PPT algorithmég, 4, ¢, D) in
which:



X |y Jlc(xy)
Dsk|Dsk|| Dsk

Dsk|Ssk|| Ssk
Ssk |Dsk|| Ssk
Ssk | Ssk|| Ssk

Fig. 2. Properties of the combining algorithm.

— (14, the probabilistickey generation algorithm outputs a pair of public and
secret key$PK, SK) and two stringg(d,s). The public key defines a universe set
Upk and a set ofralid couponsGpk. The secret key implicitly defines an associated
set ofdummy coupon®Dsk and a set okignal couponsSsk.2 It is the case that
d € Dsk and s€ Ssk, DskN Ssk = 0, and Dsk U Ssk = Gpk.

— Vpk(y), the deterministioverification algorithm takes as input a coupon y and
returns 1 if y is valid and 0 if it is invalid.

— z+— cpk(Xy), the probabilisticcombining algorithm takes as input two valid
coupons yy € Gpk and produces a new coupon z. The output z is a signal coupon
(with overwhelming probability) whenever one or more of imguts is a signal
coupon, otherwise it is a dummy coupon (see Figure 2).

— Dsk(y), the deterministiddecoding algorithm takes as input a valid couponsgy
Gpk. It returns 0 if y is a dummy coupon addf y is a signal coupon.

The BCM may be established either by an external trusteq parjointly by the
application participants, running the distributed keyeyation protocolé€.g, one could
use a variant of [ACS02]). In this paper, we assume a trustedked (the network ad-
ministrator) who runs the key generation algorithm andritistes signal coupons to the
supervisor algorithms of sentinel nodes at the start of yaesn execution. In a typical
algorithm, the nodes will continuously exchange couportk a@ch other. The combin-
ing algorithmcpk enables nodes to locally and efficiently combine their caspaith
coupons of other nodes. The verification functiopk prevents the adversary from
flooding the system with invalid coupons and making it imglassfor the signal to
spread.

For this application, we require the BCM to have certain gfwesecurity properties.

Definition 2. We say that a blind coupon mechaniéen 4/, ¢, D) is secureif it satis-
fies the following requirements:

1. Indistinguishability: Given a valid coupon y, the adversary cannot tell whether it
is a signal or a dummy coupon with probability better tHgi2. Formally, for any

3 Note that membership iBsx and Dsk should not be efficiently decidable when given only
PK (unlike membership itGpk). However, we require that membership is always efficiently
decidable when giveSK.



PPT algorithma,

(PK,SK,d,s) — ¢ (1¥); .
Pri b=V %0 < Dskix1 < Ssk; ~3 < neglk)
b {0,1};b — (1% PK,d, )

2. Unforgeability: The adversary is unlikely to fabricate a signal coupon withthe
use of another signal coupon as inpuformally, for any PPT algorithna,,

(PK,SK.d,s) «— ¢ (14);

Pr{ YESK| Ty g (1p,d) | <nedlk)

3. Blinding: The combinatiorrpk(X,y) of two valid coupons,y looks like a random
valid coupon. Formally, fix some pair of kefRK, SK) outputted by (1¥). Let Up
be a uniform distribution on Bx and let Us be a uniform distribution on$x. Then,
for all valid coupons xy € Gpk,

Dist(cpk(X,Y),Up) = neglk) if X,y € Ds,

Dist(cpk(X,Y),Us) = neglk)  otherwise.
(Here,Dist(A,B) def 5| Pr/A=xX — Pi{B=X| is the statistical distance between
a pair of random variables /8.)

To build the reader’s intuition, we describe a straw-manstarction of a BCM.
Suppose we are given any semantically secure encrypticensel (-) and a set-
homomorphic signature scheme ${Gby Johnsoret al. [JIMSWO02]. This signature
scheme allows anyone possessing seys— Zp and their signatures SI®), SIG(y)
to compute SIGUY) and SIGw) for anyw C x. We represent dummy coupons by
a random-length vector of encrypted zeroeg, x = (£(0),...,£(0)). The signal
coupons are represented by a vector of encryptions thagiosnat least one encryp-
tion of a non-zero elemene.g, y = (£(0),...,£(0),£(1)). To prevent the adver-
sary from forging coupons, the coupons are signed with thd@@omorphic signa-
ture. The combining operation is simply the set uniogk ( (X, SIG(x)), (y, SIG(y))) =
(ny,SIG(ny)). The drawback of this construction is immediate: as coures
combined and passed around the network, they quickly gropiaege. Constructing a
BCM with no expansion of coupons is more challenging. We diessuch a construc-
tion next.

3.2 Abstract Group Structure

We sketch the abstract group structure that will allow ustiplement a secure and

efficient BCM. Concrete instantiations of this group stusetare provided in Section 4.
LetI" = {I'x} be a family of sets of tuple@J,G,D,d,s), whereU is a finite set,

andG s a subset of). G also has a group structure: it is a cyclic group generatesl by

4 The adversary, however, can easily generate polynomiafigynummy coupons by using
cpk(+,-) with the initial dummy couponl that he receives.



D is a subgroup o6 generated byl, such that the factor group/D has prime order
|G|/|D|. The orders oD andG/D are bounded by*2 moreover|G|/|U| < neglk) and
IDI/|G| < neglk).

Let g’ be a PPT algorithm that on input of $amples fron" according to some
distribution. We considdry to be a probability space with this distribution.

We assume there exists an efficient, deterministic algorfthr distinguishing ele-
ments ofG from elements ol \ G, and an efficient algorithm for computing the group
operation inG.

1) runs g’ to sample(U,G,D,d,s) from Iy,

— Thekey generation algorithm g (
(U,G,d,k), the secret kepK = |D|, as well ag

and outputs the public keK =
ands.

The elements oD will represent dummy coupons, the element§&afD will rep-
resent signal coupons, and the elementd §1G will be invalid coupons (see Fig-
ure 1).

— Theverification algorithm %pk (y) checks that the coupanis in G.

— Thecombining algorithm cpk(X,y) is simply the group operation combined with
randomization. For input,y € G, samplerg, r1 andr, uniformly at random from
{0,1,...,2%¢— 1}, and outputod + rix+ray.

— BecausdD|-y =0 if and only ify € D, thedecoding algorithm Dsk checks if
ID|-y=0.

The indistinguishability and unforgeability propertiefstoe BCM will depend on
the hardness assumptions described below.

Definition 3. Thesubgroup membership problefor I" asks: given a tupléJ,G,D,d,s)
fromI and ye G, decide whetherg D ory € G\ D.

The subgroup membership problem is hard if for any PPT alywori,

(U,G,D,d,s) & Iy; L
Prib'=b yo £ Dy £ G\ D; 3 < neglk).®
b& {0,1};1 — 4(U,G,D,d,s yb)

Various subgroup membership problems have been exteysivelied in the litera-
ture, and examples include the Decision Diffie-Hellman prob[CS02], the quadratic
residue problem [GM84], among others [NS98, OU98, Pai9f}. é@nstructions how-
ever are more related to the problems described in [GjgOBDMNB

Definition 4. Thesubgroup escape problefor I asks: given U, G, D and the gener-
ator d for D from the tupléU,G,D,d,s) fromT, find an element ¢ G\ D.

5 Henceforth, we assume that groups we operate on have somieedescription, which can be
passed as an argument to our algorithms. We also assumedhptejements can be uniquely
encoded as bit strings.



The subgroup escape problem is hard if for any PPT algorithm

Pr < neglk).

y—4(U,G,D,d)

yeG\D‘(UaeaDade)irk:

The subgroup escape problem has to our knowledge not ajgpieattee literature
before. Itis clear that unle$6|/|U| is negligible, finding elements & \ D cannot be
hard. We show in Section 6 that|i®|/|U| is negligible, the subgroup escape problem
is provably hard in the generic model.

We also note that the problem of generating a signal coupmm fvolynomially
many dummy coupons is essentially the subgroup escapespnobl

Theorem 1. Letl” be as above. If the subgroup membership problem and the aubgr
escape problem fdr are hard, then the corresponding BCM is secure.

Proof. Fix kand(U,G,D,d,s) sampled front .

We prove the blinding property first, and start with the id=sde: For input,y € G,
sampleg uniformly from{0,1,...,|D|—1}, andr; andr, uniformly from{0,1,...,|G/D|—
1}, and outputog + rix-+ ray.

If X,y € D, the product is uniformly distributed iD, sincerqg is.

If x¢ D, then the residue classx+ D is uniformly distributed irG/D. Sincerog is
uniformly distributed inD, the product is uniformly distributed i@. The uniform dis-
tribution onG is |D| /| G|-close to the uniform distribution 08\ D. The same argument
holds forryy.

Finally we note that we do not need to knd®f or |G/D|. Since we know thaD]|
and|G/D| are less than'2 samplingro,r1,r2 uniformly from the set{0,...,2% -1}
will produce an output distribution that is ®-close to ideal, which proves the bound
for blinding

Next, we prove the indistinguishability property, so letbe an adversary against
indistinguishability. We have a subgroup membership mobinstancéU, G, D, d,s)
andy € G. We construct the public kepK = (U,G,d, k), and givea as inputPK, d
andy.

If 2 answers 1, we conclude that G\ D, otherwisey € D. Whenever is correct,
we will be correct, soz must have negligible advantage.

Finally, we deal with forging. Lets be an adversary against unforgeability. We have
a subgroup escape problem instakgeG andD, and a generatat for D. Again we
construct the public kePK = (U, G, d, k), and givez as inputPK andd.

Our outputis simplyz’s output. Whenevesr succeeds, we will succeed, gsanust
have negligible success probability. ad

4 Constructing the BCM

We now give two instantiations of the abstract group stmectUW,G,D) described in
the previous section. First, we review some basic facts taddbptic curves over com-
posite moduli in Section 4.1. Then, in Section 4.2, we déscour BCM construction



that utilizes these curves. In Section 4.3, we describe tmnaltive BCM construc-
tion on elliptic curves equipped with bilinear pairings.€Be constructions can be used
to undetectably transmit a one-shot signal throughout #teark. In Section 4.4, we
describe how the BCM's bandwidth can be further expanded.

4.1 Preliminaries

Let n be an integer greater than 1 and not divisible by 2 or 3. We ifitsbduce
projective coordinates oveéf,. Consider the sdt) of triples (x,y,2) € Z3 satisfying
gcdx,y,z n) = 1. Let~ be the equivalence relation éhdefined by(x,y,z) ~ (X, Y, Z)
iff there exists\ € Z;, such thatx,y,z) = (AX,Ay',AZ). LetU be the set of equivalence
classes iJ. We denote the equivalence clas{xfy,z) as(x:y: z).

An elliptic curve overZ, is defined by the equation

E:Y2Z=X3+axZ2+bZ® (modn),

wherea, b are integers satisfying g6¢a® — 27b°,n) = 1. The set of points o& /Z is
the set of equivalence classes y : z) € U satisfyingy?z = x3 + axZ + bz (modn),
and is denoted b¥(Z,). Note that ifn is prime, these definitions correspond to the
usual definitions for projective coordinates over primedfel

Let p andq be primes, and leh = pq. Let Ep : Y2Z = X3 4 apXZ? + bpZ® and
Eq: Y?Z = X3+ agXZ2 + beZ? be elliptic curves defined ovél, andFq, respectively.
We can use the Chinese remainder theorem todiaddb yielding an elliptic curve
E : Y2Z = X3 +aXZ2 +bZ® overZy such that the reduction & modulop givesE,
and likewise fom.

It can also be shown that the Chinese remainder theorem gisesisomorphism

E(Zn) — Ep(Fp) x Eq(Fq)

inducing a group operation d&(Zp). For almost all points ifE(Zp), the usual group
operation formulae for the finite field case will compute thduced group operation.
When they fail, the attempted operation gives a factowratif the composite modulus

n. UnlessEp(Fp) or Eq(Fq) has smooth or easily guessable order, this will happen only
with negligible probability (see [Gal02] for more details)

4.2 BCM on Elliptic Curves Modulo Composites

Letp,q,/1,¢2,¢3 be primes, and suppose we have elliptic culigdF, andEq/Fq such
that #p(Fp) = (102 and #4(IFq) = ¢3. Curves of this form can be found using complex
multiplication techniques [BSS99, LZ94].

With n = pqg, we can finde /Zy such that #(Z) = ¢1¢2¢3. LetU be the projective
plane modulm, let G be E(Zp), and letD be the subgroup of ordéi¢s. The public
key isPK = (G, D, n), while the secret key iSK= (p,q,11,12,13).°

6 To describe group& andD, we publish the elliptic curve equation and the generatobfo
This gives away enough information to perform group operetinG, check membership in
G, and generate new elementddr(but not inG).



VERIFICATION FUNCTION For any equivalence clags:y:z) inU, itis easy to decide
if (x:y:2)isinE(Zy) or not, simply by checking if°z= x3 + axZ + bZ (modn).

SUBGROUP MEMBERSHIP PROBLEM For the curveEy(F;), distinguishing the ele-
ments of prime order from the elements of composite ordensee be hard, unless it
is possible to factor the group order [Gjg05].

Counting the number of points on an elliptic curve defined @eomposite num-
ber is equivalent to factoring the number [HWL87, KK98]. Téfre, the group order
Ep(Fp) is hidden.

When the group order is hidden, it cannot be factored. Ietloee seems reasonable
that the subgroup d&(Z,) of order¢1 /3 is hard to distinguish from the rest of the points
on the curve, as long as the integés hard to factor.

SUBGROUPESCAPEPROBLEM Anyone capable of finding a random point on the curve
will with overwhelming probability be able to find a point side the subgroup.

Finding a random point on an elliptic curve over a field is e&3dyoose a random
x-coordinate and solve the resulting quadratic equatiohast rational solutions with
probability close to 12.

This does not work for elliptic curves over the riffg, since solving square roots
modulon is equivalent to factoring. One could instead try to chooseyaoordinate
and solve for thex-coordinate, but solving cubic equationsZp seems no easier than
finding square roots.

One could try to findx andy simultaneously, but there does not seem to be any
obvious strategy. This is in contrast to quadratic curvésen Pollard [SP87] gave an
algorithm to find solutions of a quadratic equation modul@meposite (which broke
the Ong-Schnorr-Shamir signature system [OSS84]). Theetmiques do not seem to
apply to the elliptic curve case.

Finding a lift of the curve over the integers does not seermgimg. While torsion
points are fairly easy to find, they will not exist if the curki¢Z,, does not have points
of order less than or equal to 12. If we all@®yZ, to have points of small order that are
easily found, we can simply include them in the subgrBup

Finding rational non-torsion points on curves defined @Yés certainly non-trivial,
and seems impossibly hard unless the point on the liftededuag small height [Sil99].
There does not seem to be any obvious way to find a lift wittonati points of small
height (even though they certainly exist).

What if we already know a set of points on the curve? If we avergPy, P>, P; €
E(Zn), we can find, unless the points are collinear, a quadraticecur

C:YZ=oaX?+pBXZ+y2Z?

defined ovefZ, that passes throudg®, P>, Ps. We can find the fourth intersection point
P4 by deriving a fourth-degree polynomial ¥afor which we know three zeros.

To show that we could easily derive this point using the groperation, we con-
sider the situation over the finite fields, wh&andC have at most six points of inter-
section. Both interse¢D : 1 : 0), and since the lin& = 0 is a tangent to both curves in
(0:1:0), their intersection number if0 : 1 : 0) is greater than 1. This means tt&t
andC intersect in exactly five point®y, P, Ps, Psand(0: 1: 0).



The divisor ofC is (P1) + (P2) + (Ps) + (Ps) +2((0: 1 : 0)). LetC' : Z2 = 0 with
divisor 6((0: 1 : 0)). Since the divisor of the functiof(X,Y,Z) = (Y Z—aX? - BXZ—
yZ?)/(Z?) satisfies diyf) = div(C) — div(C') = 0, we see thatPy) + (P,) + (Ps) +
(P4) —4((0:1:0) =0, which means that

Pi+P+P3+P;=(0:1:0

The fourth point is therefore the inverse sum of the threenknpoints.

If points of the curve only yield new points via the group cgt@n, and it seems
hard to otherwise find points d&(Z), it is reasonable to assume tHa{Z,) and its
subgroup, as described in the previous section, yield aswdrgroup escape problem.

4.3 BCM on Groups With Bilinear Pairings

Let p, {1, £2, and{3 be primes such thagt+ 1 = 6/1¢2/3, andp =2 (mod 3. Here,
I1,12,13 must be distinct and larger than 3. The elliptic cuver? = X3+ 1 defined over
Fpis supersingular and has ordes 1. Becaus@“’l;2 has ordep? — 1= (p+1)(p—1),
there is a modified Weil pairing:"E(F) x E(Fp) — IF;Z. This pairing is known to be
bilinear: €(aP,bQ) = &P,Q)2" for all P,Q € E(Fp) anda,b € Z;. It can be computed
as described in [BFO1].

LetU = E(Fp), and letG andD be the subgroups @& (Fp) of order/1/> and/y,
respectively. We also lé® be a point inE(F,) of order @1/>¢3, and letR be a point of
order @3 in E(Fp), sayR= ¢1/,P. The public key iPK = (G, D, p,R) and the secret
key is SK= (l1,l2,l3). The pairinge™allow us to describ& in the public key without
giving away secret information.

VERIFICATION FUNCTION We claim that for any poin® € E(F), Q € Gifand only if
€(Q,R) is equalto 1. IfQ € G, thenQ has orde¥1¢, and for some integes; Q = 6s/3P.
Then

&(Q,R) = &(65/3P, (1(,P) = &(P,P)®1/2a — 1.

So the poinR and the pairinge allows us to determine if points are@or inU \ G.

SUBGROUP MEMBERSHIP PROBLEM Distinguishing the subgroup (the points of
order/;) from G (the points of ordef1¢,) can easily be done if the integér/,¢3 can
be factored. In general, factoring seems to be the best wdistimguish the various
subgroups oE (Fy).

Because we do not reveal any points of or@gor />¢3, it seems impossible to
use the pairing to distinguish the subgrdbpn this way. (Theorem 1 of [Gjg05] as-
sumes free sampling of any subgroup, which is why it and tivéngecannot be used to
distinguish the subgroups &f{([Fy).) It therefore seems reasonable to assume that the
subgroup membership problem f@randD is hard, which will provide indistinguisha-
bility.



SUBGROUPESCAPEPROBLEM For a general cyclic group of ordéglo/3, it is easy to
find elements of ordéh /s if /3 is known. Unlesgs is known, it is hard to find elements
of order/1¢2, and knowing elements of ordér does not help.

For our concrete situation, factoring the integgh¢3 into primes seems to be the
best method for solving the problem. If the printgs/, and/s are chosen carefully to
make the produdt; /2¢3 hard to factor, it seems reasonable to assume that the suybgro
escape problem fag, G andD is hard.

4.4 Extending the BCM’s Bandwidth

The blind coupon mechanism allows to undetectably tranansingle bit. Although
this is sufficient for our network alert application, somatis we may want to transmit
longer messages.

TRIVIAL CONSTRUCTION By using multiple blind coupon schemes over different
moduli in parallel, we can transmit longer messages. Babit message = X3 ...Xn s
represented by a vector of coupdps, . . ., Com), where eaclg; is drawn from a different
scheme. Each processor applies his algorithm in parallehtt of the entries in the
vector, verifying each coupon independently and applyirgappropriate combining
operation to each.

A complication is that an adversary given a vector of coupmight choose to
propagate only some of the, while replacing others with dummy coupons. We can
enable the receiver to detect when it has received a complessage by representing
each bitx; by two couponsty_1 (for x; = 0) andcy; (for x; = 1). A signal coupon
in either position tells the receiver both the value of thiednid that the receiver has
successfully received it.

Alas, we must construct and rd@h(m) blind coupon schemes in parallel to transmit
m bits.

BETTER CONSTRUCTION Some additional improvements in efficiency are possible.
As before, our group structure &J,G,D). Suppose our cyclic grou@ has order
Nop1- -+ Pm, Wherep; are distinct primes. LdD be the subgroup d& of orderng.

An m-bit message = X1 . .. Xm is encoded by a coupgne G, whose order is divis-
ible by [7;.x-1 pi. For alli, we can find an elemeg € G of orderngp;. We can thus
lety = gi*® .- - gl for randonry, ...,rm € {0,1,...,2% — 1}.

When we combine two coupong andyso, it is possible that the order of their
combinationcpk(y1,Y2) is less than the |.c.m. of their respective orders. Howefrer,
the primesp; are sufficiently large, this is unlikely to happen.

In Section 4.2ng is a product of two moderately large primes, while the other
primes can be around2 For the construction from Section 418, is prime, but every
prime must be fairly large to counter elliptic curve factation.

This technique allows us to transmit messages of quiteicesdrbandwidth. It re-
mains an open problem whether some other tools can be useldityva higher capacity
without a linear blow-up in message size.



5 Spreading Alerts with the BCM

In this section, we show how the BCM can be used to spread gmaletly and quickly
throughout a network. We begin with a definition of the probl@ Sections 5.1, and
then present results on the security and performance of &ahamism in Sections 5.2
and 5.3.

To summarize these results briefly, we consider a very gensgasage-passing
model in which each nodB has a “split brain,” consisting of anpdate algorithm
u; that is responsible for transmitting and combining coupamsl asupervisor al-
gorithm s; that may insert a signal coupon into the system at some poiat.nodes
carry out these operations under the control of a BRacker 4 that can observe all
the external operations of the nodes and may deliver anyagess any node at any
time, including messages of its own invention.

We show first that, assuming the BCM is secure, the attackenegher detect nor
forge alerts despite its total control over message traffigs result holds no matter
what update algorithm is used by each node; indeed, it hofels ié the update half of
each node colludes actively with the adversary. We theneyaenples of some simple
strategies for spreading an alert quickly through the ngtwdth some mild constraints
on the attacker’s behavior.

5.1 Our Model

We now describe the model for our algorithms.

5.1.1 Basic SettingWe adopta very general message-passing communicatiored,mod
permitting an active adversary both control over the tinohdelivery of messages be-
tween nodes and the ability to read, replace, and rediressages at will. At the same
time, we structure our model of a node to enforce the requérgthat the node’s visible
behavior €.g, its choices of what other nodes to communicate with) is ffetted by

the type of couponsiit is transmitting.

5.1.2 ProcessedVe assume that we have a collectiomafodesP;, P, ..., P,. Pro-
cesses have “split brains”: for each nd@l@nupdate algorithm «; handles communi-
cation with other nodes, whilesupervisor algorithm s; chooses when or if to send a
signal coupon. This split enforces the requirement thattimemunication pattern does
not depend on which type of coupon a node is sending.

We do not examine the behavior of the supervisor algorithosady; instead, we
assume only that it supplies a sequence of couppses, . .. to the update algorithm
;. The supervisor algorithry;, of regular nodes will intermittently supply a sequence
of dummy coupons. Meanwhilg; of sentinel nodes will supply dummy coupons until
it detects the intruder’'s presence, at which point it williteWv to dispensing signal
coupons. We assume that the sequence does not depend oedhéaxof the rest of
the protocol. For convenience, we writefér the indicator variable that is a signal
coupon; that is, we writel = 0 if at stept of execution the coupon supplied by the
supervisor algorithm of nod@ is a dummy coupon and = 1 if it is signal.



The inputs to update algorithm; at stept consist of (a) the sequence of sets of
messages received at steps 1 throtglb) the sequence of sets of messages sent at
steps 1 through— 1; and (c) the coupod supplied bys; at timet. The output ofu;
is a set of messages to be sent at stépach message is of the forfgr,m,c) where
sis the identity of the sender,is the intended recipienin is an arbitrary string, and
cis a coupon. To simplify the model, we do not keep track of aasze process state,
because any such state can easily be recomputed from thagadsgstory.

The update algorithms have access to the publidk€pf the blind coupon mecha-
nism. We assume that they can apply the verification algorithx and the combining
algorithm cpk in computing outgoing messages. To spread alerts, a typjcdte al-
gorithm will discard any coupons from incoming messages$eisupervisor algorithm
that are rejected bypk, and forward to a carefully-chosen set of recipients cogpon
obtained by combining all unrejected coupons so far in sorderaisingcpg. It may
also use additional information in messages to manage dipgeaf alerts, and this
additional information may also depend on the values of tupons it has seen.

5.1.3 Attacker The PPT attacker algorithm controls the timing and content of
delivered messages. The input to the attacker is a paréaigion, where theth step

of an execution is described by a tuple R, S ) wherei; is a node identityR is the set
of messages received By at that step, an& is the set of messages sentByat that
step. The output oft is a choice of which nod®,,, executes the next step and what
set of messagd’ . ; it receives. The attacker also has access to the publi®Kegnd
can use the verification and combining algorithmig andcpk as subroutines.

An execution is constructed by an interactive protocol Wwhidternates between
the attacker choosing a noég, , and a set of received messads; and the node’s
update algorithmuz; computing a set of messag&s1 to send. Given particular pub-
lic and secret keysPK and SK, adversarya, update algorithmsz;, and supervisor
inputsc for stepst = 1,...,T, there exists a corresponding probability distribution
=(PK,SK,a,{u;},{¢}) on executions.

Note that traditional classes of process faults are easitylated by an attacker
defined in this way: a Byzantine node, for example, can be Isited by replacing
all of its outgoing messages in transit. The attacker alsoflladpower to violate any
assumptions about synchrony, timely delivery, or reliabéssage transmission that the
algorithm makes. We will show that such violations do noteffthe security guarantees
derived from the blind coupon mechanism; however, any perdmce guarantees on
alert-spreading will require imposing restrictions on #ticker’s behavior.

5.1.4 Problem The problem is simple: at an opportune time, the sentineéaedsh
to propagate an alert (signal coupons) to all other nodeswdrd to prevent the at-
tacker (except with negligible probability) from (a) idéping the presence or source
of signal coupons; (b) causing the nodes to spread signpbemeven though no super-
visor algorithm supplied one; (c) preventing the spreadgia coupons to potential
recipients.



5.2 Security

Let us begin with the security properties we want our alpreading mechanism to
have.

Definition 5. A set of update algorithmisu; } is secureif, for any adversary algorithm
4, and any T= poly(k), we have:

1. Undetectability Given two distributions on executions, one in which no algn
coupons are injected by supervisors and one in which sometlageadversary
cannot distinguish between them with probability greateart1/2. Formally, let
¢ = ofor alli, t and let&"" be arbitrary. Then for any PPT algorithm,

(PK,SK,d,s) «— ¢ (1¥);

b {0,1}; A
£ &= (PR.SK A, {u) {6)): | 2 = neglk).
b — @(1k’ PK,d, {Cil’t},ﬁ)

Pri b=b

2. Unforgeability: The adversary cannot cause any process to transmit a sgmadon
unless one is supplied by a supervisor. Formallg i 0 for all i, t, then there is
no PPT algorithma such that

(PK,SK,d,s) « ¢ (14);

Pr| 3(s;r,m,c) € EA(CE Ssk) |Ei:(PK SK A () (&)):

] < neglk).

Security of the alert-spreading mechanism follows immitijafrom the security
of the underlying blind coupon mechanism. The essentia lolhind undetectability
is that because neither the adversary nor the update dgwritan distinguish between
dummy and signal coupons distributed by the supervisorrigos, there is no test
that can detect their presence or absence. For unforggathié inability of the adver-
sary and update algorithms to generate a signal coupomilmmediately from the
unforgeability property of the BCM.

Theorem 2. An alert-spreading mechanism is secure if the underlyimgdotoupon
mechanism is secure.

Proof (sketch)We show first undetectability and then unforgeability.

Undetectability. Suppose that the alert-spreading mechanism does notysatige-
tectability, i.e. that there exists a set of update algorithfus }, an adversaryz, and
pattern{éil’t} of signal coupons that can be distinguished from only dummypons

by some PPT algorithrw with non-negligible probability.

Let us use this fact to construct a PPT algoritiarthat violates indistinguishability.
Let y be the coupon input ta. Then3 will simulate an executior§ of the alert-
spreading protocol by simulating the adversargnd the appropriate update algorithm
u; at each step. The only components of the protocol thaannot simulate directly
are the supervisor algorithnys, becauses does not have access to signal coupons



provided to the supervisor algorithms of sentinel noded.Hgue 3 letsct = ¢ (d,d)
whenc™" = 0 and lets! = ¢ (y,y) whenc™' = 1. By the blinding property of the BCM,
if y € Dsk, then all coupons! will be statistically indistinguishable from uniformly
random dummy coupons, giving a distribution on executitias is itself statistically

indistinguishable front (PK,SK,,q,{ui},{é?’t}). If insteady € Ssk, thenc! will be
such that the resulting distribution on executions will baistically indistinguishable
from = (PK,SK,JZI,{‘ZIi}, {q“}). It follows from the indistinguishability property of

the BCM that no PPT algorithm can distinguish between these two distributions with
probability greater than/2 + neg(k).

Unforgeability. The proof of unforgeability is similar. Suppose that thessome ad-
versary and a set of update functions that between them d¢dmnen-negligible prob-
ability, generate a signal coupon given only dummy coupoor® the supervisor algo-
rithms. Then a PPT algorithm that simulates an execution of this system and returns
a coupon obtained by combining all valid coupons sent dutiegexecution forges a
signal coupon with non-negligible probability, contrattig the unforgeability property
of the BCM.

O

5.3 Performance

Itis not enough that the attacker cannot detect or forgésalemechanism that used no
messages at all could ensure that. In addition, we want tereaine guarantee that if
an alert is injected into the system, it eventually spreadsltnon-faulty nodes. To do
so requires both specifying a particular strategy for théesbupdate algorithms and
placing restrictions on the attacker’s ability to discardssages. We give two simple
examples of how the blind coupon mechanism might be usediictipe. More sophis-
ticated models can also be used; the important thing is #@trity is guaranteed as
long as the spread of coupons is uncorrelated with theirecist

A SYNCHRONOUS FLOODING MODEL. Consider a&communication graph with an
edge from each node to each other node that it can commutoc&eppose that at step
t, nodePR’s update algorithm (a) discards all invalid incoming conpo(b) combines
any remaining coupons with its previous sent couponscrahd (c) sends the result to
all of its neighbors in the communication graph. Supposthérrthat nodes are divided
into faulty and non-faulty nodes (by arbitrary choice of #iteacker), and that every
message sent by a non-faulty node to another non-faulty isodelivered intact by
the attacker within at most one time unit. If the communmatyraph after deletion
of faulty nodes is strongly connected, every node receivagraal coupon in at most
A steps after a signal coupon is injected, wha&ris the diameter of the subgraph of
non-faulty nodes.

A SIMPLE EPIDEMIC MODEL. In this model, the communication graph is complete,
and at each step a randomly-chosen node chooses a randoriomedeive its coupon
(which does so immediately). The behavior of a node recgigimessage is the same



as in the synchronous case. Then the number of interactionsthe injection of the
first signal coupon until all nodes possess a signal coupeemsity seen to b®(nlogn).
Formally:

Theorem 3. Consider an executio& with n nodes of which k: n are Byzantine, and
suppose that some sentinel node begins sending a signa fitshstep. Let the sched-
ule be determined by choosing pairs of nodes for each stdpramly at random. Then

. . L. 2
all non-faulty nodes update their state to a signal coupothiwiexpected %)
steps.

Proof. First observe that we can assutne n— 1, or else the unique non-faulty node
possesses the alert at time 1.

Define a node as “alerted” if its state is a signal coupon, abk be the number
of alerted nodes. If the next step pairs an alerted, noryfawdde with a non-alerted,

non-faulty node, which occurs with probabili (<;i)k>, the number of alerted nodes

rises tok+ 1. The expected time until this event occurs is at nﬂ%}% <

k(n—b—K) "
The expected time until all non-faulty nodes are alertetius tat most

n—-b-1 n2 ) (n_fg;q 1 n—-b-1 1
_ < -
kzl kin—b—k) — n & k(BT + ) nzle (E5T) (n—b—kK)

=[5
, 2 (=314
s2n n-b-1 k; k
4r? n—b—1
_n—b—lHq 2 D
B <nzlogn)
n-b /°

If bis any constant fraction of, the bound becomes simpB(nlogn).

6 Generic Security of the Subgroup Escape Problem

We prove that the subgroup escape problem is hard in theiggmeup model [Sho97]
when the representation set is much larger than the group.

Let G be a finite cyclic group and léfl C {0,1}* be a set such that| > |G|.
In the generic group model, elements®fire encoded as unique random strings. We
define a random injective functiom : G — U, which maps group elements to their
string representations. Algorithms have access to anetlaat on input ok+ y returns
o(o7(x) £ 0~ 1(y)) when bothx,y € 6(G) C U, and otherwise the special symhol
An algorithm can use the oracle to decide whetherU is in 6(G) or not by sending
the queryx+ x to the oracle. Ik ¢ a(G), the reply will be L.



Theorem 4. Let D be a subgroup of G U. Let g be a generator of D. Let be
a generic algorithm that solves the subgroup escape problem makes at most g
queries to the group oracle, then

q(|G| - D))
(Ul-a)

Proof. The algorithm can only get information abamthrough the group oracle. If the
input to the oracle is two elements known to bedifD), then the adversary learns a
new element iro(D).

To have any chance of finding an elementd6 \ D), the adversary must use the
group oracle to test elements that are not known to fug ).

Suppose that aftéiqueries, the adversary knoaglements iro(D) andb elements
of U\ o(G) (a+b <i). For anyz outside the set of tested elements, the probability that
ze o(G\D) is exactly(|G| — |D|)/(JU| — b) (note that it is independent &j.

Therefore, the probability that the adversary discoverslament ino(G\ D) with
i +1 query is at most|G| — |D|)/(|U| —i). For up toq queries, the probability that at
least one of the tested elements are(@ \ D) is at most

PrlyeG\D | 4(1%0(g) = oly)] <

< |G- _ . [GI-ID]
& Ui 7 U[-q

For a sufficiently large universé, this probability is negligible. a

7 Conclusion

We have defined and constructed a blind coupon mechanisrernmepting a special-
ized form of a signed, AND-homomorphic encryption. Our geoaf security are based
on the novel subgroup escape problem, which seems hard @incgroups given the
current state of knowledge. Our scheme can be instantiatbaliptic curves ovetZ,

of reasonable size which makes our constructions practiahave demonstrated that
the BCM has many natural applications. In particular, it barused to spread an alert
undetectably in a variety of epidemic-like settings desfite existence of Byzantine
nodes and a powerful, active adversary.

8 Acknowledgments

We are grateful to Yevgeniy Dodis for his helpful commentgareling this work.

References

[Abe99] Masayuki Abe. Mix-networks on permutation netwarkn Advances in Cryptology -
Proceedings of ASIACRYPT,9®lume 1706 of.ecture Notes in Computer Science
pages 258-273. Springer-Verlag, 1999.



[ACS02] Joy Algesheimer, Jan Camenisch, and Victor Shoufici&t computation modulo
a shared secret with applications to the generation of drsae prime products. In
Advances in Cryptology - Proceedings of CRYPTO 20@fume 2442 ofLecture
Notes in Computer Sciengeages 417-432. Springer-Verlag, 2002.

[BCC88] Gilles Brassard, David Chaum, and Claude Crép&&nimum disclosure proofs of
knowledge.Journal of Computer and System Scien@3§2):156—189, 1988.

[BDO1]  Amos Beimel and Shlomi Dolev. Buses for anonymoussage delivery. liSecond
International Conference on FUN with Algorithisages 1-13. Carleton Scientific,
2001.

[BFO1] Dan Boneh and Matt Franklin. Identity-based endiyptirom the Weil pairing.
Lecture Notes in Computer Scien@d39:213-229, 2001.

[BSS99] lan F. Blake, Gadiel Seroussi, and Nigel P. Smé&tliptic Curves in Cryptogra-
phy, volume 265 ofLondon Mathematical Society Lecture Note Seri€ambridge
University Press, 1999.

[Cha81] David Chaum. Untraceable electronic mail, retutdrass and digital pseudonyms.
Communications of the ACN4(2):84-88, 1981.

[Cha88] David Chaum. The dining cryptographers problencaswlitional sender and recip-
ient untraceability.Journal of Cryptology1:65-75, 1988.

[CRS04] David Chaum, Peter Y.A. Ryan, and Steve A. Schneileractical, voter-verifiable
election scheme. Technical Report CS-TR-880, School ofitaimg Science, Uni-
versity of Newcastle, December 2004.

[CS02] Ronald Cramer and Victor Shoup. Universal hash graofd a paradigm for adap-
tive chosen ciphertext secure public-key encryption. IrslR Knudsen, editoRro-
ceedings of EUROCRYPT 2Q0@®lume 2332 of_ecture Notes in Computer Science
pages 45-64. Springer-Verlag, 2002.

[Dem93] N. Demytko. A new elliptic curve based analogue ofAR3n Advances in Cryp-
tology - Proceedings of EUROCRYPT, @8lume 765 ofLecture Notes in Computer
Sciencepages 40-49. Springer-Verlag, 1993.

[DGH*87] Alan Demers, Dan Greene, Carl Hauser, Wes Irish, JohsdnarScott Shenker,
Howard Sturgis, Dan Swinehart, and Doug Terry. Epidemiordtigms for replicated
database maintenance. In Fred B. Schneider, editoceedings of the 6th Annual
ACM Symposium on Principles of Distributed Computipgges 1-12, Vancouver,
BC, Canada, August 1987. ACM Press.

[Gal02]  Steven D. Galbraith. Elliptic curve Paillier schesn Journal of Cryptology
15(2):129-138, 2002.

[GJ04] Philippe Golle and Ari Juels. Dining cryptographesgisited. InAdvances in Cryp-
tology - Proceedings of EUROCRYPT 2004ges 456-473, 2004.

[Gje04]  Kristian Gjgsteen.Subgroup membership problems and public key cryptosystems
PhD thesis, NTNU, May 2004.

[Gj@05]  Kristian Gjgsteen. Symmetric subgroup memberghiblems. In Serge Vaudenay,
editor, Proceedings of Public Key Cryptography 2006lume 3386 of.NCS pages
104-119. Springer-Verlag, 2005.

[GK99]  Shafi Goldwasser and Joe Kilian. Primality testinghgselliptic curves.Journal of
the Association for Computing Machine#6:450-472, 1999.

[GM84]  Shafi Goldwasser and Silvio Micali. Probabilisticoeyption. Journal of Computer
and System Sciencez8:270—-299, April 1984.

[HWL87] Jr. Hendrik W. Lenstra. Factoring integers withijgic curves.Annals of Mathemat-
ics, 126:649-673, 1987.

[Jak9s8] Markus Jakobsson. A practical Mix. Advances in Cryptology - Proceedings of
EUROCRYPT 98volume 1403 of_ecture Notes in Computer Sciengages 448—
461. Springer-Verlag, 1998.



[Jak99]

Markus Jakobsson. Flash mixing. Rroceedings of the Eighteenth Annual ACM
Symposium on Principles of Distributed Computipgges 83-89. ACM, 1999.

[JMSWO02] Robert Johnson, David Molnar, Dawn Xiaodong Sargl David Wagner. Homo-

[KK98]

morphic signature schemes. @T-RSApages 244-262, 2002.
Noboru Kunihiro and Kenji Koyama. Equivalence of eting the number of points
on elliptic curve over the ring, and factoring n. In Nyberg [Nyb98].

[KMOV92] Kenji Koyama, Ueli M. Maurer, Tatsuaki Okamoto, @scott A. Vanstone. New

[LSP82]

[LZ94]

[NBDO1]

[NS98]
[Nybos]

[0SS84]

[oU9s]

[Pai9g]

[Rab79]

[RSA78]

[SGRY8]

[Sho97]

[Sil9g]

[SP87]

public-key schemes based on elliptic curves over thezingn Advances in Cryptol-
ogy - Proceedings of CRYPTO,9blume 576 otecture Notes in Computer Science
pages 252-266, 1992.

Leslie Lamport, Robert Shostack, and Marshall Ee@ke Byzantine generals prob-
lem. ACM Transactions on Proggramming Languages and Systé(@5382—401,
1982.

Georg-Johann Lay and Horst G. Zimmer. Constructitigptec curves with given
group order over large finite fields. In Leonard M. Adleman ktidg-Deh A. Huang,
editors,ANTS volume 877 ofLecture Notes in Computer Sciengages 250—263.
Springer-Verlag, 1994.

Juan Manuel Gonzalez Nieto, Colin Boyd, and Ed Damvs A public key cryp-
tosystem based on the subgroup membership problem. In 8gQui Okamoto,
and J. Zhou, editor®roceedings of ICICS 200¥olume 2229 ol_ecture Notes in
Computer Sciencages 352—363. Springer-Verlag, 2001.

David Naccache and Jacques Stern. A new public kgyta@system based on higher
residues. In Nyberg [Nyb98], pages 308-318.

Kaisa Nyberg, editorAdvances in Cryptology - EUROCRYPT ;9%lume 1403 of
Lecture Notes in Computer Scien&pringer-Verlag, 1998.

H. Ong, Claus-Peter Schnorr, and Adi Shamir. Aniefiicsignature scheme based
on quadratic equations. proceedings of ACM Symposium on Theory of Computing
ACM, pages 208-216, 1984.

T. Okamoto and S. Uchiyama. A new public-key crypgisyn as secure as factoring.
In Nyberg [Nybh98], pages 308—-318.

P. Paillier. Public-key cryptosystems based on pusite degree residue classes.
In Jacques Stern, editd?yoceedings of EUROCRYPT '9@lume 1592 ol ecture
Notes in Computer Sciengeages 223-238. Springer-Verlag, 1999.

Michael Rabin. Digitalized signatures and pulBkg-functions as intractable as fac-
torization. Technical Report MIT/LCS/TR-212, Laboratdoy Computer Science,
Massachusetts Institute of Technology, January 1979.

Ronald Rivest, Adi Shamir, and Leonard Adleman. Ahmd for obtaining digital
signatures and public-key cryptosysten@mmunications of the ACN21(2):120—
126, 1978.

Paul F. Syverson, David M. Goldschlag, and MichaeR&ed. Anonymous con-
nections and Onion routinglEEE Journal on Selected Areas in Communications:
Special Issue on Copyright and Privacy Protectitf(4):482—494, 1998.

Victor Shoup. Lower bounds for discrete logaritrand related problems. In Walter
Fumy, editor,Proceedings of EUROCRYPT '9Volume 1233 ofLecture Notes in
Computer Sciencgages 256—266. Springer-Verlag, 1997.

Joseph H. Silverman. Computing rational points amkr1 elliptic curves vid-series
and canonical heightdvathematics of computatipB88(226):835-858, April 1999.
Claus P. Schnorr and John M. Pollard. An efficienttimiuof the congruence? +
ky? =m (modn). IEEE Transactions on Information Theg3(5):702—709, 1987.



[SRGO0] Paul F. Syverson, Michael G. Reed, and David M. Giblidgy. Onion routing access
configurations. IDISCEX2000:Proceedings of the DARPA information sunilitgth
conference and expositippages 34—40. IEEE CS Press, 2000.



