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Abstract. We introduce a new cryptographic primitive called theblind coupon
mechanism(BCM). In effect, the BCM is an authenticated bit commitmentscheme,
which is AND-homomorphic. It has not been known how to construct such com-
mitments before. We show that the BCM has natural and important applications.
In particular, we use it to construct a mechanism for transmitting alerts unde-
tectably in a message-passing system ofn nodes. Our algorithms allow an alert to
quickly propagate to all nodes without its source or existence being detected by
an adversary, who controls all message traffic. Our proofs ofsecurity are based
on a newsubgroup escape problem, which seems hard on certain groups with
bilinear pairings and on elliptic curves over the ringZn.
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1 Introduction

MOTIVATION . As more computers become interconnected, chances increase greatly
that an attacker may attempt to compromise your system and network resources. It
has become common to defend the network by running an Intrusion Detection System
(IDS) on several of the network nodes, which we call sentinels. These sentinel nodes
continuously monitor their local network traffic for suspicious activity. When a sentinel
node detects an attacker’s presence, it may want to alert allother network nodes to the
threat. However, issuing an alert out in the open may scare the attacker away too soon
and preclude the system administrator from gathering more information about attacker’s
rogue exploits. Instead, we would like to propagate the alert without revealing the ids
of the sentinel nodes or the fact that the alert is being spread.

⋆ An extended abstract of this paper will appear in the proceedings of ASIACRYPT 2005, De-
cember 2005.
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Fig. 1. Abstract group structure used in our BCM construction.

We consider a powerful (yet computationally bounded) attacker who observes all
message traffic and is capable of reading, replacing, and delaying circulating messages.
Our work provides a cryptographic mechanism that allows an alert to spread through a
population of processes at the full speed of an epidemic, while remaining undetectable
to the attacker. As the alert percolates across the network,all nodes unwittingly come
to possess the signal, making it especially difficult to identify the originator even if the
secret key is compromised and the attacker can inspect the nodes’ final states.

A NEW TOOL: A BLIND COUPON MECHANISM. The core of our algorithms is a
new cryptographic primitive called ablind coupon mechanism(BCM). The BCM is
related, yet quite different, from the notion of commitment. It consists of a setDSK of
dummy couponsand a setSSK of signal coupons(DSK∩SSK = /0). The owner of the
secret keySKcan efficiently sample these sets and distinguish between their elements.
We call the set of dummy and signal coupons,DSK∪SSK, the set ofvalid coupons.

The BCM comes equipped with averification algorithm VPK(x) that checks ifx
is indeed a valid coupon. There is also a probabilisticcombining algorithm CPK(x,y),
that takes as input two valid couponsx,y and outputs a new coupon which is, with high
probability, a signal coupon if and only if at least one of theinputs is a signal coupon.
As suggested by the notation, both algorithms can be computed by anyone who has
access to the public keyPK of the blind coupon mechanism.

We regard the BCM secure if an observer who lacks the secret key SK (a) can-
not distinguish between dummy and signal coupons (indistinguishability ); (b) can-
not engineer a new signal coupon unless he is given another signal coupon as input
(unforgeability ); and (c) cannot distinguish randomly chosen coupons from coupons
produced by the combining algorithm (blinding ).

OUR MAIN CONSTRUCTION. Our BCM construction uses an abstract group structure
(U,G,D). Here,U is a finite set,G⊆U is a cyclic group, andD is a subgroup ofG. The
elements ofD will represent dummy coupons and the elements ofG\D will be signal
coupons (see also Figure 1). The combining operation will simply be a group operation.
To make verification possible, there will need to be an easy way to distinguish elements
of G (valid coupons) from elements ofU \G (invalid coupons).

In order for the BCM to be secure, the following two problems must be hard on this
group structure:

– Subgroup Membership Problem: Given generators forG andD and an element
y∈G, decide whethery∈D or y∈G\D.



– Subgroup Escape Problem: Given a generator forD (but notG), find an element
of G\D.

The subgroup membership problem has appeared in many different forms in the lit-
erature [CS02,GM84,NS98,OU98,Pai99,Gjø05,NBD01]. The subgroup escape prob-
lem has not been studied before. To provide more confidence inits validity, we later
analyze it in the generic group model.

Notice that the task of distinguishing a signal coupon from adummy coupon (indis-
tinguishability) and the task of forging a signal coupon (unforgeability) are essentially
the subgroup membership and subgroup escape problems. The challenge thus becomes
to find a concrete group structure(U,G,D) for which the subgroup membership and the
subgroup escape problems are hard.

We provide two instantiations of the group structure: one using groups with bilinear
pairings, and one using elliptic curves over composite moduli.

WHY IS A BCM USEFUL? The BCM can potentially be useful in various applications.
If signal coupons are used to encode a “1” and dummy coupons a “0”, then a BCM can
be viewed as an OR-homomorphic bit commitment scheme. The BCM is indeedhid-
ing because dummy and signal coupons appear the same to an outside observer. It is
alsobinding because the sets of dummy and signal coupons are disjoint. Inaddition,
the BCM’s verification function ensures the commitment is authenticated. By switch-
ing signal coupons to encode a “0” and dummy coupons to encodea “1”, we get an
AND-homomorphic bit commitment. As far as we know, it has notbeen known how
to construct such commitments before. The BCM thus providesa missing link in pro-
tocol design. Using BCM together with techniques of Brassard et al. [BCC88], we can
obtain short non-interactive proofs of circuit satisfiability, whose length is linear in the
number of AND gates in the circuit. Other potential uses include i-voting (voting over
the Internet) [CRS04].

SPREADING ALERTS WITH THE BCM. Returning to our original motivation, we
demonstrate how a BCM can be used to propagate alerts quicklyand quietly throughout
the network. During the initial network setup, the network administrator generates the
BCM’s public and secret keys. He then distributes signal coupons to sentinel nodes. All
other nodes receive dummy coupons. In our mechanism, nodes continuously transmit
either dummy or signal coupons with all nodes initially transmitting dummy coupons.
Sentinel nodes switch to sending signal coupons when they detect the attacker’s pres-
ence. The BCM’s combining algorithm allows dummy and signalcoupons to be com-
bined so that a node can propagate signal coupons without having to know that it has
received any, and so that an attacker (who can observe all message traffic) cannot detect
where or when signals are being transmitted within the stream of dummy messages.

In addition, the BCM’s verification algorithm defends against Byzantine nodes [LSP82]:
While Byzantine nodes can replay old dummy messages insteadof relaying signals,
they cannot flood the network with invalid coupons, thereby preventing an alert from
spreading; at worst, they can only act like crashed nodes.

We prove that if the underlying BCM is secure, then the attacker cannot distinguish
between executions where an alert was sent and executions where no alert was sent.



The time to spread the alert to all nodes will be determined bythe communications
model and alert propagation strategy. At any point in time, the network administrator
can sample the state of some network node and check if it possesses a signal coupon.

PAPER ORGANIZATION . The rest of the paper is organized as follows. We begin with
a discussion of related work in Section 2. In Section 3, we formally define the notion of
a blind coupon mechanism and sketch an abstract group structure, which will allow us
to implement it. Then in Section 4, we provide two concrete instantiations of this group
structure using certain bilinear groups and elliptic curves over the ringZn. In Section 5,
we show how the BCM can be used to spread alerts quietly throughout a network. In
Section 6, we analyze the hardness of the subgroup escape problem in the generic group
model. Conclusions and open problems appear in Section 7.

2 Related Work

Our motivating example of spreading alerts is related to theproblem of anonymous
communication. Below, we describe known mechanisms for anonymous communica-
tion, and contrast their properties with what can be obtained from the blind coupon
mechanism. We then discuss literature on elliptic curves over a ring, which are used in
our constructions.

2.1 Anonymous Communication

Two basic tools for anonymous message transmission are DC-nets (“dining-cryptographers”
nets) [Cha88,GJ04] and mix-nets [Cha81]. These tools try toconceal who the message
sender and recipient are from an adversary that can monitor all network traffic. While
our algorithms likewise aim to hide who the signal’s originators are, they are much less
vulnerable to disruption by an active adversary that can delay or alter messages, and
they can also hide the fact that a signal is being spread through the network.

DC-nets enable one participant to anonymously broadcast a message to others by
applying a dining cryptographers protocol. A disadvantageof DC-nets for unstructured
systems like peer-to-peer networks is that they require substantial setup and key man-
agement, and are vulnerable to jamming. In contrast, the initialization of our alert-
spreading application involves distributing only a publickey used for verification to
non-sentinel nodes and requires only a single secret key shared between the sentinels
and the receiver, jamming is prevented by the verification algorithm, and outsiders can
participate in the alert-spreading (although they cannot initiate an alert), which further
helps disguise the true source. As the signal percolates across the network, all nodes
change to an alert state, further confounding the identification of an alert’s primary
source even if a secret key becomes compromised.

The problem of hiding the communication pattern in the network was first addressed
by Chaum [Cha81], who introduced the concept of amix, which shuffles messages and
routes them, thereby confusing traffic analysis. This basicscheme was later extended
in [SRG00,SGR98]. A further refinement is amix-net [Abe99,Jak99,Jak98], in which
a message is routed through multiple trusted mix nodes, which try to hide correlation



between incoming and outgoing messages. Our mechanism is more efficient and pro-
duces much stronger security while avoiding the need for trusted nodes; however, we
can only send very small messages.

Beimel and Dolev’s [BD01] proposed the concept of buses, which hide the mes-
sage’s route amidst dummy traffic. They assume a synchronoussystem and a passive
adversary. In contrast, we assume both an asynchronous system and very powerful ad-
versary, who in addition to monitoring the network traffic controls the timing and con-
tent of delivered messages.

2.2 Elliptic Curves over a Ring

One of our BCM constructions is based on elliptic curves overthe ring Zn, where
n = pq is a product of primes. Elliptic curves overZn have been studied for nearly
twenty years and are used,inter alia, in Lenstra’s integer factoring algorithm [HWL87]
and the Goldwasser-Kilian primality testing algorithm [GK99]. Other works [Dem93,
KMOV92, OU98] exported some factoring-based cryptosystems (RSA [RSA78], Ra-
bin [Rab79]) to the elliptic curve setting in hopes of avoiding some of the standard
attacks. The security of our BCM relies on a special feature of the group of points on
elliptic curves modulo a composite: It is difficult to find newelements of the group
except by using the group operation on previously known elements. This problem has
been noted many times in the literature, but was previously considered a nuisance rather
than a cryptographic property. In particular, Lenstra [HWL87] chose the curve and the
point at the same time, while Demytko [Dem93] used twists andx-coordinate only com-
putations to compute on the curve withouty-coordinates. To the best of our knowledge,
this problem’s potential use in cryptographic constructions was first noted in [Gjø04].

2.3 Epidemic Algorithms

Our alert mechanism belongs to the class of epidemic algorithms (also called gossip
protocols) introduced in [DGH+87]. In these algorithms, each process chooses to part-
ner processes with which to communicate randomly. The drawback of gossip protocols
is the number of messages they send, which is in principle unbounded if there is no way
for the participants to detect when all information has beenfully distributed.

3 Blind Coupon Mechanism

The critical component of our algorithms that allows information to propagate unde-
tectably among the processes is a cryptographic primitive called ablind coupon mech-
anism (BCM). In Section 3.1, we give a formal definition of the BCM and its security
properties. In Section 3.2, we describe an abstract group structure that will allow us to
construct the BCM.

3.1 Definitions

Definition 1. A blind coupon mechanismis a tuple of PPT algorithms(G ,V ,C ,D ) in
which:



x y C (x,y)
DSK DSK DSK
DSK SSK SSK
SSK DSK SSK
SSK SSK SSK

Fig. 2. Properties of the combining algorithm.

– G (1k), the probabilistickey generation algorithm, outputs a pair of public and
secret keys(PK,SK) and two strings(d,s). The public key defines a universe set
UPK and a set ofvalid couponsGPK. The secret key implicitly defines an associated
set ofdummy couponsDSK and a set ofsignal couponsSSK.3 It is the case that
d ∈ DSK and s∈ SSK, DSK∩SSK = /0, and DSK∪SSK = GPK.

– VPK(y), the deterministicverification algorithm, takes as input a coupon y and
returns 1 if y is valid and 0 if it is invalid.

– z← CPK(x,y), the probabilisticcombining algorithm, takes as input two valid
coupons x,y∈ GPK and produces a new coupon z. The output z is a signal coupon
(with overwhelming probability) whenever one or more of theinputs is a signal
coupon, otherwise it is a dummy coupon (see Figure 2).

– DSK(y), the deterministicdecoding algorithm, takes as input a valid coupon y∈
GPK. It returns 0 if y is a dummy coupon and1 if y is a signal coupon.

The BCM may be established either by an external trusted party or jointly by the
application participants, running the distributed key generation protocol (e.g., one could
use a variant of [ACS02]). In this paper, we assume a trusted dealer (the network ad-
ministrator) who runs the key generation algorithm and distributes signal coupons to the
supervisor algorithms of sentinel nodes at the start of the system execution. In a typical
algorithm, the nodes will continuously exchange coupons with each other. The combin-
ing algorithmCPK enables nodes to locally and efficiently combine their coupons with
coupons of other nodes. The verification functionVPK prevents the adversary from
flooding the system with invalid coupons and making it impossible for the signal to
spread.

For this application, we require the BCM to have certain specific security properties.

Definition 2. We say that a blind coupon mechanism(G ,V ,C ,D ) is secureif it satis-
fies the following requirements:

1. Indistinguishability: Given a valid coupon y, the adversary cannot tell whether it
is a signal or a dummy coupon with probability better than1/2. Formally, for any

3 Note that membership inSSK andDSK should not be efficiently decidable when given only
PK (unlike membership inGPK). However, we require that membership is always efficiently
decidable when givenSK.
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2. Unforgeability: The adversary is unlikely to fabricate a signal coupon without the
use of another signal coupon as input4. Formally, for any PPT algorithmA ,

Pr

[

y∈ SSK
(PK,SK,d,s)← G (1k);

y← A
(

1k,PK,d
)

]

≤ negl(k)

3. Blinding: The combinationCPK(x,y) of two valid coupons x,y looks like a random
valid coupon. Formally, fix some pair of keys(PK,SK) outputted byG (1k). Let UD

be a uniform distribution on DSK and let US be a uniform distribution on SSK. Then,
for all valid coupons x,y∈GPK,

{

Dist(CPK(x,y),UD) = negl(k) if x,y∈ DSK,
Dist(CPK(x,y),US) = negl(k) otherwise.

(Here,Dist(A,B)
de f
= 1

2 ∑x |Pr[A = x]−Pr[B= x]| is the statistical distance between
a pair of random variables A,B.)

To build the reader’s intuition, we describe a straw-man construction of a BCM.
Suppose we are given any semantically secure encryption schemeE (·) and a set-
homomorphic signature scheme SIG(·) by Johnsonet al. [JMSW02]. This signature
scheme allows anyone possessing setsx,y ⊆ Zp and their signatures SIG(x),SIG(y)
to compute SIG(x∪ y) and SIG(w) for any w⊆ x. We represent dummy coupons by
a random-length vector of encrypted zeroes;e.g., x = (E (0), . . . ,E (0)). The signal
coupons are represented by a vector of encryptions that contains at least one encryp-
tion of a non-zero element;e.g., y = (E (0), . . . ,E (0),E (1)). To prevent the adver-
sary from forging coupons, the coupons are signed with the set-homomorphic signa-
ture. The combining operation is simply the set union:CPK

(

(x,SIG(x)),(y,SIG(y))
)

=
(

x∪y,SIG(x∪y)
)

. The drawback of this construction is immediate: as couponsare
combined and passed around the network, they quickly grow very large. Constructing a
BCM with no expansion of coupons is more challenging. We describe such a construc-
tion next.

3.2 Abstract Group Structure

We sketch the abstract group structure that will allow us to implement a secure and
efficient BCM. Concrete instantiations of this group structure are provided in Section 4.

Let Γ = {Γk} be a family of sets of tuples(U,G,D,d,s), whereU is a finite set,
andG is a subset ofU . G also has a group structure: it is a cyclic group generated bys.

4 The adversary, however, can easily generate polynomially many dummy coupons by using
CPK(·, ·) with the initial dummy coupond that he receives.



D is a subgroup ofG generated byd, such that the factor groupG/D has prime order
|G|/|D|. The orders ofD andG/D are bounded by 2k; moreover,|G|/|U | ≤ negl(k) and
|D|/|G| ≤ negl(k).

Let G ′ be a PPT algorithm that on input of 1k samples fromΓk according to some
distribution. We considerΓk to be a probability space with this distribution.

We assume there exists an efficient, deterministic algorithm for distinguishing ele-
ments ofG from elements ofU \G, and an efficient algorithm for computing the group
operation inG.

– Thekey generation algorithm G (1k) runsG ′ to sample(U,G,D,d,s) from Γk,
and outputs the public keyPK = (U,G,d,k), the secret keySK= |D|, as well asd
ands.
The elements ofD will represent dummy coupons, the elements ofG\D will rep-
resent signal coupons, and the elements ofU \G will be invalid coupons (see Fig-
ure 1).

– Theverification algorithm VPK(y) checks that the coupony is in G.
– Thecombining algorithm CPK(x,y) is simply the group operation combined with

randomization. For inputx,y∈ G, sampler0, r1 andr2 uniformly at random from
{0,1, . . . ,22k−1}, and outputr0d+ r1x+ r2y.

– Because|D| · y = 0 if and only if y ∈ D, thedecoding algorithm DSK checks if
|D| ·y= 0.

The indistinguishability and unforgeability properties of the BCM will depend on
the hardness assumptions described below.

Definition 3. Thesubgroup membership problemfor Γ asks: given a tuple(U,G,D,d,s)
from Γ and y∈G, decide whether y∈ D or y∈G\D.

The subgroup membership problem is hard if for any PPT algorithmA ,
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Various subgroup membership problems have been extensively studied in the litera-
ture, and examples include the Decision Diffie-Hellman problem [CS02], the quadratic
residue problem [GM84], among others [NS98, OU98, Pai99]. Our constructions how-
ever are more related to the problems described in [Gjø05,NBD01].

Definition 4. Thesubgroup escape problemfor Γ asks: given U, G, D and the gener-
ator d for D from the tuple(U,G,D,d,s) from Γ, find an element y∈G\D.

5 Henceforth, we assume that groups we operate on have some concise description, which can be
passed as an argument to our algorithms. We also assume that group elements can be uniquely
encoded as bit strings.



The subgroup escape problem is hard if for any PPT algorithmA ,

Pr

[

y∈G\D (U,G,D,d,s)
$
← Γk;

y← A (U,G,D,d)

]

≤ negl(k).

The subgroup escape problem has to our knowledge not appeared in the literature
before. It is clear that unless|G|/|U | is negligible, finding elements ofG\D cannot be
hard. We show in Section 6 that if|G|/|U | is negligible, the subgroup escape problem
is provably hard in the generic model.

We also note that the problem of generating a signal coupon from polynomially
many dummy coupons is essentially the subgroup escape problem.

Theorem 1. LetΓ be as above. If the subgroup membership problem and the subgroup
escape problem forΓ are hard, then the corresponding BCM is secure.

Proof. Fix k and(U,G,D,d,s) sampled fromΓk.
We prove the blinding property first, and start with the idealcase: For inputx,y∈G,

sampler0 uniformly from{0,1, . . . , |D|−1}, andr1 andr2 uniformly from{0,1, . . . , |G/D|−
1}, and outputr0g+ r1x+ r2y.

If x,y∈ D, the product is uniformly distributed inD, sincer0g is.
If x 6∈D, then the residue classr1x+D is uniformly distributed inG/D. Sincer0g is

uniformly distributed inD, the product is uniformly distributed inG. The uniform dis-
tribution onG is |D|/|G|-close to the uniform distribution onG\D. The same argument
holds forr2y.

Finally we note that we do not need to know|D| or |G/D|. Since we know that|D|
and|G/D| are less than 2k, samplingr0, r1, r2 uniformly from the set{0, . . . ,22k−1}
will produce an output distribution that is 2−k-close to ideal, which proves the bound
for blinding

Next, we prove the indistinguishability property, so letA be an adversary against
indistinguishability. We have a subgroup membership problem instance(U,G,D,d,s)
andy∈ G. We construct the public keyPK = (U,G,d,k), and giveA as inputPK, d
andy.

If A answers 1, we conclude thaty∈G\D, otherwisey∈D. WheneverA is correct,
we will be correct, soA must have negligible advantage.

Finally, we deal with forging. LetA be an adversary against unforgeability. We have
a subgroup escape problem instanceU , G andD, and a generatord for D. Again we
construct the public keyPK = (U,G,d,k), and giveA as inputPK andd.

Our output is simplyA ’s output. WheneverA succeeds, we will succeed, soA must
have negligible success probability. ⊓⊔

4 Constructing the BCM

We now give two instantiations of the abstract group structure (U,G,D) described in
the previous section. First, we review some basic facts about elliptic curves over com-
posite moduli in Section 4.1. Then, in Section 4.2, we describe our BCM construction



that utilizes these curves. In Section 4.3, we describe an alternative BCM construc-
tion on elliptic curves equipped with bilinear pairings. These constructions can be used
to undetectably transmit a one-shot signal throughout the network. In Section 4.4, we
describe how the BCM’s bandwidth can be further expanded.

4.1 Preliminaries

Let n be an integer greater than 1 and not divisible by 2 or 3. We firstintroduce
projective coordinates overZn. Consider the set̄U of triples (x,y,z) ∈ Z3

n satisfying
gcd(x,y,z,n) = 1. Let∼ be the equivalence relation on̄U defined by(x,y,z)∼ (x′,y′,z′)
iff there existsλ ∈ Z∗n such that(x,y,z) = (λx′,λy′,λz′). LetU be the set of equivalence
classes inŪ . We denote the equivalence class of(x,y,z) as(x : y : z).

An elliptic curve overZn is defined by the equation

E : Y2Z≡ X3 +aXZ2+bZ3 (mod n),

wherea,b are integers satisfying gcd(4a2−27b3,n) = 1. The set of points onE/Zn is
the set of equivalence classes(x : y : z) ∈U satisfyingy2z≡ x3 + axz2 + bz3 (mod n),
and is denoted byE(Zn). Note that ifn is prime, these definitions correspond to the
usual definitions for projective coordinates over prime fields.

Let p andq be primes, and letn = pq. Let Ep : Y2Z = X3 + apXZ2 + bpZ3 and
Eq : Y2Z = X3 +aqXZ2 +bqZ3 be elliptic curves defined overFp andFq, respectively.
We can use the Chinese remainder theorem to finda andb yielding an elliptic curve
E : Y2Z = X3 + aXZ2 + bZ3 overZn such that the reduction ofE modulop givesEp

and likewise forq.
It can also be shown that the Chinese remainder theorem givesa set isomorphism

E(Zn)
∼
−→ Ep(Fp)×Eq(Fq)

inducing a group operation onE(Zn). For almost all points inE(Zn), the usual group
operation formulae for the finite field case will compute the induced group operation.
When they fail, the attempted operation gives a factorization of the composite modulus
n. UnlessEp(Fp) or Eq(Fq) has smooth or easily guessable order, this will happen only
with negligible probability (see [Gal02] for more details).

4.2 BCM on Elliptic Curves Modulo Composites

Let p,q, ℓ1, ℓ2, ℓ3 be primes, and suppose we have elliptic curvesEp/Fp andEq/Fq such
that #Ep(Fp) = ℓ1ℓ2 and #Eq(Fq) = ℓ3. Curves of this form can be found using complex
multiplication techniques [BSS99,LZ94].

With n = pq, we can findE/Zn such that #E(Zn) = ℓ1ℓ2ℓ3. LetU be the projective
plane modulon, let G be E(Zn), and letD be the subgroup of orderℓ1ℓ3. The public
key isPK = (G,D,n), while the secret key isSK= (p,q, l1, l2, l3).6

6 To describe groupsG andD, we publish the elliptic curve equation and the generator for D.
This gives away enough information to perform group operations inG, check membership in
G, and generate new elements inD (but not inG).



VERIFICATION FUNCTION For any equivalence class(x : y : z) in U , it is easy to decide
if (x : y : z) is in E(Zn) or not, simply by checking ify2z≡ x3 +axz2+bz3 (mod n).

SUBGROUP MEMBERSHIP PROBLEM For the curveEp(Fp), distinguishing the ele-
ments of prime order from the elements of composite order seems to be hard, unless it
is possible to factor the group order [Gjø05].

Counting the number of points on an elliptic curve defined over a composite num-
ber is equivalent to factoring the number [HWL87, KK98]. Therefore, the group order
Ep(Fp) is hidden.

When the group order is hidden, it cannot be factored. It therefore seems reasonable
that the subgroup ofE(Zn) of orderℓ1ℓ3 is hard to distinguish from the rest of the points
on the curve, as long as the integern is hard to factor.

SUBGROUPESCAPEPROBLEM Anyone capable of finding a random point on the curve
will with overwhelming probability be able to find a point outside the subgroupD.

Finding a random point on an elliptic curve over a field is easy: Choose a random
x-coordinate and solve the resulting quadratic equation. Ithas rational solutions with
probability close to 1/2.

This does not work for elliptic curves over the ringZn, since solving square roots
modulon is equivalent to factoringn. One could instead try to choose ay-coordinate
and solve for thex-coordinate, but solving cubic equations inZn seems no easier than
finding square roots.

One could try to findx andy simultaneously, but there does not seem to be any
obvious strategy. This is in contrast to quadratic curves, where Pollard [SP87] gave an
algorithm to find solutions of a quadratic equation modulo a composite (which broke
the Ong-Schnorr-Shamir signature system [OSS84]). These techniques do not seem to
apply to the elliptic curve case.

Finding a lift of the curve over the integers does not seem promising. While torsion
points are fairly easy to find, they will not exist if the curveE/Zn does not have points
of order less than or equal to 12. If we allowE/Zn to have points of small order that are
easily found, we can simply include them in the subgroupD.

Finding rational non-torsion points on curves defined overQ is certainly non-trivial,
and seems impossibly hard unless the point on the lifted curve has small height [Sil99].
There does not seem to be any obvious way to find a lift with rational points of small
height (even though they certainly exist).

What if we already know a set of points on the curve? If we are givenP1,P2,P3 ∈
E(Zn), we can find, unless the points are collinear, a quadratic curve

C : YZ= αX2 + βXZ+ γZ2

defined overZn that passes throughP1,P2,P3. We can find the fourth intersection point
P4 by deriving a fourth-degree polynomial inX for which we know three zeros.

To show that we could easily derive this point using the groupoperation, we con-
sider the situation over the finite fields, whereE andC have at most six points of inter-
section. Both intersect(0 : 1 : 0), and since the lineZ = 0 is a tangent to both curves in
(0 : 1 : 0), their intersection number in(0 : 1 : 0) is greater than 1. This means thatE
andC intersect in exactly five points,P1, P2, P3, P4 and(0 : 1 : 0).



The divisor ofC is (P1)+ (P2)+ (P3)+ (P4)+ 2((0 : 1 : 0)). Let C′ : Z2 = 0 with
divisor 6((0 : 1 : 0)). Since the divisor of the functionf (X,Y,Z) = (YZ−αX2−βXZ−
γZ2)/(Z2) satisfies div( f ) = div(C)− div(C′) = 0, we see that(P1) + (P2) + (P3) +
(P4)−4((0 : 1 : 0)) = 0, which means that

P1 +P2+P3+P4 = (0 : 1 : 0)

The fourth point is therefore the inverse sum of the three known points.
If points of the curve only yield new points via the group operation, and it seems

hard to otherwise find points onE(Zn), it is reasonable to assume thatE(Zn) and its
subgroup, as described in the previous section, yield a hardsubgroup escape problem.

4.3 BCM on Groups With Bilinear Pairings

Let p, ℓ1, ℓ2, andℓ3 be primes such thatp+ 1 = 6ℓ1ℓ2ℓ3, and p = 2 (mod 3). Here,
l1, l2, l3 must be distinct and larger than 3. The elliptic curveE :Y2 = X3+1 defined over
Fp is supersingular and has orderp+1. BecauseF∗

p2 has orderp2−1= (p+1)(p−1),

there is a modified Weil pairing ˆe : E(Fp)×E(Fp)→ F∗
p2. This pairing is known to be

bilinear: ê(aP,bQ) = ê(P,Q)ab for all P,Q∈ E(Fp) anda,b∈ Zp. It can be computed
as described in [BF01].

Let U = E(Fp), and letG andD be the subgroups ofE(Fp) of orderℓ1ℓ2 andℓ1,
respectively. We also letP be a point inE(Fp) of order 6ℓ1ℓ2ℓ3, and letR be a point of
order 6ℓ3 in E(Fp), sayR= ℓ1ℓ2P. The public key isPK = (G,D, p,R) and the secret
key isSK= (l1, l2, l3). The pairing ˆe allow us to describeG in the public key without
giving away secret information.

VERIFICATION FUNCTION We claim that for any pointQ∈E(Fp), Q∈G if and only if
ê(Q,R) is equal to 1. IfQ∈G, thenQ has orderℓ1ℓ2 and for some integers, Q= 6sℓ3P.
Then

ê(Q,R) = ê(6sℓ3P, ℓ1ℓ2P) = ê(P,P)6sℓ1ℓ2ℓ3 = 1.

So the pointR and the pairing ˆe allows us to determine if points are inG or in U \G.

SUBGROUP MEMBERSHIP PROBLEM Distinguishing the subgroupD (the points of
orderℓ1) from G (the points of orderℓ1ℓ2) can easily be done if the integerℓ1ℓ2ℓ3 can
be factored. In general, factoring seems to be the best way todistinguish the various
subgroups ofE(Fp).

Because we do not reveal any points of orderℓ2 or ℓ2ℓ3, it seems impossible to
use the pairing to distinguish the subgroupD in this way. (Theorem 1 of [Gjø05] as-
sumes free sampling of any subgroup, which is why it and the pairing cannot be used to
distinguish the subgroups ofE(Fp).) It therefore seems reasonable to assume that the
subgroup membership problem forG andD is hard, which will provide indistinguisha-
bility.



SUBGROUPESCAPEPROBLEM For a general cyclic group of orderℓ1ℓ2ℓ3, it is easy to
find elements of orderℓ1ℓ2 if ℓ3 is known. Unlessℓ3 is known, it is hard to find elements
of orderℓ1ℓ2, and knowing elements of orderℓ1 does not help.

For our concrete situation, factoring the integerℓ1ℓ2ℓ3 into primes seems to be the
best method for solving the problem. If the primesℓ1, ℓ2 andℓ3 are chosen carefully to
make the productℓ1ℓ2ℓ3 hard to factor, it seems reasonable to assume that the subgroup
escape problem forU , G andD is hard.

4.4 Extending the BCM’s Bandwidth

The blind coupon mechanism allows to undetectably transmita single bit. Although
this is sufficient for our network alert application, sometimes we may want to transmit
longer messages.

TRIVIAL CONSTRUCTION. By using multiple blind coupon schemes over different
moduli in parallel, we can transmit longer messages. Eachm-bit messagex= x1 . . .xm is
represented by a vector of coupons〈c1, . . . ,c2m〉, where eachci is drawn from a different
scheme. Each processor applies his algorithm in parallel toeach of the entries in the
vector, verifying each coupon independently and applying the appropriate combining
operation to eachci .

A complication is that an adversary given a vector of couponsmight choose to
propagate only some of theci , while replacing others with dummy coupons. We can
enable the receiver to detect when it has received a completemessage by representing
each bitxi by two coupons:c2i−1 (for xi = 0) andc2i (for xi = 1). A signal coupon
in either position tells the receiver both the value of the bit and that the receiver has
successfully received it.

Alas, we must construct and runΩ(m) blind coupon schemes in parallel to transmit
m bits.

BETTER CONSTRUCTION. Some additional improvements in efficiency are possible.
As before, our group structure is(U,G,D). Suppose our cyclic groupG has order
n0p1 · · · pm, wherepi are distinct primes. LetD be the subgroup ofG of ordern0.

An m-bit messagex = x1 . . .xm is encoded by a coupony∈G, whose order is divis-
ible by ∏i :xi=1 pi . For all i, we can find an elementgi ∈ G of ordern0pi. We can thus
let y = gr1x1

1 · · ·grmxm
m for randomr1, . . . , rm∈ {0,1, . . . ,22k−1}.

When we combine two couponsy1 and y2, it is possible that the order of their
combinationCPK(y1,y2) is less than the l.c.m. of their respective orders. However,if
the primespi are sufficiently large, this is unlikely to happen.

In Section 4.2,n0 is a product of two moderately large primes, while the other
primes can be around 280. For the construction from Section 4.3,n0 is prime, but every
prime must be fairly large to counter elliptic curve factorization.

This technique allows us to transmit messages of quite restricted bandwidth. It re-
mains an open problem whether some other tools can be used to achieve higher capacity
without a linear blow-up in message size.



5 Spreading Alerts with the BCM

In this section, we show how the BCM can be used to spread an alert quietly and quickly
throughout a network. We begin with a definition of the problem in Sections 5.1, and
then present results on the security and performance of the mechanism in Sections 5.2
and 5.3.

To summarize these results briefly, we consider a very general message-passing
model in which each nodePi has a “split brain,” consisting of anupdate algorithm
U i that is responsible for transmitting and combining coupons, and asupervisor al-
gorithm S i that may insert a signal coupon into the system at some point.The nodes
carry out these operations under the control of a PPTattacker A that can observe all
the external operations of the nodes and may deliver any message to any node at any
time, including messages of its own invention.

We show first that, assuming the BCM is secure, the attacker can neither detect nor
forge alerts despite its total control over message traffic.This result holds no matter
what update algorithm is used by each node; indeed, it holds even if the update half of
each node colludes actively with the adversary. We then giveexamples of some simple
strategies for spreading an alert quickly through the network with some mild constraints
on the attacker’s behavior.

5.1 Our Model

We now describe the model for our algorithms.

5.1.1 Basic SettingWe adopt a very general message-passing communications model,
permitting an active adversary both control over the timingof delivery of messages be-
tween nodes and the ability to read, replace, and redirect messages at will. At the same
time, we structure our model of a node to enforce the requirement that the node’s visible
behavior (e.g., its choices of what other nodes to communicate with) is not affected by
the type of coupons it is transmitting.

5.1.2 ProcessesWe assume that we have a collection ofn nodesP1,P2, . . . ,Pn. Pro-
cesses have “split brains”: for each nodePi anupdate algorithmU i handles communi-
cation with other nodes, while asupervisor algorithm S i chooses when or if to send a
signal coupon. This split enforces the requirement that thecommunication pattern does
not depend on which type of coupon a node is sending.

We do not examine the behavior of the supervisor algorithm closely; instead, we
assume only that it supplies a sequence of couponsc1

i ,c
2
i , . . . to the update algorithm

U i . The supervisor algorithmS i of regular nodes will intermittently supply a sequence
of dummy coupons. Meanwhile,S i of sentinel nodes will supply dummy coupons until
it detects the intruder’s presence, at which point it will switch to dispensing signal
coupons. We assume that the sequence does not depend on the execution of the rest of
the protocol. For convenience, we write ˆct

i for the indicator variable thatct
i is a signal

coupon; that is, we write ˆct
i = 0 if at stept of execution the coupon supplied by the

supervisor algorithm of nodePi is a dummy coupon and ˆct
i = 1 if it is signal.



The inputs to update algorithmU i at stept consist of (a) the sequence of sets of
messages received at steps 1 throught; (b) the sequence of sets of messages sent at
steps 1 throught−1; and (c) the couponct

i supplied byS i at timet. The output ofU i

is a set of messages to be sent at stept. Each message is of the form(s, r,m,c) where
s is the identity of the sender,r is the intended recipient,m is an arbitrary string, and
c is a coupon. To simplify the model, we do not keep track of a separate process state,
because any such state can easily be recomputed from the message history.

The update algorithms have access to the public keyPK of the blind coupon mecha-
nism. We assume that they can apply the verification algorithmVPK and the combining
algorithmCPK in computing outgoing messages. To spread alerts, a typicalupdate al-
gorithm will discard any coupons from incoming messages or the supervisor algorithm
that are rejected byVPK, and forward to a carefully-chosen set of recipients coupons
obtained by combining all unrejected coupons so far in some order usingCPK. It may
also use additional information in messages to manage spreading of alerts, and this
additional information may also depend on the values of the coupons it has seen.

5.1.3 Attacker The PPT attacker algorithmA controls the timing and content of
delivered messages. The input to the attacker is a partial execution, where thet-th step
of an execution is described by a tuple(it ,Rt ,St) whereit is a node identity,Rt is the set
of messages received byPit at that step, andSt is the set of messages sent byPit at that
step. The output ofA is a choice of which nodePit+1 executes the next step and what
set of messagesRt+1 it receives. The attacker also has access to the public keyPK and
can use the verification and combining algorithmsVPK andCPK as subroutines.

An execution is constructed by an interactive protocol which alternates between
the attacker choosing a nodePit+1 and a set of received messagesRt+1 and the node’s
update algorithmU i computing a set of messagesSt+1 to send. Given particular pub-
lic and secret keys,PK and SK, adversaryA , update algorithmsU i , and supervisor
inputs ĉt

i for stepst = 1, . . . ,T, there exists a corresponding probability distribution
Ξ(PK,SK,A ,{U i},{ĉt

i}) on executions.
Note that traditional classes of process faults are easily simulated by an attacker

defined in this way: a Byzantine node, for example, can be simulated by replacing
all of its outgoing messages in transit. The attacker also has full power to violate any
assumptions about synchrony, timely delivery, or reliablemessage transmission that the
algorithm makes. We will show that such violations do not affect the security guarantees
derived from the blind coupon mechanism; however, any performance guarantees on
alert-spreading will require imposing restrictions on theattacker’s behavior.

5.1.4 Problem The problem is simple: at an opportune time, the sentinel nodes wish
to propagate an alert (signal coupons) to all other nodes. Wewant to prevent the at-
tacker (except with negligible probability) from (a) identifying the presence or source
of signal coupons; (b) causing the nodes to spread signal coupons even though no super-
visor algorithm supplied one; (c) preventing the spread of signal coupons to potential
recipients.



5.2 Security

Let us begin with the security properties we want our alert-spreading mechanism to
have.

Definition 5. A set of update algorithms{U i} is secureif, for any adversary algorithm
A , and any T= poly(k), we have:

1. Undetectability: Given two distributions on executions, one in which no signal
coupons are injected by supervisors and one in which some are, the adversary
cannot distinguish between them with probability greater than 1/2. Formally, let
ĉ0,t

i = 0 for all i, t and let ĉ1,t
i be arbitrary. Then for any PPT algorithmD ,
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2. Unforgeability: The adversary cannot cause any process to transmit a signalcoupon
unless one is supplied by a supervisor. Formally, ifĉt

i = 0 for all i, t, then there is
no PPT algorithmA such that

Pr

[

∃(s, r,m,c) ∈ ξ∧ (c∈ SSK)

∣

∣

∣

∣

∣

(PK,SK,d,s)← G (1k);

ξ $
← Ξ(PK,SK,A ,{U i},{ĉt

i}) ;

]

≤ negl(k).

Security of the alert-spreading mechanism follows immediately from the security
of the underlying blind coupon mechanism. The essential idea behind undetectability
is that because neither the adversary nor the update algorithms can distinguish between
dummy and signal coupons distributed by the supervisor algorithms, there is no test
that can detect their presence or absence. For unforgeability, the inability of the adver-
sary and update algorithms to generate a signal coupon follows immediately from the
unforgeability property of the BCM.

Theorem 2. An alert-spreading mechanism is secure if the underlying blind coupon
mechanism is secure.

Proof (sketch).We show first undetectability and then unforgeability.

Undetectability. Suppose that the alert-spreading mechanism does not satisfy unde-
tectability, i.e. that there exists a set of update algorithms{U i}, an adversaryA , and
pattern{ĉ1,t

i } of signal coupons that can be distinguished from only dummy coupons
by some PPT algorithmD with non-negligible probability.

Let us use this fact to construct a PPT algorithmB that violates indistinguishability.
Let y be the coupon input toB . ThenB will simulate an executionξ of the alert-
spreading protocol by simulating the adversaryA and the appropriate update algorithm
U i at each step. The only components of the protocol thatB cannot simulate directly
are the supervisor algorithmsS i , becauseB does not have access to signal coupons



provided to the supervisor algorithms of sentinel nodes. But hereB lets ct
i = C (d,d)

whenĉ1,t
i = 0 and letsct

i = C (y,y) whenĉ1,t
i = 1. By the blinding property of the BCM,

if y ∈ DSK, then all couponsct
i will be statistically indistinguishable from uniformly

random dummy coupons, giving a distribution on executions that is itself statistically

indistinguishable fromΞ
(

PK,SK,A ,{U i},{ĉ
0,t
i }

)

. If insteady∈ SSK, thenct
i will be

such that the resulting distribution on executions will be statistically indistinguishable

from Ξ
(

PK,SK,A ,{U i},{ĉ
1,t
i }

)

. It follows from the indistinguishability property of

the BCM that no PPT algorithmD can distinguish between these two distributions with
probability greater than 1/2+negl(k).

Unforgeability. The proof of unforgeability is similar. Suppose that there is some ad-
versary and a set of update functions that between them can, with non-negligible prob-
ability, generate a signal coupon given only dummy coupons from the supervisor algo-
rithms. Then a PPT algorithmB that simulates an execution of this system and returns
a coupon obtained by combining all valid coupons sent duringthe execution forges a
signal coupon with non-negligible probability, contradicting the unforgeability property
of the BCM.

⊓⊔

5.3 Performance

It is not enough that the attacker cannot detect or forge alerts: a mechanism that used no
messages at all could ensure that. In addition, we want to make some guarantee that if
an alert is injected into the system, it eventually spreads to all non-faulty nodes. To do
so requires both specifying a particular strategy for the nodes’ update algorithms and
placing restrictions on the attacker’s ability to discard messages. We give two simple
examples of how the blind coupon mechanism might be used in practice. More sophis-
ticated models can also be used; the important thing is that security is guaranteed as
long as the spread of coupons is uncorrelated with their contents.

A SYNCHRONOUS FLOODING MODEL. Consider acommunication graph with an
edge from each node to each other node that it can communicateto. Suppose that at step
t, nodePi ’s update algorithm (a) discards all invalid incoming coupons; (b) combines
any remaining coupons with its previous sent coupons andct

i ; and (c) sends the result to
all of its neighbors in the communication graph. Suppose further that nodes are divided
into faulty and non-faulty nodes (by arbitrary choice of theattacker), and that every
message sent by a non-faulty node to another non-faulty nodeis delivered intact by
the attacker within at most one time unit. If the communication graph after deletion
of faulty nodes is strongly connected, every node receives asignal coupon in at most
∆ steps after a signal coupon is injected, where∆ is the diameter of the subgraph of
non-faulty nodes.

A SIMPLE EPIDEMIC MODEL. In this model, the communication graph is complete,
and at each step a randomly-chosen node chooses a random nodeto receive its coupon
(which does so immediately). The behavior of a node receiving a message is the same



as in the synchronous case. Then the number of interactions from the injection of the
first signal coupon until all nodes possess a signal coupon iseasily seen to beO(nlogn).
Formally:

Theorem 3. Consider an executionζ with n nodes of which b< n are Byzantine, and
suppose that some sentinel node begins sending a signal at the first step. Let the sched-
ule be determined by choosing pairs of nodes for each step uniformly at random. Then

all non-faulty nodes update their state to a signal coupon within expected O(n2 logn
n−b )

steps.

Proof. First observe that we can assumeb < n−1, or else the unique non-faulty node
possesses the alert at time 1.

Define a node as “alerted” if its state is a signal coupon, and let k be the number
of alerted nodes. If the next step pairs an alerted, non-faulty node with a non-alerted,
non-faulty node, which occurs with probabilityk(n−b−k)

n(n−1) , the number of alerted nodes

rises tok+ 1. The expected time until this event occurs is at mostn(n−1)
k(n−b)

< n2

k(n−b−k) .
The expected time until all non-faulty nodes are alerted is thus at most
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∑
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⊓⊔

If b is any constant fraction ofn, the bound becomes simplyO(nlogn).

6 Generic Security of the Subgroup Escape Problem

We prove that the subgroup escape problem is hard in the generic group model [Sho97]
when the representation set is much larger than the group.

Let G be a finite cyclic group and letU ⊆ {0,1}∗ be a set such that|U | ≥ |G|.
In the generic group model, elements ofG are encoded as unique random strings. We
define a random injective functionσ : G→ U , which maps group elements to their
string representations. Algorithms have access to an oracle that on input ofx±y returns
σ(σ−1(x)±σ−1(y)) when bothx,y∈ σ(G) ⊆U , and otherwise the special symbol⊥.
An algorithm can use the oracle to decide whetherx∈U is in σ(G) or not by sending
the queryx+x to the oracle. Ifx 6∈ σ(G), the reply will be⊥.



Theorem 4. Let D be a subgroup of G⊆ U. Let g be a generator of D. LetA be
a generic algorithm that solves the subgroup escape problem. If A makes at most q
queries to the group oracle, then

Pr
[

y∈G\D
∣

∣

∣ A (1k,σ(g)) = σ(y)
]

≤
q(|G|− |D|)
(|U |−q)

.

Proof. The algorithm can only get information aboutσ through the group oracle. If the
input to the oracle is two elements known to be inσ(D), then the adversary learns a
new element inσ(D).

To have any chance of finding an element ofσ(G\D), the adversary must use the
group oracle to test elements that are not known to be inσ(D).

Suppose that afteri queries, the adversary knowsa elements inσ(D) andb elements
of U \σ(G) (a+b≤ i). For anyzoutside the set of tested elements, the probability that
z∈ σ(G\D) is exactly(|G|− |D|)/(|U |−b) (note that it is independent ofa).

Therefore, the probability that the adversary discovers anelement inσ(G\D) with
i + 1 query is at most(|G|− |D|)/(|U |− i). For up toq queries, the probability that at
least one of the tested elements are inσ(G\D) is at most

q

∑
i=1

|G|− |D|
|U |− i

≤ q ·
|G|− |D|
|U |−q

.

For a sufficiently large universeU , this probability is negligible. ⊓⊔

7 Conclusion

We have defined and constructed a blind coupon mechanism, implementing a special-
ized form of a signed, AND-homomorphic encryption. Our proofs of security are based
on the novel subgroup escape problem, which seems hard on certain groups given the
current state of knowledge. Our scheme can be instantiated with elliptic curves overZn

of reasonable size which makes our constructions practical. We have demonstrated that
the BCM has many natural applications. In particular, it canbe used to spread an alert
undetectably in a variety of epidemic-like settings despite the existence of Byzantine
nodes and a powerful, active adversary.
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