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Abstract. In a famous paper of Crypto’01, Boneh and Franklin pro-
posed the first identity-based encryption scheme (IBE), around fifteen
years after the concept was introduced by Shamir. Their scheme security
(more precisely, the notion of resistance against an IND-ID-CCA attacker)
relies in the random oracle model. However, the reduction is far from be-
ing tight, and notably depends on the number of extractions queries.

In this paper, we present an efficient modification to the Boneh-Franklin
scheme that provides a tight reduction. Our scheme is basically an IBE
under two keys, one of which is (randomly) detained by the recipient. It
can be viewed as a continuation of an idea introduced by Katz and Wang;
we will however show how our construction improves this last scheme.

Our scheme features a tight reduction to the list bilinear Diffie-Hellman
(LBDH) problem, which can be itself reduced tightly either to the gap
bilinear Diffie-Hellman (GBDH) or the decisional bilinear Diffie-Hellman
(DBDH) problems. Furthermore, for a relaxed notion of tightness (called
weak-tightness) that we introduce and discuss in our paper, we show that
there is a weakly tight reduction from our scheme to the computational
bilinear Diffie-Hellman (CBDH) problem.

Our scheme is very efficient, as one can precompute most of the quantity
involved in the encryption process. Furthermore, the ciphertext size is
very short: for proposed parameters, they are |M |+ 330 bits long.
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1 Introduction

Identity Based Encryption (IBE) provides a public key encryption mechanism
where an arbitrary string, such as recipient’s identity, can be served as a public



key. The ability to use identities as public keys avoids the need to distribute
public key certificates. Such a scheme is largely motivated by many applications
such as to encrypt emails using recipient’s email address or to encrypt messages
for users that have not their proper key at the given moment.

Although the concept of identity based encryption was proposed two decades
ago [14], it is only recently that the first fully functional schemes were proposed.
Boneh and Franklin [3, 4] defined a security model namely IND-ID-CCA and gave
the first efficient construction provably secure in the random oracle model based
on the bilinear Diffie-Hellman (BDH) problem. A few years after, new schemes
were shown to be secure without random oracles, but in a weaker model of
security known as “Selective-ID” model [5, 1]. Such schemes in this weaker model
are known to be secure also in the sense of IND-ID-CCA, but the proofs use
an inefficient security reduction [1], which degrades reduction costs by a factor
of the size of identities’ space, which is indeed not polynomial in the security
parameter. Boneh and Boyen [2] subsequently proposed the first scheme which
is provably secure in the sense of IND-ID-CCA with a polynomial time reduction
in the absence of random oracles, which was then simplified and improved by
Waters [17].

However, for each of the above schemes, the security as in the sense of IND-
ID-CCA is reduced only loosely to its underlying intractability assumption. An
inefficient security reduction would imply either a lower security level or the
requirement of larger key and ciphertext sizes to obtain the same security level.

It has been an open problem (as already posed in [17, 7]) whether efficient IBE
systems can exist with their security in the sense of IND-ID-CCA being reduced
tightly (i.e., the factor between the difficulty of the underlying problem and the
security of the scheme being only a constant term, as close to 1 as possible) to
some reasonable intractability assumption. In the standard model, this problem
is still open.

In the random oracle model, however, it has been partially solved by Katz
and Wang [10]. However, their idea was just mentioned at the end of one of their
papers and regarding a different subject, i.e., the signature schemes, and so,
some thoughts were let to the reader.

Our Contribution. In this paper, we remind identity-based encryption schemes
of Boneh and Franklin, and of Katz and Wang. We show notably how the Katz
and Wang solution does not achieve tight IND-ID-CCA security, even when used
with the generic Fujisaki-Okamoto [6] transform. Then, we present our principle
result, which is a new IBE scheme with a tight reduction to the list bilinear
Diffie-Hellman (LBDH) problem. We also show how this problem can itself be
tightly reduced to the gap bilinear Diffie-Hellman (GBDH) problem or the deci-
sional bilinear Diffie-Hellman (DBDH) problem. Another point that we address
is a relaxed definition of tightness (called weak-tightness), that we introduce and
discuss; we then show that there is a weakly-tight reduction from our scheme to
the computational bilinear Diffie-Hellman (CBDH) problem.



Our scheme is very efficient, as one can precompute most of the quantity
during the encryption process, before knowing the message. Furthermore, the
ciphertext size is very short: for proposed parameters, they are |M | + 330 bit
long, which is comparable with the Boneh-Franklin IBE (whose ciphertexts are
|M |+ 250 bit long, for a loose reduction).

Outlines. Our paper is organized as follows: we begin in Section 2 with some
definitions. Then, in Section 3, we remind the idea of Katz and Wang (which
is itself a variant of the Boneh-Franklin IBE), and show how it allows a tight
reduction from IND-ID-CPA attackers. However, we point out that without any
additional construction step, the reduction does not succeed against IND-ID-CCA
attackers. In Section 4, we introduce our new identity-based encryption scheme,
and show how it achieves IND-ID-CCA security, with tight reduction. In Section 5,
we show in fact our scheme is weakly reducible (more precise discussion given
later) to the CBDH problem. In Section 6, we compare our scheme with existing
ones. Finally, we conclude our work.

2 Definitions

We review the model and the security notion of an IBE scheme, the length-
preserving IND-CCA symmetric key encryption, as well as the definitions of bi-
linear maps and related problems. We also discuss two flavors of tightness.

2.1 ID-Based Encryption

An IBE scheme E consists of four polynomial-time algorithms:

Setup: takes a security parameter k and returns params (system parameters)
and master-key. The system parameters include a description of a finite mes-
sage space M, and a description of a finite ciphertext space C. Intuitively,
the system parameters will be publicly known, while the master-key will be
known only to the private key generator.

Extract: takes as input params, master-key, and an arbitrary ID ∈ {0, 1}∗, and
returns a private key sk. Here ID is an arbitrary string that will be used as a
public key, and sk is the corresponding private decryption key. The Extract
algorithm extracts a private key from the given public key.

Encrypt: takes as input params, ID, and M ∈M. It returns a ciphertext C ∈ C.
Decrypt: takes as input params, C ∈ C, and a private key sk. It returns M ∈M

or “reject”, which is a special symbol not in M.

These algorithms must satisfy the standard consistency constraint; that is, if
(params,master-key,M, C) ← Setup(1k), then for all M ∈ M and for all ID,
M = Decrypt(params,Encrypt(params, ID,M),Extract(params,master-key, ID)).



Security Notion. The strongest security definition for IBE is chosen cipher-
text security for IBE under a chosen identity attack (IND-ID-CCA) [3, 4]. In this
model, the adversaries are allowed to collude (chosen ID attack) and to access a
decryption oracle. We first review the IND-ID-CCA game:

Setup: The challenger takes a security parameter k and runs the Setup al-
gorithm. It gives the adversary the resulting system parameters params. It
keeps the master-key to itself.

Phase 1 : The adversary issues queries q1, · · · , qm where query qi is one of:
– Extraction query 〈IDi〉: The challenger responds by running algorithm

Extract to generate the private key ski corresponding to the public key
〈IDi〉. It sends ski to the adversary.

– Decryption query 〈IDi, Ci〉: The challenger responds by running algo-
rithm Extract to generate the private key ski corresponding to IDi. It
then runs algorithm Decrypt to decrypt the ciphertext Ci using the
private key ski. It sends the result to the adversary.

These queries may be asked adaptively, that is, each query qi may depend
on the replies to q1, . . . , qi−1.

Challenge: Once the adversary decides that Phase 1 is over it outputs two
equal length plaintexts M0,M1 ∈M and an identity ID∗ on which it wishes
to be challenged. The only constraint is that ID∗ did not appear in any
Extraction query in Phase 1. The challenger picks a random bit β ∈ {0, 1},
sets C∗ = Encrypt(Params, ID∗,Mβ), and sends C∗ to the adversary.

Phase 2 : The adversary issues more queries qm+1, · · · , qmax adaptively where
each query is one of:
– Extraction query 〈IDi〉 where IDi 6= ID∗: challenger responds as before.
– Decryption query 〈IDi, Ci〉 6= 〈ID∗, C∗〉: challenger responds as before.

Guess: The adversary outputs a guess β′ ∈ {0, 1} and wins the game if β = β′.

We define adversary A’s advantage in attacking the scheme E as AdvIBEE(A) =
|Pr[β = β′]−1/2|. We say thatA is an (ε, t)-IND-ID-CCA adversary if AdvIBEE(A) ≥
ε and its running time is at most t. We say that an IBE scheme E is (ε, t)-IND-
ID-CCA secure if there exists no (ε, t)-IND-ID-CCA adversary.

2.2 Bilinear Maps

We briefly review several facts about bilinear maps. Throughout this paper,
we let G1 and G2 be two multiplicative cyclic groups of prime order q and g
be a generator of G1. A bilinear map e : G1 × G1 → G2 satisfies the following
properties: (i) Bilinearity: For all u, v ∈ G1 and a, b ∈ Z, e(ua, vb) = e(u, v)ab. (ii)
Non-degeneracy: e(g, g) 6= 1. (iii) Computability: There is an efficient algorithm
to compute e(u, v) for any u, v ∈ G1.

2.3 Underlying Hard Problems

We review hard problems related to bilinear maps which are those variants
of bilinear Diffie-Hellman (BDH) problems: the computational BDH (CBDH)
[3], the list BDH (LBDH), the decisional BDH (DBDH) [5], and the gap BDH
(GBDH) [12] problems.



CBDH and LBDH Problems. The `-LBDH problem is defined as follows:
given a tuple (g, ga, gb, gc) ∈ (G1)4 as input, output a list L of length at most
` (` ≥ 1) which contains T ∈ G2 such that T = e(g, g)abc. Especially, 1-LBDH
problem is referred to as the CBDH problem. We say that A is a (ε, t)-`-LBDH
algorithm if it runs with time at most t and outputs a list L of length at most
` which contains T = e(g, g)abc with probability at least ε, that is,

Pr[A(g, ga, gb, gc) = L ∧ e(g, g)abc ∈ L ∧ |L| ≤ `] ≥ ε,

where |L| denotes the number of elements of L and the probability is taken over
the random choice of generator g ∈ G∗1, the random choice of a, b, c ∈ Zq, and
random coins consumed by A.

DBDH Problem. The DBDH problem is defined as follows: given a tuple
(g, ga, gb, gc, T ) ∈ (G1)4 ×G2 as input, outputs a bit β ∈ {0, 1}. We say that A
is a (ε, t)-DBDH algorithm if it runs with time at most t, and distinguishes the
BDH-tuple with advantage at least ε, that is,

∣∣Pr[A(g, ga, gb, gc, e(g, g)abc) = 0]− Pr[A(g, ga, gb, gc, T ) = 0]
∣∣ ≥ ε,

where the probability is taken over the random choice of generator g ∈ G∗1, the
random choice of a, b, c ∈ Zq, the random choice of T in G2, and the random
coins consumed by A.

GBDH Problem. The GBDH problem is defined as follows: given a tuple
(g, ga, gb, gc) ∈ (G1)4 as input, output e(g, g)abc ∈ G2 with the help of a DBDH
oracle O which for given (g, ga, gb, gc, T ) ∈ (G1)4 × G2, answers “true” if T =
e(g, g)abc, or “false” otherwise [12]. We say that A is a (ε, t)-GBDH algorithm if
it runs with time at most t and succeeds in outputting e(g, g)abc with probability
at least ε, that is,

Pr[AO(g, ga, gb, gc) = e(g, g)abc] ≥ ε,

where the probability is taken over the random choice of generator g ∈ G∗1, the
random choice of a, b, c ∈ Zq, and random coins consumed by A.

2.4 IND-CCA Length Preserving Symmetric Key Encryption

A (deterministic) symmetric key encryption (SKE) scheme E = (Enc, Dec) con-
tains two algorithms: an encryption algorithm Enc : K×M→ C and a decryption
algorithm Dec : K × C → M, where K, M and C are the spaces of keys, plain-
texts and ciphertexts, respectively. Two algorithms are conform to the standard
consistency constraint: for all K ∈ K,M ∈M, M = Dec(K, Enc(K, M)). More-
over, if for all K ∈ K,M ∈ M, |Enc(K, M)| = |M | then we say that E is length
preserving. We often let EncK(·) denote Enc(K, ·).



Security Notion. A challenger plays the following game with an adversary A:
The challenger randomly chooses a key K ∈ K and a bit γ. A is given access to
two oracles EncK(·) and DecK(·). A chooses a pair (M0,M1) in M of the same
length that were not submitted to EncK(·) or obtained from DecK(·), submits to
EncK(·) and gets C∗ = EncK(Mγ). A can further query the oracles as before but
is not allowed to ask DecK(C∗), EncK(M0) or EncK(M1). Finally, A outputs
a bit γ′. The advantage of A is defined by AdvSKEE(A) = |Pr[γ = γ′] − 1/2|.
We say that A is an (ε, t)-IND-CCA adversary if AdvSKEE(A) ≥ ε and it runs in
time at most t. We say that a SKE scheme E is (ε, t)-IND-ID-CCA secure if there
exists no (ε, t)-IND-CCA adversary.

We will use a length preserving IND-CCA-secure SKE in our construction.‡

Such a scheme can be built, for example, by applying CMC [8] or EME [9]
mode of operation to a block cipher, if the underlying block cipher is modeled as
(strong) pseudorandom permutation, e.g. AES. Though the above formulation
of IND-CCA security differs from that of [8], one can show by some standard
arguments that it is implied by the definition given in [8].

2.5 On the Notions of Tight Reduction

Informally, we say that the security of a scheme can be reduced to an underlying
problem tightly in the conventional sense if, there exists a tB-time algorithm B
who can solve the underlying problem with the probability εB when there exists
a tA-time adversary A who can break the scheme with the probability εA, where
both εA ' εB and tA ' tB hold.

In addition to such conventional definition of tightness, we also propose a
definition of relaxed tightness. We say that the security of a scheme can be
reduced to an underlying problem tightly in the weak sense if, there exists a
tB-time algorithm B who can solve the underlying problem with the probability
εB when there exists a tA-time adversary A who can break the scheme with the
probability εA, where tB/eB ' tA/εA holds. If this condition holds, we have that
the expected running time of A is roughly the same as B. This is the intuition
as to why we consider this kind of reduction as weakly tight. Similar notion was
also considered by Pointcheval and Stern in [13].

In this paper, our main result shows that the security of our scheme can be
reduced tightly in the conventional sense to standard hard problems, namely, the
LBDH problem, and also to the GBDH problem and the DBDH problem. As an
independent interest, we also show a tight reduction from the LBDH problem to
the CBDH problem in the weak sense. Thus the security of our scheme can be
tightly reduced to the problem (also in the weak sense). This observation brings
more confidence to the security of our scheme.

‡ Indeed our scheme does not need the full power of the IND-CCA-secure SKE. More
precisely, as it will become clear, we do not need the encryption oracles at all.



3 Boneh-Franklin IBE and Its Katz-Wang Variant

In this section, we remind the construction of Boneh and Franklin, and its variant
by Katz and Wang.

3.1 Boneh-Franklin Identity Based Encryption

The Boneh-Franklin [3, 4] ID-based encryption scheme (more precisely, its basic
variant) is defined in Table 1. In Tables 1 and 2, M denotes a plaintext, G :
G2 → {0, 1}n and H : {0, 1}∗ → G1 denote random oracles. We refer to [3, 4]
for a more precise study of its security. In this subsection, we just remind that
the basic version of the Boneh-Franklin IBE is IND-ID-CPA secure, while using
Fujisaki-Okamoto [6] transform, one gets the full version of the Boneh-Franklin
IBE, which is IND-ID-CCA secure. All these reductions are in the random oracle
model.

The Boneh-Franklin Identity Based Encryption

Setup (1k):
s ← Z∗q ; gpub := gs

params := 〈q,G1,G2, e, n, g, gpub, G, H〉
master-key := s
return (params, master-key)

Extract (ID, params, master-key):
hID := H(ID)
dID := (hID)s

return dID

Encrypt (ID, params, M):
hID := H(ID); r ← Z∗q
w := e(gpub, hID)r

C := 〈gr, G(w)⊕M〉
return C

Decrypt (C, params, dID):
parse C = 〈u, V 〉
w′ := e(u, dID)
M := V ⊕G(w′)
return M

Table 1. The Boneh-Franklin Identity Based Encryption

Unfortunately, the reduction of the Boneh-Franklin IBE scheme is very loose,
as there is a factor equal to the number of extract queries that an attacker can
make, between the security of the underlying problem (i.e., the CBDH) and the
security of the scheme. Roughly, this factor is due to the fact that the reduction
must guess which of the identity will be used in the challenge, as for this special
identity, it must return a special H output, while for other identities, it must
return another type of H output, to be able to answer extract queries.

3.2 Katz and Wang’s Variant of Boneh-Franklin IBE

This problem of tightness of IBE has been partially solved by Katz and Wang,
at the end of a paper [10] whose subject was quite different. Hence, these au-
thors only gave few points of their ideas, and let the rest to the reader. In this
subsection, we explain what we believe that Katz and Wang meant, even if we
might be subject to errors in the interpretation.



Katz and Wang proposed that, for each identity, there should be two cor-
responding public keys: instead of using H(ID) as in the Boneh-Franklin, they
proposed to use both H(ID, 0) and H(ID, 1). However, only one of the corre-
sponding private key is known to the designator. With this trick, the reduction
does not need to guess which of the identity will be used in the challenge: for each
identity, one of the two hash output (let say the one with bit bID) is controlled in
order the simulator to be able to answer to extract queries, while the other is let
to be used in case the identity is the one that appears in the challenge. Hence, for
the identity ID? of the challenge, if the bit bID? is absolutely indistinguishable to
the attacker, with a chance of one half, H(ID?, b̄ID?) will be used by the attacker
and the simulator will succeed in solving the underlying problem.

More precisely, the idea of Katz and Wang is depicted in the Table 2.

The Katz-Wang Identity Based Encryption

Setup (1k):
s ← Z∗q ; gpub := gs

params := 〈q,G1,G2, e, n, g, gpub, G, H〉
master-key := s
return (params, master-key)

Extract† (ID, params, master-key):
bID ← {0, 1}
hID := H(ID, bID)
dID := (hID)s

skID := (dID, bID)
return skID

Encrypt (ID, params, M):
hID,0 := H(ID, 0)
hID,1 := H(ID, 1)
r0 ← Z∗q
r1 ← Z∗q
w0 := e(gpub, hID,0)

r0

w1 := e(gpub, hID,1)
r1

C := 〈gr0 , G(w0)⊕M, gr1 , G(w1)⊕M〉
return C

Decrypt (C, params, bID, dID):
parse C = 〈u0, V0, u1, V1〉
w′ := e(ubID , dID)
M := VbID ⊕G(w′)
return M

†Extract first checks to see if skID has been generated before. If it has, the previously-
generated skID is output.

Table 2. The Katz-Wang Identity Based Encryption

A disadvantage of this scheme is its cost: roughly, the Katz-Wang IBE ci-
phertexts are twice as much as in the Boneh-Franklin IBE, and the encryption
process is twice longer (i.e., two exponentiations and two pairing computations).

From [10], the security of this scheme against IND-ID-CPA can be tightly
reduced to the Gap Bilinear Diffie-Hellman problem. Unfortunately, the use of
Fujisaki-Okamoto [6] transform for this scheme is unclear. Katz and Wang did
not explain how to achieve a tight IND-ID-CCA security with their scheme.

More precisely, to achieve ID-CCA security (either OW-ID-CCA or IND-ID-
CCA), it is necessary that during the decryption, the user can test the equality
of the messages in the two parts of the ciphertext. Else, the adversary would
get a challenge C = 〈u0, V0, u1, V1〉 (of a message M that he wants to recover),
and create another valid ciphertext C ′0 = 〈u0, V0, u2, V2〉 or C ′1 = 〈u2, V2, u1, V1〉,



depending on a random bit b: for this, he takes a random message M2, picks
r2 ← Z∗q , and computes w2 = e(gpub, hID,b)r2 , u2 = gr2 and v2 = G(w2) ⊕M2.
With overwhelming probability, M2 is not equal to M . Then, by querying the
decryption of C ′b to the simulator or the legitimate user, with probability 1

2 , the
adversary would learn the message M .

We now conclude the above discussion. On one hand, the technique of double
encryption in which exactly one key for each ID is known by the simulator enables
the simulation of the key exposure oracle and results in tight security reduction.
On the other hand, this very technique itself also allows the CCA adversary to
successfully break the scheme.§ This contradictory implication of straightfor-
ward application of the Katz-Wang technique suggests that more sophisticated
techniques are needed.

In our scheme, we propose a solution to these problems: namely, our scheme
features a tight IND-ID-CCA security; furthermore, our scheme is roughly as
efficient as the Boneh-Franklin scheme in term of ciphertext size, and in term of
encryption and decryption timing. Our scheme is the subject of the next section.

4 Our IBE Scheme

4.1 Proposed Scheme (TightIBE)

Let k be a given security parameter. Let G1 and G2 be two groups of order q
(which is a k-bit prime number) and g be a generator of G1. Let e : G1×G1 → G2

be a bilinear map. Let E = (Enc, Dec) be a SKE that the key space is K and the
message space is M. Let G, H, Ĥ be cryptographic hash functions G : {0, 1}∗ →
{0, 1}k1 for some k1, H : {0, 1}∗ → G1, Ĥ : {0, 1}∗ → Zq × K respectively. The
TightIBE scheme consists of the four algorithms which are shown in Table 3.

4.2 Security

Theorem 1. Suppose that the hash functions G,H, Ĥ are random oracles. Sup-
pose there exists an (εibe,tibe)-IND-ID-CCA adversary A against TightIBE. Sup-
pose A makes at most qG G-queries, qH H-queries, qĤ Ĥ-queries, qD decryption
queries, and qE extraction queries. Suppose that E is an (εsym,tsym)-IND-CCA
secure SKE. Then there exists an (εlbdh,tlbdh)-(qG + qD)-LBDH algorithm where

εlbdh ≥ 1
2
εibe − εsym − qĤ

2k1+1
,

tlbdh ≤ tibe + (3qH + qG + 3qE + 10qD)τ + qĤτ ′ + qDtsym,

where, τ is the maximum time among times for computing an exponentiation in
G1,G2 and pairing e, and τ ′ is the time for responding to an Ĥ-query.

Proof. The proof is provided by a sequence of games. Let (g, g1 = ga, g2 =
gb, g3 = gc) be a random instance of the LBDH problem, for which we do not
know a, b, c.
§ Even if combined with the Fujisaki-Okamoto [6] transform that was used to ensure

full security of the Boneh-Franklin IBE, one can not ensure the equality of messages.



TightIBE

Setup (1k):
s ← Z∗q ; gpub := gs

params := 〈q,G1,G2, e, n,

g, gpub, G, H, Ĥ〉
master-key := s
return (params, master-key)

Extract† (ID, params, master-key):
bID ← {0, 1}
hID,bID := H(ID, bID);
dID := (hID,bID)s

skID := (dID, bID)
return skID

Encrypt (ID, params, M):
hID,0 := H(ID, 0)
hID,1 := H(ID, 1)

R ← {0, 1}k1

r‖K := Ĥ(R, ID)
w0 := e(gpub, hID,0)

r

w1 := e(gpub, hID,1)
r

u := gr

V0 := G(w0, ID, 0)⊕R
V1 := G(w1, ID, 1)⊕R
α := EncK(M)
C := 〈u, V0, V1, α〉
return C

Decrypt (C, params, skID):
parse C = 〈u, V0, V1, α〉
w′bID

:= e(u,dID)
RbID := VbID ⊕G(w′bID

, ID, bID)

r′‖K := Ĥ(RbID , ID)

w′̄bID
:= e(gpub, hID,b̄ID

)r′

Rb̄ID
:= Vb̄ID

⊕G(w′̄bID
, ID, b̄ID)

if RbID 6= Rb̄ID
∨ u 6= gr′

return “reject”
else

M := DK(α)
return M

†Extract first checks to see if skID has been generated before. If it has, the previously-
generated skID is output.

Table 3. The algorithms of TightIBE

Game G0: This is the real IND-ID-CCA game. We denote by S0 the event that
β′ = β and use a similar notation Si in any Gi below. By definition, we have

Pr[S0] =
1
2

+ εibe.

Game G1: In this game, one makes classical simulation of the random oracles,
with random answers for any new query, as shown in Figure 1. Moreover, it
maintains the evaluation of bID for each ID by randomly choosing from {0, 1}
for the first-time evaluation and using the same value after that. This game is
clearly identical to the previous one, hence Pr[S0] = Pr[S1].

Game G2: In this game, we change the simulation of the H-oracle:

I Rule H(2)

- If b = bID, then randomly choose πID ∈R Zq and set h = gπID .
Record (ID, bID, πID, h) in the H-list;

- Else, randomly choose τID ∈R Zq and set h = gτID
2 . Record

(ID, b̄ID, τID, h) in the H-list.

The two games G1 and G2 are perfectly indistinguishable: Pr[S1] = Pr[S2].



Simulation

G
,H

,Ĥ
oracles

Query G(w, ID, b): if a record (w, ID, b, g) appears in the G-list, the answer
is g. Otherwise g is chosen randomly in {0, 1}k1 and the record (w, ID, b, g)
is added in the G-list.

Query H(ID, b): if a record (ID, b, ∗, h) appears in the H-list, the answer is
h. Otherwise do the following.

I Rule H(1)

The answer h is chosen randomly in G1 and the record (ID, b, ∗, h)
is added in the H-list.

Query Ĥ(R, ID): if a record (R, ID, r, K) appears in the Ĥ-list, the answer
is r||K. Otherwise the answer (r, K) is chosen randomly in Zq × K and the
record (R, ID, r, K) is added in the Ĥ-list.

E
xt-O

racle

Query Extract(ID): the answer (bID, dID) is defined by the following rules.

I Rule Extract(1)

Compute dID = H(ID, bID)s.

D
ecryp

tio
n
-O

racle

Query Decrypt(ID, u, V0, V1, α): the answer M is defined by the following
rules. First get the secret key dID by using Extract rule.

I Rule Decrypt–Exception(1)

Do nothing.

Then compute:
(D1) w′bID

= e(u,dID), RbID = VbID ⊕G(w′bID
, ID, bID),

(D2) r′‖K = Ĥ(RbID , ID),

(D3) w′̄bID
= e(gpub, H(ID, b̄ID))r′ , Rb̄ID

= Vb̄ID
⊕G(w′̄bID

, ID, b̄ID),

(D4) if RbID 6= Rb̄ID
or u 6= gr′ , then return “reject”

else compute M = DK(α) and return M .

C
h
allen

g
e

For two messages (M0, M1) and identity ID?, flip a coin β and set M? = Mβ ,
choose randomly R? ∈ {0, 1}k1 , and then answer (u?, V ?

0 , V ?
1 , α?) where

I Rule Chal–DEM–Key(1)

Compute r?||K? := Ĥ(R?, ID?), then let K‡ = K?.

I Rule Chal–KEM(1)

u? = gr?

,

w?
0 = e(gpub, H(ID?, 0))r?

, V ?
0 = G(w?

0 , ID?, 0)⊕R?,

w?
1 = e(gpub, H(ID?, 1))r?

, V ?
1 = G(w?

1 , ID?, 1)⊕R?.

I Rule Chal–DEM–Enc(1)

Let α? = EncK‡(M
?).

Fig. 1. The formal simulation of the IND–ID–CCA game



Game G3: From now, we change the setup, as well as Extract rule. Instead of
using gpub = gs, for a chosen s ∈ Zq, we use gpub = g1 (for which we do not
know the value a such that g1 = ga). Furthermore our Extract rule becomes:

I Rule Extract(3)

Ask H(ID, bID) to the H-oracle. Find (ID, bID, πID, h) in the H-list
and let dID = gπID

1 .

One can see that dID is valid: dID = H(ID, bID)a. This is since H(ID, bID) = gπID .
The two games G2 and G3 are perfectly indistinguishable: Pr[S2] = Pr[S3].

Game G4: In this game, we make a conceptual modification for the decryption
oracle. This modification will be useful in game G6 below.

I Rule Decrypt–Exception(4)

- If (ID, u, V0, V1) = (ID?, u?, V ?
0 , V ?

1 ) but α 6= α∗, then return
DecK‡(α).

- If u 6= u? and VbID? ⊕G(e(u, dID?), ID?, bID?) = R?, return “reject”.

The two games G3 and G4 are perfectly indistinguishable since the change is
only conceptual. The first one is verified by observing that from u = u? we have
r = r∗ which then leads to R = R? due to (D1) and the above condition. Hence
K = K? = K‡ due to (D2) and the Chal–DEM–Key rule. The second one is
verified by first assuming that such a query is valid. Since u 6= u?, then r 6= r?.
From the above constraint we must have r||K = Ĥ(R?, ID?) = r?||∗ hence a
contradiction. Thus such a query must be invalid. Therefore Pr[S3] = Pr[S4].

Game G5: In this game, we modify the challenge rule, by simplifying its KEM
component to:

I Rule Chal–KEM(5)

u? = g3,
G†0 ← {0, 1}k1 , V ?

0 = G†0 ⊕R?,
G†1 ← {0, 1}k1 , V ?

1 = G†1 ⊕R?.

The two games G4 and G5 are perfectly indistinguishable unless at least one of
the following events occurs:

AskGoodG : (e(g, g)abcτID? , ID∗, b̄ID?) is asked to G-oracle;
AskBadG : (e(g1, g3)πID? , ID∗, bID) is asked to G-oracle

either by the adversary or the decryption oracle. By the difference lemma (see
[16]), we thus have

|Pr[S4]− Pr[S5]| ≤ Pr[AskGoodG] + Pr[AskBadG] ≤ 2Pr[AskGoodG],

where the last inequality is due to the claim below. Before proving the claim,
we will conclude the result from this game by constructing an algorithm B for



solving the LBDH problem. Assume that AskGoodG occurs. Let L be a list which
is empty at first. From each record (w, ID?, b̄ID? , g) in the G-list, algorithm B adds
g1/τID? to the L list and output this list. Since AskGoodG occurs, L contains
e(g, g)abc. This implies Pr[AskGoodG] ≤ εlbdh. Hence, |Pr[S4]− Pr[S5]| ≤ 2εlbdh.

Claim. Pr[AskGoodG] = Pr[AskBadG].

Proof. (of the claim) It is sufficient to prove that the adversary’s view is inde-
pendent of the variable bID? . Moreover, since the only variables that are pos-
sibly dependent on bID? are those responses from the decryption oracle, it is
sufficient to prove that there exists no ciphertext such that its decryption re-
sult may become different values according to the value of bID. We assume
for the sake of contradiction that there exists C = 〈u, V0, V1, α〉 such that
DecryptbID?=0(ID?, C) 6= DecryptbID?=1(ID?, C), where the subscripts denote
the conditional events. Without loss of generality, we assume that the value
on the left is M which is not “reject”. Let r = logg u. As in (D1) (when
bID? = 0), we let R̄ := V0 ⊕ G(e(gpub,H(ID?, 0))r, ID?, 0) and as in (D2) we
let r′‖K := Ĥ(R̄, ID). Then we have α = EK(M) from (D4).

Since M is not“reject”, we have R̄ = V1 ⊕G(e(gpub,H(ID?, 1))r′ , ID?, 1) and
r = r′ due to (D3) and (D4). Thus

V1 = G(e(gpub, H(ID?, 1))r, ID?, 1)⊕ R̄. (1)

Now the decryption oracle conditioned on bID? = 1 will decrypt C by execut-
ing (D1) (when bID? = 1) and obtaining R̄ due to Eq.(1). From (D2), we thus
obtain the same K as above. The condition in (D4) is true by the definition of
R̄. Thus the oracle will return M , a contradiction. This completes the proof of
the claim.

Game G6: In this game, we modify the challenge rule, by simplifying its DEM
component to:

I Rule Chal–DEM–Key(6)

Randomly choose K† ∈R K, then let K‡ = K†.

The two games G5 and G6 are perfectly indistinguishable unless the query
(R?, ID?) is asked to the Ĥ-oracle, by either the adversary or the decryption
oracle. But the latter case is not possible. This is since such a decryption query
must be (ID?, u, V0, V1, α) such that R? = VbID? ⊕G(u, dID? , bID?) in order to force
the decryption oracle to ask (R?, ID?) to the Ĥ-oracle. If u = u?, then this leads
to (ID, u, V0, V1) = (ID?, u?, V ?

0 , V ?
1 ). Hence in this case the decryption query is

either the challenge ciphertext itself (so it will be rejected) or its process for
decryption falls into the first Decrypt–Exception rule (so the decryption oracle
will not ask such a Ĥ-oracle query). If u 6= u?, then such a query will be rejected
due to the second Decrypt–Exception rule (and so in particular, the decryption
oracle will not ask such a Ĥ-oracle query). Therefore, from the difference lemma,
we have

|Pr[S5]− Pr[S6]| ≤
qĤ

2k1



which is the probability that the adversary correctly guesses R∗ in one of qĤ

times. The adversary is forced to simply guess since the other information about
R∗ is perfectly hiding thanks to the independent random values G†0 and G†1.

Game G7: In this game, we further modify the challenge rule, by replacing the
challenge message by another fixed message with the same length:

I Rule Chal–DEM–Enc(7)

Let α? = EncK‡(0|M
?|).

The output of the adversary follows from a distribution that does not depend
on β. Accordingly, Pr[S7] = 1/2. We also claim that

|Pr[S6]− Pr[S7]| ≤ 2εsym.

We prove this by constructing an algorithm S which has an IND-CCA advantage
for the symmetric encryption scheme of exactly (Pr[S6] − Pr[S7])/2. Algorithm
S first asks (0|M

?|,M?) to obtain the challenge ciphertext ψ+, and will try to
guess the bit γ. Algorithm S runs the IBE adversary by providing the simulation
in exactly the same way as done by the challenger in game G6 except only
for the rules which produce or use K‡, which are (1) the Chal–DEM–Key rule
(producing K‡), (2) the Chal–DEM–Enc rule (using EncK‡(·)), and (3) the first
Decrypt–Exception rule (using DecK‡(·)). For those exceptions, S does nothing
for (1), let α? = ψ+ for (2), and queries to its decryption oracle for (3). Finally
if β′ = β, then S output 1; else 0. It is clear that Pr[γ′ = 1|γ = 1] = Pr[S6]
and Pr[γ′ = 1|γ = 0] = Pr[S7]. Hence Pr[γ′ = γ]− 1/2 = (Pr[S6]− Pr[S7])/2 as
claimed.

From all the results above, we now can conclude that εibe ≤ 2εlbdh + 2εsym +
qĤ

2k1
, which completes the proof. The running time can be easily verified. ut
We next state somewhat straightforward reductions from the `–LDBH prob-

lem to the DBDH, GBDH, and CBDH problems. The first two are tight, while
in the last one the security is degraded by factor `.

Lemma 1. Suppose that there exists an (εlbdh, tlbdh)-`-LBDH algorithm L. Then
there exists an (εdbdh, tdbdh)-DBDH algorithm D, (εgbdh, tgbdh)-GBDH algorithm
G, and (εcbdh, tcbdh)-CBDH algorithm C such that

εdbdh ≥ εlbdh − `/|G2|, tdbdh ≤ tlbdh + `τ1,
εgbdh ≥ εlbdh, tgbdh ≤ tlbdh + `τ2,
εcbdh ≥ εlbdh/`, tcbdh ≤ tlbdh + τ3,

where τ1 is the time required to check an equality of two elements in G2, τ2 is
the time required to access the DBDH oracle (as provide for G), and τ3 is the
time required to randomly choose one element from a list of size `.

Proof. The description of the algorithms D,G, C are as follows. Given these de-
scriptions, the above relations can be easily verified.



- The algorithmD, upon input (g, g1, g2, g3, T ), runs L on the input (g, g1, g2, g3)
and, in response, obtains a list, which contains e(g1, g2)logg g3 with probabil-
ity εlbdh. Then D outputs 1 if the list contains T , and 0 otherwise.

- The algorithm G forwards its input to L and get a list. Then it tests all the
elements in the list by calling the DBDH oracle O. If the oracle returns 1
for some query, then G outputs that query.

- The algorithm C forwards its input to L and get a list. Then it randomly
chooses one element in the list and outputs it. ut

From this lemma and Theorem 1, the following main result is immediate.

Theorem 2. Given the same supposition as in Theorem 1, we have that there
exists an (εdbdh, tdbdh)-DBDH algorithm D, an (εgbdh, tgbdh)-GBDH algorithm G,
and an (εcbdh, tcbdh)-CBDH algorithm C such that

εdbdh ≥ 1
2
εibe − εsym − qĤ

2k1+1
− qG + qD

|G2| ,

tdbdh ≤ tibe + (3qH + qG + 3qE + 10qD)τ + qĤτ ′ + qDtsym + (qG + qD)τ1,

εgbdh ≥ 1
2
εibe − εsym − qĤ

2k1+1
,

tgbdh ≤ tibe + (3qH + qG + 3qE + 10qD)τ + qĤτ ′ + qDtsym + (qG + qD)τ2,

εcbdh ≥ 1
qG + qD

(
1
2
εibe − εsym − qĤ

2k1+1
),

tcbdh ≤ tibe + (3qH + qG + 3qE + 10qD)τ + qĤτ ′ + qDtsym + τ3,

where τ, τ ′ are defined as in Theorem 1 and τ1, τ2, τ3 are defined as in Lemma 1.

5 (Weakly) Tight Reduction to CBDH

In this section, we prove that security of our proposed scheme can be also tightly
reduced to the CBDH problem in the sense of weak tightness (See Section 2.5).
Our reduction technique is due to [15] which is based on random self reducibility
of the given problem.

Lemma 2. If there exists an (εlbdh, tlbdh)-`-LBDH algorithm, then there exists
an (εcbdh, tcbdh)-CBDH algorithm A such that

εcbdh ≥
{

1
4 (1− `2

ε2lbdh(q−1)
) if εlbdh ≤ 1/2

1
4 (1− 4`2

q−1 ) if εlbdh > 1/2
, tcbdh ≤

{
tlbdh

εlbdh
if εlbdh ≤ 1/2

2tlbdh if εlbdh > 1/2
.

Proof. A runs the (εlbdh, tlbdh)-`-LBDH algorithm for N times where N will
be determined later. In the i-th time run, A chooses xi, yi ∈ {1, ..., q − 1} at
random and inputs ((ga)xigyi , gb, gc) to the LBDH algorithm, obtaining a list
Li = 〈hi,1, . . . , hi,`〉 of elements in the group G2. For each list Li we construct
another list L′i = 〈ti,1, . . . , ti,`〉 where we let

ti,j = (hi,j · e(gb, gc)−yi)(x
−1
i mod q). (2)



Next, A tests if there exist 1 ≤ r < s ≤ N such that there exists a unique pair
(u, v) where 1 ≤ u ≤ ` and 1 ≤ v ≤ ` such that tr,u = ts,v (where uniqueness is
in the sense that for all 1 ≤ u′ ≤ ` and 1 ≤ v′ ≤ ` such that u′ 6= u, v′ 6= v we
have that tr,u′ 6= ts,v′). If this is satisfied, we output tr,u; otherwise, A reports
failure.

We now analyze the correctness. Let h = e(g, g) (a generator inG2). Precisely,
we want a lower bound the probability of the following event:

∃(r, s, u, v)[tr,u = ts,v = habc]∧ 6 ∃(r′, s′, u′, v′)[tr′,u′ = ts′,v′ 6= habc] (3)

We first claim that the event ∃(r, u) tr,u = habc is exactly the event that the
LBDH algorithm succeeds at least once (namely, the r-th run). This is since,
due to Eq.(2), tr,u = habc if and only if hr,u = h(axr+yr)bc and we have that
((ga)xrgyr , gb, gc, h(axr+yr)bc) is a BDH tuple. From the claim we thus have that
the event ∃(r, u, s, v) tr,u = ts,v = habc is exactly the event the LBDH algorithm
succeeds at least twice (namely, the r-th and s-th runs). This happens with
probability at least 1− (1− ε)N −Nε(1− ε)N−1.

Next we will bound the conditional probability of the event 6 ∃(r′, s′, u′, v′)
[tr′,u′ = ts′,v′ 6= habc]. Denote the event in the given part as A. Let zi = axi +yi,
α = logh hr′,u′ and β = logh hs′,v′ . For any r′, s′, u′, v′, we have

Pr[tr′,u′ = ts′,v′ 6= habc] = Pr
x

r′ ,yr′ ,
xs′ ,ys′

[(α− bcyr′)(x−1
r′ mod q) = (β − bcys′)(x−1

s′ mod q)

| axr′ + yr′ = zr′ ∧ axs′ + ys′ = zs′ ]
= Pr

xr′ ,xs′
[xs′(α− bczr′) = xr′(β − bczs′)]

= Pr
x

[(α− bczr′)x− (β − bczs′) = 0] ≤ 1
q − 1

.

Therefore Pr[A] ≥ 1−N2(`2/(q − 1)). Combining these, we have

Pr[(3)] ≥ (1− (1− εlbdh)N −Nεlbdh(1− εlbdh)N−1)(1−N2 · `2/(q − 1)).

We choose N as the function of εlbdh as follows: let N(εlbdh) := d1/εlbdhe if
εlbdh ≤ 1/N?; and N(εlbdh) := N? otherwise, where N? ≥ 2 is a fixed value from
Z. We define

f(ε) := 1− (1− ε)1/ε − (1− ε)1/ε−1;
g(ε) := 1− (1− ε)N? −N?ε(1− ε)N?−1;
h(ε) := 1− (1− ε)N(ε) −N(ε)ε(1− ε)N(ε)−1.

Observe that f is a monotone decreasing function while g is a monotone in-
creasing function in the interval [0, 1]. Hence we have that h(ε) is minimum
when ε = 1/N?. Observe that N(1/N?) = N?, we thus have h(ε) ≥ 1 − (1 −
1/N?)N? − (1 − 1/N?)N?−1. To maximize this lower bound, we will choose N?

as large as possible since it tends to its maximum, 1− 2e−1 (where e is the base
of natural logarithm), as N? →∞. However, for simplicity, choosing N? = 2 is
sufficient for our purpose. Therefore h(ε) ≥ 1/4 and the the probability bound
in the lemma statement holds. ut



Theorem 3. Given the same supposition as in Theorem 1, we have that there
exists an (εcbdh,tcbdh)-CBDH algorithm such that

tcbdh

εcbdh
≤ 4(1− `2

ε′2lbdh(q − 1)
)−1 t′lbdh

ε′lbdh

,

where ε′lbdh := 1
2εibe − εsym − qĤ

2k1+1 , t′lbdh := tibe + (3qH + qG + 3qE + 10qD)τ+
+qĤτ ′ + qDtsym (which are the parameters from Theorem 1), and τ, τ ′ are as
defined in Theorem 1.

Proof. It follows from Theorem 1, Lemma 2, and the fact that ε′lbdh ≤ 1/2. ut
Since `2/(ε′2lbdh(q − 1)) is negligible (since ε′lbdh is non-negligible by the supposi-
tion), we have that tcbdh/εcbdh ' 8tibe/εibe.

6 Performance

The following table compares the performance of our scheme with other IBE
schemes which their security proofs are done in the random oracle model.

Scheme
Security as IND-ID-X |Ciphertext|

Assumption X Reduction Cost (bits)

BF01(FullIdent) [3]
CBDH CCA O(1/q2

h) ¶ |M |+ 250
GBDH CCA O(1/qh)

G05(NewFull-Ident) [7] CBDH CCA O(1/q2
h) |M |+ 250

LQ05 [11] GBDH CCA O(1/qe) |M |+ 170

BF01(BasicIdent) [3]
GBDH CPA O(1) 2|M |+ 340

+KW03 [10]

BF01(FullIdent) [3]
GBDH CPA O(1) 2|M |+ 500

+KW03 [10]

TightIBE

DBDH CCA O(1)

|M |+ 330
GBDH CCA O(1)
CBDH CCA O(1/qh)
CBDH CCA O(1) (weak)

qe,qh : the number of queries to the Extraction oracle and the random oracle respectively.

Table 4. Comparison among IBE schemes in the random oracle model.

The Boneh-Franklin IBE scheme was proven secure by assuming the CBDH
problem is hard, while one can make a stronger (e.g. GBDH) assumption and
have a tighter reduction. A flawed step in the proof of the Boneh-Franklin scheme
was pointed by [7], and a modified proof was proposed. We present these reduc-
tion results in the table.

Applying the Katz-Wang technique to the IND-ID-CCA version of the Boneh-
Franklin IBE scheme does not result in an IND-ID-CCA secure, but an IND-ID-
CPA secure IBE scheme.



Here parameters are chosen as: |G1| = 170 bits, |R| = 80 bits. We note that
the security parameter |R| = 80 is enough to achieves security comparable to that
of |G1| = 170 bits. Moreover, for those schemes without tight security reductions,
the security parameters have to be chosen larger in order to compensate such a
security loss. Taking account of all these factors, we conclude that our scheme
is the most efficient among these schemes.

7 Conclusion

In Crypto’01, Boneh and Franklin introduced the first ID-based encryption
scheme. Their scheme security (more precisely, the notion of resistance against
an IND-ID-CCA attacker) relies in the random oracle model, but the reduction is
far from being tight, and notably depends on the number of extractions queries.

In this paper, we have presented an efficient modification to the Boneh-
Franklin scheme that provides a tight reduction. Our scheme is basically an
IBE under two keys, one of which is (randomly) detained by the recipient. Our
scheme is a continuation of an idea introduced by Katz and Wang. However, we
have shown how to deal with the problem of IND-ID-CCA security, while it was
quite unclear with the original description of Katz and Wang.

Our scheme features a tight reduction to the LBDH problem, which can be
itself reduced tightly either to the GBDH or the DBDH problems. Furthermore,
for a relaxed definition of tightness (called weak-tightness) that we have intro-
duced and discussed, we have shown that there is a weakly-tight reduction from
our scheme to the CBDH problem.

Our scheme is very efficient, as one can precompute most of the quantities
involved in the encryption process. Furthermore, contrarily to the Katz-Wang
IBE, in our scheme, the ciphertext size and the encryption timing are roughly
equivalent to the Boneh-Franklin one’s. Unfortunately, our decryption process
is twice as much as that of the Boneh-Franklin IBE or that of the Katz-Wang
IBE.

It is still an open problem to build chosen ciphertext secure IBE that obtain
tight security reductions under reasonable assumptions in the standard model.
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