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Abstract: A new type of signature is presented in this paper, named adaptable group-oriented 
signature. In contrast with traditional group-oriented signature, the new one laid a strong emphasis 
on how to improve the signer’s efficiency. In fact, this new type of group-oriented signature can 
be seen as a type of designated verifier signature. In contrast with the ordinary designated verifier 
signature, it does not designate one member but several members to independently verify the 
signature. The designated members, who can independently verify the signature, come into a 
group. This scheme can ensure the anonymity of the verifiers. This type of signature can be used 
in such system that the compute resource is limited, such as the broadcast protocols of the mobile 
telephone in the mobile networks. 
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1. Introduction 
In distributed networks, the traditional group-oriented signature is that only when all members 
in an authorized subset of a given group operate collectively, they can generate, conform or deny a 
signature on behalf of the group. The key skill used in traditional group-oriented is secret 
sharing. The aim of this type of signature is to improve the signature security. In many 
applications, the signer should sign a same message for lots of members, and how to improve 
the signing efficiency comes to be a problem. For example, we hope a mobile telephone has 
broadcast function, that is, it can send its signature to several members in the mobile networks. 
In such situations, the compute resource is limited, so signing a same message one by one for 
all designated members overload the signer. 

If a signer wants a designated member to verify his signature, he can use designated 
verifier signature, such as Chameleon signature [10][11]. If the signer wants several members 
to independently verify his signature, then he can sign the same message one by one for every 
member. But with this method, the efficiency is very low. 
 In practical networks, there exist several group models constructed by the members. 
 Firstly, in distributed networks, all users come into a group, that is, there is no member 
outside the group in this model. There is no member outsider the group wants to verify the 
signature, such as a small scale LAN. 
 Secondly, in distributed networks, the users in the different companies or institutions 
naturally come into different groups (this is the second model). In this condition, if the signer 
wants to provide such type signature service, he should have effect ways to prevent the 



members outside the designated group from verifying the signature. 
 Thirdly, in distributed networks, the signer just wants several members to verify his 
signature no matter whether these members are in one natural group or not (third model). 
What the signer should do is that he should define a group for these members. Then he should 
find effect way to prevent the member outside the defined group from verifying the signature. 
We can see the third model as a generalizing for the first and second models. 
 The efficiency of a cryptosystem is not only in his arithmetic but also in the way to 
manage the public keys. To date, the ID based cryptosystem can be seen as the substitute for 
the traditional PKI. Generally speaking, it is much easier to manage the ID based 
cryptosystem than the traditional PKI. In traditional PKI, there is no relation between the 
identity of user A and its public key, and the public key just is a random string. When user B 
wants to send a message to A, B should get A’s authenticated public key. In order to solve this 
problem, it is necessary to establish a public key list. The virtue of the ID based cryptosystem 
is that any user can get his public key from his identity information, such as his email address. 
So, it makes the public key management and authentication much easier.  
 In the ID based cryptosystem, if the verifier outputs “True”, then it means: 

1) The sender generates this signature with his private key, which based on his identity. 
2) The sender’s ID has been authenticated by TTP (Trusted Third Party). With the 
certificate sent by TTP, the sender can generates his signature. 

 
It is very important to complete two events in the same time for the ID based signature 

scheme, because it avoids the certificate transmitting and saves communication bandwidth. 
Considering the public key management, a novel ID based adaptive group-oriented 

signature is presented in this paper. In this scheme, before signing a message, the signer 
defines a group by embedding a group tab in the public key of the designated members. In 
contrast with the first and the second models, the signer can freely define a group containing 
the members he wants designated. In first and second models, the group is defined by the 
system. To any member, he can’t get any information about other designated verifier from the 
published values. Then the anonymity is realized. 
 

2. Related Works 
Desmedt fist presents the concept of group-oriented cryptography [1] in 1987. The problem 
he wants to solve is that when a sender encrypts a message for a group of members, how to 
make the members to decrypt the ciphertext by cooperation. This concept used in signature, 
then group-oriented signature comes. Generally speaking, the key skill of traditional group 
oriented signature is secret sharing. Papers [2][3] are some researches about this type of 
signature. 
 Shamir first presents the concept of ID based cryptography [4], and designs the first 
signature based on ID. It can greatly decrease the complexity of public key authentication and 
in fact it is similar to email system. In his scheme, the private key mode reverses to that of 
traditional PKI. That is the private key is generated by the master key and member’s public 
key. In order to preserve the private key secret, this process is kept secret. However, practical 
identity-based encryption (IBE) schemes were not found until Boneh and Franklin [5] 



published their work in 2001. The Boneh-Franklin scheme bases its security on the Bilinear 
Diffie-Hellman Problem, and is quite fast and efficient when using Weil or Tate pairings on 
supersingular elliptic curves or abelian varieties. From then on, the pairings come to be an 
important tools to construct cryptosystem, and lots of researches are published, such as [8][9]. 
 Chunbo Ma et al. present the concept of group inside signature [6]. In their scheme, any 
one in the same group with the signer can verify the signature generated by the signer. This 
type of signature can be transmitted by broadcast on the Internet. Embedding a group tab in 
the private key is the key skill to construct this signature. With this method, the efficiency of 
signing a message is improved enormously. This signature is corresponding to the first model. 
 Chunbo Ma et al. present another group-oriented signature in paper [7]. This signature is 
corresponding to the second model. In this scheme, any member in the designated group can 
independently verify the signature generated by the signer. 
 The member’s group in paper [7] is naturally generated, and it may be a company or an 
institution on the Internet. It is necessary to embed a group tab in corresponding member’s 
private key, in this aspect, it is similarly to that of paper [6]. The flaw of this method is that 
the signer can’t designate several members in different groups to verify his signature. 
 

3. Background 
3.1. Bilinear pairings 

Let  be a cyclic additive group generated by 1G P , whose order is a prime  and 

 be a cyclic multiplicative group of the same order . Assume that the discrete logarithm 

in both  and  is intractable. A bilinear pairing is a map :  and 

satisfies the following properties: 

q

2G q
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1) Bilinear: . For all the abPPebPaPe ),(),( '' = P ,  and , the 

equation holds; 

1
' GP ∈ qZba ∈,

2) Non-degenerate: There exists , if , then 1
' GP ∈ 1),( ' =PPe Ο=P ; 

3) Computable: For P , , there is an efficient algorithm to compute . 1
' GP ∈ ),( 'PPe

Typically, the map  will be derived from either the Weil or Tate pairing on an elliptic 

curve over a finite field. Pairings and other parameters should be selected in proactive for 

efficiency and security. 
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3.2. Gap Diffie-Hellman group 

Let ,1G P  and  be as above. Assume that the inversion and multiplication in  

can be computed efficiently. We first introduce the following problems in . 

q 1G

1G

1)   Discrete Logarithm Problem (DLP): Given two elements P  and , to find an 

integer , such that  whenever such an integer exists. 

Q
*
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2)   Computation Diffie-Hellman Problem (CDHP): Given  for , to 

compute . 

bPaPP ,, *, qZba ∈

abP

3)   Decision Diffie-Hellman Problem (DDHP): Given  for , to 

decide whether . 

cPbPaPP ,,, *,, qZcba ∈

qabc mod=

Definition 1: The advantage of an algorithm Λ  in solving the CDHP in  is the 

probability 
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If no probabilistic algorithm can solve CDHP (Computational Diffie-Hellman) with 

non-negligible advantage within polynomial time but DDHP (Decision Diffie-Hellman 

Problem) can be solved in polynomial time, the group  called GDH (Gap Diffie-Hellamn 

Group). This type of group can be constructed in the field of Hyper Elliptic or Super Singular 

Elliptic Curve [12]. 

G

 
3.3. GDH group on elliptic curves 

An elliptic curve serve as the basis for a GDH signature scheme if we can sue it to 
construct some group  with large prime order on which CDH is difficult but DDH is easy. 
First, we characterize a necessary condition for CDH intractability on a subgroup of elliptic 
curve E. 

G

Definition 2: Let E be an elliptic curve over  with l  points,  be a prime and  be 

a positive exponent. Let 

nk
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P  in E be a point of prime order , where  can’t be divided 

exactly by . We say that the subgroup 

q 2q

l >< P  has a security multiplier α , for some 

integer 0>α , if  and  cannot be divided exactly by  for all 1| −αnka q 1−ntk

1,,2,1 −= αLt , that is, the order of  in  is nk *
qF α . 

In order to compute the discrete log problem on elliptic curve, we usually map the 

discrete log problem in >< P  to a discrete log problem in some extension of , say 

. For CDH to be hard in the subgroup 

nk
F

ntk
F >< P , we must have that the security multiplier 

α  for this subgroup is not too small. On the other hand, to get an efficient DDH algorithm in 

>< P , we need that α  is not too large. As we will see in paper [12], choose supersingular 

elliptic curves with 6=α , we can obtain short signature but the security is dependent on a 

discrete log problem in . In order to insure the difficulty of discrete log problem in , 

we request  to be sufficiently large. We can also choose other elliptic curves or 

hyperelliptic curves to obtain higher security. 
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4.  Group-oriented Signature 

Assume that there are  users  in the distributed network. We denote 
the set of  by . Let 

n naaaa ,,,, 210 L

naaa ,,, 21 L A Aa ∈0  be the signer who wants to sign a message  
and sends it to certain user’s group 

m
},,,{ 21 iaaaB L= , where ni ≤< 0 . The signer  

wants that only the designated members can independently verify his signature. The group 
0a

B  is defined by signer . 0a
 

4.1  Initialize 

Let  be a GDH Group generated by 1G P , whose order is a prime  and  be a 

cyclic multiplicative group of the same order . A bilinear pairing is a map : 

. Define two cryptographic hash functions: 

q 2G

q e
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0H :   : . { } 1
*1,0 G→ 1H *

1
*}1,0{ qZG →×

There exist a KGC (Key Generating Center), which function is to generate private keys for 

corresponding members. 
 
4.2  Key Generation 

Let  denote the identity of iID Aai ∈ . KGC random selects , then ’s private 

key is  and the corresponding public key is 

*
qZs∈ ia

)(0 ii IDsHS = )(0 ii IDHP = . Any member 

can compute the public key. The private key generated by KGC is sent to corresponding 

member in secure way. KGC publishes . sP
 

4.3  Group-oriented Signature Generation 

The signer  random selects , and publishes the value , 

where . Then  compute 

0a *,, qZtkr ∈ )(0 ii IDkHT =

Bai ∈ 0a )(1 mHh =  and publishes tsPV =0 , , 

 and . 

tkPV =1

)( 002 IDrksHV = )( 000 IDkHT =

The signer  performs the following computing. 0a

)()( 00 IDsHhr +=σ                        (1). 

The signer generates the signature 0a ),,,,( 210 VVVm σ  for the message . This signature 

will be transmitted to the designated members by broadcast over Internet. 

m

 
4.4  Signature Verification 

The verification can be divided into two steps, the first step is to judge who can verify the 
signature, and the second step is how to verify it. 



 
4.4.1 Judge Verifier 

The aim of this step is to judge who can verify the signature. Using the value 

, any one can perform the following step. )(0 ii IDkHT =

),(),( 1

?

0 VSeVTe ii =                          (2). 

If the equation holds, then the corresponding member has the ability to verify the signature. 

The signer  publishes i  values, that is, only i  members have the ability to go on 

verification. 

0a

4.4.2 Verify Signature 

The member , who passes above step, can perform the verification as follows. Bai ∈

),(),(),( 02

?

iii ShTePVeTe =σ                      (3). 

If above equation hold, then the signature is valid. 
 

5. Security Analysis 
a) Correctness.  

(i) Judge verifier. To the equation (2), we have 

),()),(()),((),( 1000 VSetkPIDsHetsPIDkHeVTe iiii === . Only the designated 

 has the corresponding , so only  himself can verify that whether he 

is fit for the next verification step or not. After confirming his verification ability, 

 uses  to perform the following step. 

Bai ∈ iS ia

ia iT

(ii) Verify signature. To the equation (3), we have 

))(),()((),( 000 ii IDkHIDsHhreTe +=σ  

))(),(())(),(( 00000 iii IDsHIDhkHeIDHIDrskHe=  

),(),( 02 ii ShTePVe= . 

With (2) and (3), we can see that only the designated member corresponding to  

can verify the signature. 

iT

b) Anonymity. With the equation (2), any Ba j ∉  can’t distinguish who is the 

designated verifier, because he has no  corresponding to . The difficulty he gets 

 from , , , , and  is equal to solving discrete logarithm on elliptic 

curves. For the designated verifier 

iS iT

s jS sP 0V 1V 2V

Baa il ∈,  and ij aa ≠ ,  can’t distinguish 

whether  can verify the signature or not. 

ja

ia



c) We use the attack model and modified lemmas and theorems described in paper [13] to 
prove our signature security. We should prove the unforgeability of signature σ . We use 
the following attack model: a polynomial time algorithm ϖ  simulates the adversary and a 
polynomial time algorithm θ  simulates the function of the signer and KGC. 

1. θ  sets up the scheme. The resulting system parameters are published. 
2. ϖ  issues the following queries as he wants:  

a) Hash function query. θ  computes the value of the hash function for the requested 

input and sends the value to ϖ . 

b) Private key query: Given public key , iP θ  returns the corresponding private key 

 to iS ϖ . 

c) Sign query: Given public key  and a message , iP m θ  returns a signature, 

which is obtained by running signature process. 

3.  outputs A ),,( σmPi , where  has not been queried before. If ),( mPi σ  is a valid 

signature of m  corresponding to certain group member’s public key , iP ϖ  will 

succeed. 

Lemma 1[13]: if there is an algorithm 0ϖ  for an adaptively chosen message and member 

identity attack to our signature σ  with running time  and advantage 0t 0ε , then there is an 

algorithm 1ϖ  for an adaptively chosen message and certain member attack to our signature σ  

which has running time  and advantage 01 tt ≤ 1/01 −≤ qεε , where  is the order of . q qZ

Proof: Without any loss of generality, we assume that for any member’s public key , iP 0ϖ  

queries the private key and the signature at most once. 

 Since the output of 0ϖ  is ),,( σmPout , then ),,Pr[( σmPout  is valid 0] ε≥ . Assume that 

1ϖ attacks certain member , then 
iaP 1/1]),,(|Pr[ −≥= qvalidismPPP outaout i

σ . So 

1/]),,(Pr[ 0 −≥∩= qvalidismPPP outaout i
εσ , that is 1/01 −≤ qεε . It is obvious that 

 01 tt ≤

Lemma 2: If there is an algorithm 1ϖ  for an adaptively chosen message and certain member 

 attack to our signature 
iaP σ , which queries hash function, signing and private key at most 

 and  times, respectively, and has running time  with advantage SH qq , kq 1t

)1/())(1(101 −++≥ qqqq HSSε , then the attacker can solve DLP within time 

112 /120686 εtqt H≤ , where  is the order of . q *
qZ

Proof: We use the theorem 3 in paper [14] to proof this lemma:  



Let ϖ  be a probabilistic polynomial time Turing machine whose input only consists of public 

data. We denote respectively by  and Q R  the number of queries that ϖ  can ask to the 

random oracle and the number of queries that ϖ  can ask to the signer. Assume that, within a tie 

bound T , ϖ  produces, with probability , a valid signature kRQR 2/))(1(10 ++≥ε

),,,( 21 σσ hm . If the triple ),,( 21 σσ h  can be simulated without knowing the secret key, with 

an indistinguishable distribution probability, then there is another machine  which has control 

over the machine obtained from 

'ϖ

ϖ  replacing interaction with the signer by simulation and 

produces two valid signatures ),,,( 21 σσ hm  and  such that  in 

expected time , where  is the security parameter. 

),,,( '
2

'
1 σσ hm 'hh ≠

ε/120686' QTT ≤ k

Now we prove the lemma 2: From theorem 3 in paper [14], if an algorithm 1ϖ  could forge 

a signature ),,,( 21 σσ hP
ia  with advantage )1/())(1(101 −++≥ qqqq HSSε , then there is 

an algorithm 2ϖ , by choosing different , to obtain another valid signature  

within time 

h ),,,( '
2

'
1 σσ hP

ia

112 /120686 εtqt H≤ , where . Let , and  is the security 

parameter, these two valid signatures are  and 

'hh ≠ 12 +≥ kq k

),,,( '
2

'
1 σσ hP

ia ),,,( 21 σσ hP
ia . Then we have 

)(012 iIDhsH+= σσ  and . Subtracting the equations, 

. So . The running time of 

)(0
'

1
'
2 iIDsHh+= σσ

)()( 0
''

22 iIDsHhh −=−σσ )/()()( ''
220 hhIDsH i −−= σσ

2ϖ  is 112 /120686 εtqt H≤ . 

Theorem 2: If there is an algorithm 0ϖ  for an adaptively chosen message and member 

identity attack to our signature σ  which queries hash function, signing and private key at most 

 and  times, respectively, and has running time  with advantage SH qq , kq 1t

))(1(100 HSS qqq ++≥ε , then the attacker can solve DLP within time 

002 /)1(120686 ε−≤ qtqt H , where  is the order of . q qZ
 In this paper, we assume that the KGC distributes the private key to corresponding member 
in secure way, so we consider the private key is safe. That is, the attacker can get the private key 

with the probability of no more than . The only way to get certain member’s private key is 

to solve  with the public values. The assumption that the DLP is intractable is contrary to above 
result, so the signature 

k2/1

s
σ  can’t be forged. 

 

6.  Conclusion 
This paper generalizes the result of [6] and [7], and designs a new type of signature: 



adaptable group-oriented signature. In the new scheme, the signer can define the group freely 
to make all members in the defined group can independently verify his signature. What the 
most different from the paper [6][7] is that the designated group does not naturally come into 
being, but defines by the signer. In the instance that the signer should sign the same message 
for several members, this scheme can effectively improve the signing efficiency. In practice, 
this scheme can be used in the distributed networks, whose member has limited compute 
ability. At the end of the paper, we give the brief discuss about the security of the signature 
scheme. 
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