Generalizations of RSA Public Key Cryptosystem *

Banghe Li

July 20, 2005

Abstract

In this paper, for given $N=p q$ with p and q different odd primes, and $m=1,2, \cdots$, we give a public key cryptosystem. When $m=1$ the system is just the famous RSA system. And when $m \geq 2$, the system is usually more secure than the one with $m=1$.

1 Introduction

In this paper, we present a series of generalizations of the famous RSA public key cryptosystem (cf.[1],[2]), they are more secure in general.

Let n be a positive integer, $\mathbb{Z}_{n}{ }^{*}$ be the group of invertible elements in $\mathbb{Z}_{n}=\mathbb{Z} / n \mathbb{Z}$. RSA crytosystem works on $\mathbb{Z}_{n}{ }^{*}$.

Let A be a commutative ring with identity element $1, P=x^{m}+a_{1} x^{m-1}+$ $a_{m-1} x+a_{m} \in A[x]$. Denote by A_{P} the quotient ring $A[x] / P$, and A_{P}^{*} the group of invertible elements in A_{P}. For $A=\mathbb{Z}_{n}$, we use $\mathbb{Z}_{n, P}$ to replace $\left(\mathbb{Z}_{n}\right)_{P}$. Thus our cryptosystems work on $\mathbb{Z}_{n, P}^{*}$, and when $P=x+a \in \mathbb{Z}_{n}[x], \mathbb{Z}_{n, P}^{*}=\mathbb{Z}_{n}^{*}$, our cryptosystem is the same as RSA.

RSA took $N=p q$, where p, q are big primes. For such N, we call $P=x^{m}+$ $a_{1} x^{m-1}+\cdots+a_{m} \in \mathbb{Z}_{n}[x]$ to be special to N if $P \bmod p$ and $P \bmod q$ are irreducible over the fields F_{p} and F_{q} respectively. The number of the elements in $\mathbb{Z}_{N, P}^{*}$ denoted by $\phi(N, P)$ will be proved to be $\left(p^{m}-1\right)\left(q^{m}-1\right)$.

For general $P, \phi(N, P)$ depends also on a_{1}, \cdots, a_{m} and is usually very difficult to calculate, since it concerns solving congruence equations of degree m. For $m=2$, the formula for $\phi(N, P)$ is given in section 2.

In our generalizations of the RSA system, public key K is (N, P, e), where $e \in$ $\{2,3, \cdots, \phi(N, P)-2\}$ with $\operatorname{gcd}(e, \phi(N, P))=1$ can be randomly chosen, and $d \in$

[^0]$\{2, \cdots, \phi(N, P)-2\}$ with
$$
e d \equiv 1 \bmod \phi(N, P)
$$
is the secret key. Notice that any element in $\mathbb{Z}_{N, P}$ is uniquely expressed as
\[

$$
\begin{equation*}
y=b_{1} x^{m-1}+b_{2} x^{m-2}+\cdots+b_{m} \tag{1}
\end{equation*}
$$

\]

with $b_{i} \in \mathbb{Z}_{N}$. $y^{e} \bmod P$ can be calculated on computer, by e.g. the software package "Powmod" in Maple. Thus the encryption and decryption function ϵ, δ : $\mathbb{Z}_{N, P}^{*} \rightarrow \mathbb{Z}_{N, P}^{*}$ are defined by

$$
\epsilon(y)=y^{e}, \delta(y)=y^{d}
$$

Since the order of any element in $\mathbb{Z}_{N, P}^{*}$ is a divisor of $\phi(N, P), y^{\phi(N, P)}=1$ in $\mathbb{Z}_{N, P}$. Thus

$$
y^{e d}=y \in \mathbb{Z}_{N, P}^{*}
$$

In the case of P being special to N, we will prove that $y^{e d}=y$ is actually true for any $y \in \mathbb{Z}_{N, P}$.

For any $y \in \mathbb{Z}_{N, P}$ with P special to N, there exists a smallest positive integer β such that

$$
y^{e^{\beta}}=y \in \mathbb{Z}_{N, P}
$$

We call β the Simmons period of y in $\mathbb{Z}_{N, P}$ with respect to e. Note that \mathbb{Z}_{N}^{*} is a subgroup of $\mathbb{Z}_{N, P}^{*}$ consisting of elements y in the form (1) with $b_{1}=\cdots=b_{m-1}=0$, $b_{m} \in \mathbb{Z}_{N}^{*}$. The number of the elements of the quotient group $\mathbb{Z}_{N, P}^{*} / \mathbb{Z}_{N}^{*}$ is

$$
\left(p^{m}-1\right)\left(q^{m}-1\right) /(p-1)(q-1)=\left(p^{m-1}+p^{m-2}+\cdots+1\right)\left(q^{m-1}+q^{m-2}+\cdots+1\right)
$$

Especially when $m=2$, this number is $(p+1)(q+1)$.
In RSA system, to prevent the Simmons attack, one has to choose p and q to make Simmons period big enough, e.g. to let $p-1$ and $q-1$ having big prime factors. Now we see that if $y \in \mathbb{Z}_{N, P}^{*}-\mathbb{Z}_{N}^{*}$, the Simmons period of y will be usually much bigger than those of the elements in \mathbb{Z}_{N}^{*}. To ensure this, we may require $p^{m-1}+\cdots+1$ and $q^{m-1}+\cdots+1$ to have big prime factors.

In the practice of using RSA system, to ensure the security, one has to choose big primes p, q and e to satisfy certain additional conditions. This is not easy. While for us, when p and q are fixed (they may not satisfy some additional conditions), we can just choose suitable m to increase the security, e.g. increasing the Simmons period.

Notice that in the case of P special to $N, \phi(N, P)$ can be replaced by any common multiple M of $p^{m}-1$ and $q^{m}-1$, and

$$
e d \equiv 1 \bmod M
$$

When $M<\phi(N, P)$, the calculation of d from e should be easier.

2 Theoretic Preparations

Let A be a unital commutative ring, $A[x]$ be the polynomial ring over A with one variable x. For any $P=x^{m}+a_{1} x^{m-1}+\cdots+a_{m} \in A[x]$, any element of the quotient ring $A_{P}=A[x] / P$ is uniquely expressed as $y_{1} x^{m-1}+y_{2} x^{m-2}+\cdots+y_{m}$. So A_{P} is a free module over A with $1, x, \cdots, x^{m-1}$ as a free basis.

Let $b=b_{1} x^{m-1}+b_{2} x^{m-2}+\cdots+b_{m} \in A_{P}$. We define a map

$$
M_{b}: A_{P} \rightarrow A_{P}
$$

given by $M_{b}(y)=b y$, where $b y$ is the product of b and y in the ring A_{P}.
It is easily seen that M_{b} is a linear transformation of A_{P} as A-module. Writing $M_{b}(y)$ as $y_{1}^{\prime} x^{m-1}+y_{2}^{\prime} x^{m-2}+\cdots+y_{m}^{\prime}$, then

$$
\left(\begin{array}{l}
y_{1}^{\prime} \tag{2}\\
\cdots \\
y_{m}^{\prime}
\end{array}\right)=\left(\begin{array}{lll}
b_{11} & \cdots & b_{1 m} \\
\cdots & \cdots & \cdots \\
b_{m 1} & \cdots & b_{m m}
\end{array}\right)\left(\begin{array}{l}
y_{1} \\
\cdots \\
y_{m}
\end{array}\right)
$$

where $b_{i j} \in A$. By abuse of notations, we use still M_{b} to denote the matrix $\left(b_{i j}\right)$, and $\left|M_{b}\right|$ the determinant of M_{b}. Let A_{P}^{*} be the group of invertible elements in A_{P}. We have
Lemma 1. $b \in A_{P}$ is in A_{P}^{*} iff $\left|M_{b}\right| \in A^{*}$.
Proof. b being in A_{P}^{*} implies that there is a $c \in A_{P}$ such that $b c=1$. Thus $M_{b} M_{c}$ is the identity matrix, hence $\left|M_{b}\right|\left|M_{c}\right|=1$, and $\left|M_{b}\right| \in A^{*}$.

Now assume $\left|M_{b}\right| \in A^{*}$. Substitute $y_{1}^{\prime}=\cdots=y_{m-1}^{\prime}=0$, and $y_{m}^{\prime}=1$ into (2), we get an equation on the variable y_{1}, \cdots, y_{m} :

$$
(0, \cdots, 0,1)^{T}=M_{b}\left(y_{1}, \cdots, y_{m}\right)^{T}
$$

$\left|M_{b}\right| \in A^{*}$ implies that there is an $m \times m$ matrix M_{b}^{-1} with entries in A such that $M_{b} M_{b}^{-1}$ is the $m \times m$ identity matrix.

Let $M_{b}^{-1}(0, \cdots, 0,1)^{T}=\left(c_{1}, \cdots, c_{m}\right)^{T}$. Then $c=c_{1} x^{m-1}+c_{2} x^{m-2}+\cdots+c_{m}$ is the inverse of b in A_{P}. Hence $b \in A_{P}^{*}$. The lemma is proved.

For $P=x^{2}+a_{1} x+a_{2}, b=b_{1} x+b_{2}$, we have $-M_{b}=b_{2}^{2}-a_{1} b_{1} b_{2}+a_{2} b_{1}^{2}$.
Let $N=p q$ with p and q different odd prime. When $a \not \equiv 0 \bmod p$, let $\left(\frac{a}{p}\right)$ be the Legendre symbol. We introduce the following notations:

$$
\left.\begin{array}{l}
\Delta_{p}=\left\{\begin{array}{ll}
0, & \text { if } \frac{(N+1)^{2}}{4} a_{1}^{2} \equiv a_{2} \bmod p \\
\left(\frac{(N+1)^{2}}{4} a_{1}^{2}-a_{2}\right. \\
p
\end{array},\right. \\
\text { otherwise }
\end{array}\right\} \begin{array}{ll}
0, & \text { if } \frac{(N+1)^{2}}{4} a_{1}^{2} \equiv a_{2} \bmod q \\
\Delta_{q}=\left\{\begin{array}{ll}
\frac{(N+1)^{2}}{4} a_{1}^{2}-a_{2} \\
q
\end{array},\right. & \text { otherwise }
\end{array}
$$

Then we have
Proposition 1. Let P and N be as above, then

$$
\phi(N, P)= \begin{cases}\left(p^{2}-1\right)\left(q^{2}-1\right), & \text { if } \Delta_{p}=\Delta_{q}=-1 \\ (p-1)(q-1)(p q-p-q+5), & \text { if } \Delta_{p}=\Delta_{q}=1 \\ (p-1)(q-1)(p q+p-q+1), & \text { if } \Delta_{p}=1, \Delta_{q}=-1 \\ (p-1)(q-1)(p q-p+q+1), & \text { if } \Delta_{p}=-1, \Delta_{q}=1 \\ (p-1)(q-1)(p q-p+3), & \text { if } \Delta_{p}=0, \Delta_{q}=1 \\ (p-1)(q-1)(p q-q+1), & \text { if } \Delta_{p}=0, \Delta_{q}=-1 \\ (p-1)(q-1)(p q-q+3), & \text { if } \Delta_{p}=1, \Delta_{q}=0 \\ (p-1)(q-1)(p q+q+1), & \text { if } \Delta_{p}=-1, \Delta_{q}=0 \\ (p-1)(q-1)(p q+2), & \text { if } \Delta_{p}=0, \Delta_{q}=0\end{cases}
$$

Proof. By Lemma $1, b \in \mathbb{Z}_{N, P}-\mathbb{Z}_{N, P}^{*}$ iff

$$
\left|M_{b}\right| \equiv 0 \bmod p \text { or } M_{b} \equiv 0 \bmod q
$$

We have

$$
\begin{aligned}
-M_{b} & \equiv b_{2}^{2}-a_{1} b_{1} b_{2}+a_{2} b_{1}^{2} \\
& \equiv\left(b_{2}-\frac{N+1}{2} a_{1} b_{1}\right)^{2}-\left(\frac{N+1}{2} a_{1}^{2} b_{1}\right)^{2}+a_{2} b_{1}^{2} \\
& \equiv\left(b_{2}-\frac{N+1}{2} a_{1} b_{1}\right)^{2}-b_{1}^{2}\left(\frac{(N+1)^{2}}{4} a_{1}^{2}-a_{2}\right) \bmod N
\end{aligned}
$$

Thus we need look at the following equations

$$
\begin{align*}
& \left(b_{2}-\frac{N+1}{2} a_{1} b_{1}\right)^{2} \equiv b_{1}^{2}\left(\frac{(N+1)^{2}}{4} a_{1}^{2}-a_{2}\right) \bmod p \tag{3}\\
& \left(b_{2}-\frac{N+1}{2} a_{1} b_{1}\right)^{2} \equiv b_{1}^{2}\left(\frac{(N+1)^{2}}{4} a_{1}^{2}-a_{2}\right) \bmod q \tag{4}
\end{align*}
$$

Case 1. If $b_{1} \equiv 0 \bmod p$, then (3) holds iff $b_{2} \equiv 0 \bmod p$, and if $b_{1} \equiv 0 \bmod q$, then (4) holds iff $b_{2} \equiv 0 \bmod q$.

Case 2. $b_{1} \not \equiv 0 \bmod p$. Then for fixed $b_{1} \bmod p$, there are 0,1 , or 2 solutions $b_{2} \bmod p$ for (3) iff

$$
\Delta_{p}=-1,0, \text { or } 1
$$

When $\Delta_{p}=0$, the solution is

$$
\begin{equation*}
b_{2} \equiv \frac{N+1}{2} a_{1} b_{1} \bmod p \tag{5}
\end{equation*}
$$

When $\Delta_{1}=1$, there is an $h \not \equiv 0 \bmod p$ such that

$$
\left(b_{2}-\frac{N+1}{2} a_{1}\right)^{2} \equiv \frac{(N+1)^{2}}{4} a_{1}^{2}-a_{2} \equiv h^{2} \bmod p
$$

Thus

$$
\left(b_{2}-\frac{N+1}{2} a_{1} b_{1}\right)^{2} \equiv b_{1}^{2}\left(\frac{(N+1)^{2}}{4} a_{1}^{2}-a_{2}\right) \equiv\left(b_{1} h\right)^{2} \bmod p .
$$

Hence

$$
b_{2}-\frac{N+1}{2} a_{1} b_{1} \equiv \pm b_{1} h \bmod p
$$

i.e.

$$
\begin{equation*}
b_{2} \equiv b_{1}\left(\frac{N+1}{2} a_{1} \pm h\right) \bmod p \tag{6}
\end{equation*}
$$

Similarly, when $\Delta_{q}=0$, the solution of (4) is

$$
\begin{equation*}
b_{2} \equiv \frac{N+1}{2} a_{1} b_{1} \bmod q \tag{7}
\end{equation*}
$$

When $\Delta_{q}=-1$, (4) has no solution, and when $\Delta_{q}=1$, there is a $k \not \equiv 0 \bmod q$ such that the solutions of (4) are

$$
\begin{equation*}
b_{2} \equiv b_{1}\left(\frac{N+1}{2} a_{1} \pm k\right) \bmod q \tag{8}
\end{equation*}
$$

Now according to the values of Δ_{p} and Δ_{q}, we need to treat 9 cases.
Case ($-1,-1$): $\Delta_{p}=\Delta_{q}=-1$.
In this case, (3) and (4) have no solutions, so $b \in \mathbb{Z}_{N, P}-\mathbb{Z}_{N, P}^{*}$ iff

$$
\begin{equation*}
b_{1} \equiv b_{2} \equiv 0 \bmod p \tag{9}
\end{equation*}
$$

or

$$
\begin{equation*}
b_{1} \equiv b_{2} \equiv 0 \bmod q \tag{10}
\end{equation*}
$$

The number of the pairs $\left(b_{1}, b_{2}\right) \bmod N$ satisfying (9) is q^{2}, and the number of those satisfying (10) is p^{2}. By Chinese Remainder Theorem, the number of the pairs $\left(b_{1}, b_{2}\right) \bmod N$ satisfying both (9) and (10) is 1 . So the total number of the elements in $\mathbb{Z}_{N, P}-\mathbb{Z}_{N, P}^{*}$ is $p^{2}+q^{2}-1$.

Therefore, $\Delta_{p}=\Delta_{q}=-1$ implies

$$
\phi(N, P)=p^{2} q^{2}-p^{2}-q^{2}+1=\left(p^{2}-1\right)\left(q^{2}-1\right)
$$

Case (0,0): $\Delta_{p}=\Delta_{q}=0$.
In this case, the number of the solutions $\left(b_{1}, b_{2}\right) \bmod N$ with $b_{1} \not \equiv 0 \bmod p, b_{2} \not \equiv$ $0 \bmod q$ of (5) and (7) are $(p-1)(q-1) q$ and $(p-1)(q-1) p$, since the number of $b_{1} \bmod N$ satisfying $b_{1} \not \equiv 0 \bmod p$ and $b_{2} \not \equiv 0 \bmod q$ is $(p-1)(q-1)$. For any such $b_{1} \bmod N$, by Chinese Remainder Theorem, there is just one $b_{2} \bmod N$ satisfying both (5) and (7). Thus the total number of the elements in $\mathbb{Z}_{N, P}-\mathbb{Z}_{N, P}^{*}$ is

$$
p^{2}+q^{2}-1+(p-1)(q-1) q+(p-1)(q-1) p-(p-1)(q-1)
$$

Hence

$$
\phi(N, P)=(p-1)(q-1)(p q+2)
$$

Case (1,1): $\Delta_{p}=\Delta_{q}=1$. Then the number of the solutions $\left(b_{1}, b_{2}\right) \bmod N$ with $b_{1} \not \equiv 0 \bmod p$ and $b_{1} \not \equiv 0 \bmod q$ of (6) and (8) are $2(p-1)(q-1) q$ and $2(p-1)(q-1) p$ and the number of the common ones for (6) and (8) is $4(p-1)(q-1)$. Thus

$$
\phi(N, P)=(p-1)(q-1)(p q-p-q+5)
$$

Case (1,-1). For $b_{1} \bmod N$ with $b_{1} \not \equiv 0 \bmod p$ and $b_{1} \not \equiv 0 \bmod q$, (6) has $2(p-1)(q-1) q$ solutions $\left(b_{1}, b_{2}\right) \bmod N$, and (4) has no solution. Thus

$$
\phi(N, P)=(p-1)(q-1)(p q+p-q+1)
$$

Symmetrically, we have the result for
Case $(-1,1): \phi(N, P)=(p-1)(q-1)(p q-p+q+1)$.
Case $(0,1)$. For $b_{1} \bmod N$ with $b_{1} \not \equiv 0 \bmod p$ and $b_{1} \not \equiv 0 \bmod q$, (5) has $(p-1)(q-1) q$ solutions $\left(b_{1}, b_{2}\right) \bmod N$, and (8) has $2(p-1)(q-1) p$ solutions $\left(b_{1}, b_{2}\right) \bmod N$ with $2(p-1)(q-1)$ solutions in common with (5)'s. Thus

$$
\phi(N, P)=(p-1)(q-1)(p q-p+3)
$$

Symmetrically, we have the result for
Case (1,0): $\phi(N, P)=(p-1)(q-1)(p q-q+3)$.
Case ($0,-1$). The same argument as above leads to

$$
\phi(N, P)=(p-1)(q-1)(p q+p+1)
$$

Case $(-1,0) . \phi(N, P)=(p-1)(q-1)(p q+q+1)$.
The proof is complete.
In Prop. 1, in the case $\Delta_{p}=\Delta_{q}=-1$, we see that $b \in \mathbb{Z}_{N, P}^{*}$ iff $\left(b_{1}, b_{2}\right) \not \equiv$ $(0,0) \bmod p$, and $\left(b_{1}, b_{2}\right) \not \equiv(0,0) \bmod q$; and $\Delta_{p}=\Delta_{q}=-1$ is equivalent to $x^{2}+a_{1} x+a_{2}$ being irreducible both over F_{p} and F_{q}.

Since then $F_{p^{2}}=\mathbb{Z}_{N}[x] / P \bmod p$, and $F_{q^{2}}=\mathbb{Z}_{N}[x] / P \bmod q$, we see that $b \in \mathbb{Z}_{N, P}^{*}$ iff $b \bmod p \in F_{p^{2}}^{*}$ and $b \bmod q \in F_{q^{2}}^{*}$. Thus there is a group isomorphism:

$$
\mathbb{Z}_{N, P}^{*} \mapsto F_{p^{2}}^{*} \times F_{q^{2}}^{*}
$$

This deduction can be generalized to the following:
Proposition 2. Let $N=p q$ with p and q odd primes, and $P=x^{m}+a_{1} x^{m-1}+$ $\cdots+a_{m}$ be irreducible both over F_{p} and F_{q}. Then the map $\mathbb{Z}_{N, P} \longrightarrow F_{p^{m}} \times F_{q^{m}}$ given by

$$
b=b_{1} x^{m-1}+\cdots+b_{m} \mapsto(b \bmod p, b \bmod q)
$$

induces a group isomorphism

$$
\mathbb{Z}_{N, P}^{*} \mapsto F_{p^{m}}^{*} \times F_{q^{m}}^{*}
$$

and

$$
\phi(N, P)=\left(p^{m}-1\right)\left(q^{m}-1\right)
$$

Proof. By Lemma $1, b \in \mathbb{Z}_{N, P}^{*}$ iff $\left|M_{b}\right| \in \mathbb{Z}_{N}^{*}$. And $\left|M_{b}\right| \in \mathbb{Z}_{N}^{*}$ iff $\left|M_{b}\right| \bmod p \not \equiv 0$ and $\left|M_{b}\right| \bmod q \not \equiv 0$, i.e. $b \bmod p \in F_{p^{m}}^{*}$ and $b \bmod q \in F_{q^{m}}^{*}$. Moreover, by Chinese Remainder Theorem, it is easily seen that the map $b \rightarrow(b \bmod p, b \bmod q)$ is a bijection between $\mathbb{Z}_{N, P}$ and $F_{p^{m}} \times F_{q^{m}}$. Hence $\mathbb{Z}_{N, P}^{*} \rightarrow F_{p^{m}}^{*} \times F_{q^{m}}^{*}$ is an isomorphism and $\phi(N, P)=\left(p^{m}-1\right)\left(q^{m}-1\right)$. The proof is complete.

3 Correctness of the systems

As we state in the introduction, for $N=p q$ with p and q big different primes, $P=x^{m}+a_{1} x^{m-1}+\cdots+a_{m}$ being special to N, M being any common multiple of $p^{m}-1$ and $q^{m}-1, e \in\{2,3, \cdots, M-1\}$ with $\operatorname{gcd}(e, M)=1, d \in\{2, \cdots, M-2\}$ with

$$
e d \equiv 1 \bmod M
$$

the public key K of the system is (N, P, e), and the secret key is d. For any $y \in \mathbb{Z}_{N, P}$, if $y \in \mathbb{Z}_{N, P}^{*}$, then

$$
y^{e d} \equiv y \bmod P
$$

To ensure the correctness of the system, we have to prove that the above formula is also true for any $y \in \mathbb{Z}_{N, P}-\mathbb{Z}_{N, P}^{*}$.

Let $y \neq 0$ be so. We may assume $y \bmod p=0 \in F_{p^{m}}$. Then $y \bmod q \neq 0$ as an element of $F_{q^{m}}$.

Since the number of $F_{q^{m}}^{*}$ is $q^{m}-1$, we have

$$
y^{q^{m}-1}=1 \bmod P \text { on } F_{q}
$$

Let $e d=1+k M$, where $k \in Z$, and $M^{\prime}=M /\left(q^{m}-1\right)$. We have then

$$
y^{k\left(q^{m}-1\right) M^{\prime}} \equiv 1 \bmod P \text { on } F_{q}
$$

i.e. if regarding $y=y_{1} x^{m-1}+\cdots+y_{m} \in \mathbb{Z}[x]$, and $y^{k M} \in \mathbb{Z}[x]$ is written as $z_{1} x^{m-1}+\cdots+z_{m}+Q(x) P(x)$, then

$$
z_{1} x^{m-1}+\cdots+z_{m}=1+q\left(u_{1} x^{m-1}+\cdots+u_{m}\right)
$$

for some $u_{i} \in \mathbb{Z}, i=1, \cdots, m$. According to the assumption on $y, y=p\left(v_{1} x^{m-1}+\right.$ $\cdots+v_{m}$) for some $v_{i} \in \mathbb{Z}, i=1, \cdots, m$. Thus

$$
\begin{aligned}
y^{k M+1}=y+ & p q\left(u_{1} x^{m-1}+\cdots+u_{m}\right)\left(v_{1} x^{m-1}+\cdots+v_{m}\right)+ \\
& p\left(v_{1} x^{m-1}+\cdots+v_{m}\right) Q(x) P(x)
\end{aligned}
$$

So $y^{k M+1}=y^{e d}=y$ in $\mathbb{Z}_{N, P}$, and any message $y \in \mathbb{Z}_{N, P}$ is recovered by $y^{e d}$.
Notice that if one of the Δ_{p} and Δ_{q} vanishes, say $\Delta_{p}=0$, then $P \equiv x^{2}+a_{1} x+a_{2} \equiv$ $(x+a)^{2} \bmod p$ for some $a \in \mathbb{Z}$. Thus for

$$
y=x+a \in \mathbb{Z}_{N, P}
$$

$y^{\phi(N, P)}=(x+a)^{2}(x+a)^{\phi(N, P) / 2} \equiv 0 \bmod P$ and p, since $\phi(N, P) / 2 \in \mathbb{Z}$. Now if $e d=1+k \phi(N, P)$ with $0 \neq k \in \mathbb{Z}$, we have

$$
y^{e d} \equiv 0 \bmod P \text { and } p
$$

So $y^{e d} \neq y$ in $\mathbb{Z}_{N, P}$, since $y \not \equiv 0 \bmod P$ and p. Thus we have the following
Question. For $P=x^{2}+a_{1} x+a_{2}$ not special to $N=p q$ with $\left|\Delta_{p}\right|=\left|\Delta_{q}\right|=$ $1, e d \equiv 1 \bmod \phi(N, P)$, is $y^{e d}=y$ for any $y \in \mathbb{Z}_{N, P}$?

Acknowledgement The author thanks Mingsheng Wang, Dingkang Wang, Dongdai Lin and Fusheng Ren for helpful discussions.

References

[1] R.L.Rivest, A.Shamir and M.Adleman, A method for obtaining digital signature and public-key cryptosystems, Communication of the ACM, 21 (2) (1978),120126
[2] Joachm Von zur gathen and Jurgen Gerhard, Modern Computer Algebra, Cambrige University Press,1999

Author's Address:
Key Laboratory of mathematics Mechanization
Academy of Mathematics and Systems Science,
Chinese Academy of Sciences, Beijing 100080
Email: libh@amss.ac.cn

[^0]: *This research is partially supported by 973 projects (2004CB318000)

