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Abstract. Non-Adjacent Form (NAF) is a canonical form of signed bi-
nary representation of integers. We present some explicit formulae of
NAF and its left-to-right analogue (FAN) for randomly chosen n-bit in-
tegers. Interestingly, we prove that the zero-run length appeared in FAN
is asymptotically 16/7, which is longer than that of the standard NAF.
We also apply the proposed formulae to the speed estimation of elliptic
curve cryptosystems.
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1 Introduction

In some exponentiation-based public-key cryptosystems including RSA and El-
liptic Curve Cryptosystems (ECC), a binary representation of a given integer
(which may be a secret in most cases) is commonly used as a standard tech-
nique. While a non-signed representation of an integer is unique, we have some
ways for representing the integer in signed form. For example, an integer 13 can
be represented in signed form such as 101̄01, 1001̄1̄, or 101̄11̄, where 1̄ denotes
−1. Such signed binary representations are especially useful in ECC, since inver-
sions of arbitrary points can be obtained with almost free operations over elliptic
curves. Some properties of such signed binary representations are related to the
cost of an exponentiation. Especially, the number of nonzero bits (the Hamming
weight) is important since this value rules the number of multiplications in the
exponentiation. Thus analyzing signed representations implies a cost evaluate of
exponentiations.

The non-adjacent form (NAF) is a well-known signed binary representation

[Rei60]. A NAF of a positive integer a is an expression a =
∑n−1

i=0 νi2
i where νi ∈

{−1, 0, 1}, νn−1 6= 0 and no two successive digits are nonzero, namely νi·νi+1 = 0
for i = 0, 1, ..., n − 2 [Rei60]. Each integer a has a unique NAF representation
denoted by Naf(a). Moreover, Naf(a) can be efficiently computed by right-to-
left operations ([IEEE], for example). In [JY00], Joye-Yen proposed a left-to-



right analogue “FAN” 1. It is known that NAF and FAN can be generated by
applying a sliding window method with width-2 to the Booth encoding [Boo51]
in right-to-left and left-to-right, respectively [HKP+04,OSS+04]. Note that the
Booth encoding was also introduced as the reversed binary representation by
Knuth [Knu81, Exercise 4.1-27]. In this paper, the Booth encoding and FAN of
an integer a are denoted by Booth(a) and Fan(a), respectively.

Right-to-Left
 Left-to-Right


Booth Encoding
 FAN
NAF


Fig. 1. A relation of the Booth encoding, NAF, and FAN.

NAF and FAN share some properties. Actually, they are generated by the
similar manner as above, and the Hamming weights of NAF and FAN for the
same integer are exactly same (Fact 1). In this paper, we prove an explicit
formula derived from the Booth encoding (Theorem 1), which evaluates the
average number of the Hamming weight of NAF and FAN representations as a
first contribution. On the other hand, NAF and FAN have different properties.
A fundamental observations is, while NAF does not have successive nonzero
bits in the representation, FAN can have. Because of this difference, they have
different significant length on average. We establish formulae for this value in
Theorem 2. Moreover, we show the averaged length of zero runs in NAF and
FAN in Theorem 3. In some implementations of ECC exponentiations, iterated
elliptic curve doubling (wECDBL) is used for efficiency. With our analysis, a
stricter evaluation of the averaged cost of exponentiations are possible. In fact,
in ECC with 160-bit keys, FAN is about 15.97 multiplications (in a definition
field) faster than NAF. Combined with a technique used in [SS01], FAN is about
317.47 multiplications faster than NAF.

An organization of this paper is as follows: section 2 defines some notations
and the Booth encoding, NAF and FAN. In section 3, we prove some lemmas
required for our theorems. Then, we establish an explicit evaluation formula for
the Hamming weight in section 4. We also show evaluation formulae for the
averaged significant length and the averaged zero runs (in NAF and FAN) in
section 5, 6, respectively. Finally, in section 7, we apply our formulae to the cost
evaluation of ECC exponentiations.

2 Preliminaries

2.1 Notations

For a given n-bit integer a =
∑n−1

i=0 ai2
i with ai ∈ {0, 1}, an−1 = 1, we use the

following notations:
1 FAN comes from the reversed order of NAF.
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– Booth(a), Naf(a), and Fan(a) denote the Booth encoding, NAF, and FAN
representation of the integer a respectively.
• Booth(a) :=

∑n
i=0 βi2

i with βi ∈ {−1, 0, 1},
• Naf(a) :=

∑n
i=0 νi2

i with νi ∈ {−1, 0, 1},
• Fan(a) =

∑n
i=0 φi2

i with φi ∈ {−1, 0, 1}.
– B(n) := {Booth(a) | 0 ≤ a ≤ 2n − 1}.

• Case I B(n) := {Booth(a) with βn = 0 | 0 ≤ a ≤ 2n − 1}.
• Case II B(n) := {Booth(a) with (βn, βn−1) = (1, 1̄) | 0 ≤ a ≤ 2n − 1}.
• Case III B(n) := {Booth(a) with (βn, βn−1) = (1, 0) | 0 ≤ a ≤ 2n−1}.

– N (n) := {Naf(a) | 0 ≤ a ≤ 2n − 1}.
– F(n) := {Fan(a) | 0 ≤ a ≤ 2n − 1}.
– κn = 2 if n is odd and κn = 1 if n is even.
– εn is the negligible function in n, namely for every constant c ≥ 0 there

exists an integer nc such that |εn| ≤ 1/nc for all n ≥ nc.

2.2 Booth Encoding, NAF and FAN

The Booth encoding [Boo51] of an integer is defined as follows:

Definition 1 (Booth Encoding [OSS+04]). The n-bit Booth encoding is an
n-bit signed binary representation that satisfies the following two conditions:

1. Signs of adjacent nonzero bits (without considering zero bits) are opposite.
2. The most nonzero bit and the least nonzero bit are 1 and 1̄, respectively,

unless all bits are zero.

In [OSS+04], they showed a simple conversion method from an n-bit binary
string to (n + 1)-bit Booth encoding. Given an integer a, the Booth encoding of
a is obtained by

Booth(a) = 2a 	 a,

where 	 stands for a bitwise subtraction.
The non-adjacent form (NAF) also represents an integer in signed form. Since

there is no successive nonzero bits in the representation, NAF is a standard tech-
nique for computing exponentiations [IEEE]. According to [HKP+04,OSS+04],
NAF can be interpreted as a combination of the Booth encoding and a right-
to-left sliding window method with width-2. For example, for an integer 13, we
have Booth(13) = 101̄11̄. Then we divide Booth(13) (as a string) into width-2
windows from right to left: 01, 01̄, 11̄ (the leftmost 0 was padded), and convert
11̄ to 01 and 1̄1 to 01̄, if exist. Thus we have Naf(13) = 101̄01.

FAN was introduced as a left-to-right analogue of NAF [JY00]. In fact, FAN
can be also interpreted as a combination of the Booth encoding and a left-to-
right sliding window method with width-2. For example, again, we divide the
Booth encoding Booth(13) = 101̄11̄ into width-2 windows from left to right:
10, 1̄1, 1̄0 (the rightmost 0 was padded). Then, similarly to NAF, convert 11̄ to
01 and 1̄1 to 01̄, if exist. Thus we have Fan(13) = 1001̄1̄. Note that FAN can
have successive nonzero bits unlike NAF.

Table 1 shows NAF, FAN, Booth, and non-signed binary representations of
some positive integers.
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Integer Signed Binary Non-signed
a Naf(a) Fan(a) Booth(a) Binary

0 00000 00000 00000 0000
1 00001 00001 00011̄ 0001
2 00010 00010 0011̄0 0010
3 00101̄ 00101̄ 00101̄ 0011
4 00100 00100 011̄00 0100
5 00101 00101 011̄11̄ 0101
6 0101̄0 0101̄0 0101̄0 0110
7 01001̄ 01001̄ 01001̄ 0111
8 01000 01000 11̄000 1000
9 01001 01001 11̄011̄ 1001
10 01010 01010 11̄11̄0 1010
11 101̄01̄ 01101̄ 11̄101̄ 1011
12 101̄00 101̄00 101̄00 1100
13 101̄01 1001̄1̄ 101̄11̄ 1101
14 1001̄0 1001̄0 1001̄0 1110
15 10001̄ 10001̄ 10001̄ 1111

Table 1. NAF, FAN, Booth encoding representations of some integers

3 Lemmas

In this section, we prepare some lemmas required to prove our theorems.

3.1 Some Properties of Booth Encoding

Property 1. Due to the definition of Booth encoding, the number of Hamming
weight of Booth(a) is always even, if the original integer a is positive.

Let 〈11̄〉k be a pattern of nonzero bits in Booth encoding such that
k
︷︸︸︷

1, 1̄ , . . . ,

2
︷︸︸︷

1, 1̄ ,

1
︷︸︸︷

1, 1̄ (k-times) without considering zero bits between 1 and 1̄.
Let #[〈11̄〉k] be the total number of strings with 〈11̄〉k pattern. For exam-
ple, in B(3) \ {0}, all elements except 11̄11̄ have the same pattern 〈11̄〉2. Thus
#[〈11̄〉2] = 6 and #[〈11̄〉4] = 1.

Lemma 1 (Pattern Lemma). B(n) contains all possible representations with
〈11̄〉k pattern for 0 ≤ k ≤ dn/2e.

Proof. For 1 ≤ k ≤ dn/2e,

#[〈11̄〉0] =

(

n + 1

0

)

, #[〈11̄〉1] =

(

n + 1

2

)

, . . .

#[〈11̄〉k] =

(

n + 1

2k

)

, . . . #[〈11̄〉dn/2e] =

(

n + 1

2dn/2e

)

.
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Thus
∑dn/2e

k=0 #[〈11̄〉k] =
∑dn/2e

k=0

(
n+1
2k

)
= 2n. This implies that there are 2n

different representations with 〈11̄〉k pattern. As the total number of integers with
n-bit is 2n and Property 1, the assertion is proved. ut

Lemma 2 (Classification Lemma). B(n) can be divided into the following
three cases;

– Case I B(n) with #[Case I B(n)]=2n−1,
– Case II B(n) with #[Case II B(n)] = 2n−2,
– Case III B(n) with #[Case III B(n)] = 2n−2.

Proof. From Property 1 and Lemma 1,

#[Case I B(n)] =

b n

2
c

∑

k=0

(

n

2k

)

= 2n−1,

#[Case II B(n)] =

b n−1

2
c

∑

k=0

(

n − 1

2k

)

= 2n−2,

#[Case III B(n)] =







∑b n−1

2
c

k=0

(
n−1

2k+1

)
, (if n is even)

∑b n−1

2
c−1

k=0

(
n−1

2k+1

)
, (otherwise)

= 2n−2.

ut

Lemma 3 (Extension Lemma). B(n) can be constructed from B(n − 1) ac-
cording to the following rules;

– Case I B(n) = {(βn = 0)‖(βn−1, . . . , β0) | (βn−1, . . . , β0) ∈ B(n − 1)},

– Case II B(n)=
{
(βn, βn−1)=(1, 1̄)‖(βn−2, . . . , β0) | (βn−2, . . . , β0) ∈ B(n − 2)

}
,

– Case III B(n)=
{
(βn, βn−1)=(1, 0)‖(βn−2,. . . ,β0) | (1, βn−2,. . . ,β0)∈{Case II B(n−1)

∪ Case III B(n−1)}
}
.

Here, x
∥
∥y denotes concatenation between two bit strings x and y.

Proof. From Property 1 and Lemma 1, 2, we can see that the assertion is true.

In the third case, in order to construct Case III B(n) the most bit 1 of
the strings sampled from {Case II B(n−1) ∪ Case III B(n−1)} is changed to
βn−1 = 0 and βn = 1 is concatenated. Refer to Fig. 2.

Lemma 4 (Case II-Classification Lemma).

#
[
Case II B(n) with #(the most consecutive nonzero bits) = even

]
= 2n−1+κn

3 ,

#
[
Case II B(n) with #(the most consecutive nonzero bits) = odd

]
= 2n−2−κn

3 ,
where κn = 2 if n is odd and κn = 1 if n is even. Especially,
#
[
Case II B(n) with #(the most consecutive nonzero bits) = 2

]
= 2n−3.

Proof. Straightforward because of Property 1 and Lemma 1.
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Fig. 2. Construct B(n) from B(n − 1)

3.2 Relations among Booth, NAF, and FAN

Lemma 5 (Adjacent Lemma). The string with odd (> 1) number of consec-
utive nonzero bits in Booth representations is converted into a sting with 11 or
1̄1̄ in FAN representation.

Booth
︷ ︸︸ ︷

. . . 0 11̄11̄ · · · 11̄1
︸ ︷︷ ︸

#odd

0 . . . ⇒

FAN
︷ ︸︸ ︷

. . . 0 0101 · · · 011
︸ ︷︷ ︸

0 . . .,

Booth
︷ ︸︸ ︷

. . . 0 1̄11̄1 · · · 1̄11̄
︸ ︷︷ ︸

#odd

0 . . . ⇒

FAN
︷ ︸︸ ︷

. . . 0 01̄01̄ · · · 01̄1̄
︸ ︷︷ ︸

0 . . .

However, the even number of consecutive nonzero bits in Booth representations
is not converted into 11 or 1̄1̄.

Lemma 6 (Length Lemma). For a given n-bit integer a, i.e. an−1 = 1,

L[Booth(a) with (bn, bn−1) = (1, 0)]

= L[Naf(a)] = L[Fan(a)],

L[Booth(a) with #(the most consecutive nonzero bits) = even]

= L[Naf(a)] + 1 = L[Fan(a)] + 1,

L[Booth(a) with #(the most consecutive nonzero bits) = odd (> 1)]

= L[Naf(a)] = L[Fan(a)] + 1.

Here, L[a] denotes the bit length of an integer a, for example, if a = (10110)2
then L[a] = 5.
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From the results of Lemma 6, we prove the following NAF Carry Formula of
NAF.

Lemma 7 (NAF Carry Formula). Assume that NAF is converted from in-
tegers of n bits. The carry at (n + 1)-th bit of NAF occurs with probability

Cn =
1

3
−

κn

3

(
1

2

)n

, (1)

where κn = 2 for odd n and κn = 1 for even n.

Proof. Consider B(n). From Lemma 6, the elements of Case III B(n) and
Case II B(n) with #(the most consecutive nonzero bits)= odd (> 1) are con-
verted into NAF with a carry at (n + 1)-bit. From Lemma 2 and 4, the total
number of integers with a carry at (n + 1)-bit is equal to

2n−2 +
2n−2 − κn

3
=

2n − κn

3
,

where κn = 2 for odd n and κn = 1 for even n. Thus the carry probability Cn is
1
3 − κn

3

(
1
2

)n
.

4 Hamming Weight of NAF and FAN

This section shows an explicit evaluation formula for the Hamming weight of
NAF and FAN. The following fact is fundamental for our discussion.

Fact 1 (Theorem 12. [JY00,HKP+04]) The Hamming weight of NAF is
exactly equal to that of FAN for each integer.

Let H(a) be the Hamming weight of Naf(a). Let H(n) be the average Ham-
ming of NAF for n-bit integers, which is defined by

H(n) =

∑2n−1
k=0 H(k)

2n
. (2)

For example, H(2) = 1,H(3) = 11
8 ,H(4) = 7

4 ,H(5) = 67
32 . Then, we have the

following theorem.

Theorem 1. Let n be any integer larger than 1. The average Hamming weight
of the NAF and FAN of n-bit integers is

H(n) =
1

3
n +

4

9
−

κn + 3

9

(
1

2

)n

, (3)

where κn = 2 for odd n and κn = 1 for even n.

Proof. Due to Fact 1, we will only consider the average Hamming weight of
NAF. Recall that NAF is generated by the right-to-left width-2 sliding window
method to Booth. The plan of this proof is as follows;
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1. First find the average Hamming weight of B(n). (Refer to Lemma 8)
2. Next find the average number of two consecutive nonzero bits appeared in

B(n). (Refer to Lemma 9)
3. The wanted average Hamming weight of NAF is

[Result of Step 1] − [Result of Step 2].

ut

Lemma 8. The average Hamming weight of Booth representations in B(n) is

HBooth(n) =
1

2
n +

1

2
. (4)

Proof. From Lemma 1, the total number of Hamming weight of Booth is

2 ·

(

n + 1

2

)

+ 4 ·

(

n + 1

4

)

+ . . . + 2k ·

(

n + 1

2k

)

+ . . . + 2dn/2e ·

(

n + 1

dn/2e

)

= (n + 1)2n−1.

Therefore HBooth(n) = (n+1)2n−1

2n = n
2 + 1

2 . ut

We investigate the average number of two consecutive nonzero bits appeared
in the representation of Booth B(n). Indeed we prove the following theorem.

Lemma 9. Assume that Booth is converted from integers of n bits. The average
number of two consecutive nonzero bits appeared in the representation of Booth
is

An =
1

6
n +

1

18
+

κn + 3

18

(
1

2

)n−1

, (5)

where κn = 2 for odd n and κn = 1 for even n.

Proof. Let Bn be the total number of two consecutive nonzero bits appeared in
B(n). For example, we know B2 = 2, B3 = 5, B4 = 12, and B5 = 29.

Now we prove that the following relationship holds.

Bn = 2Bn−1 +
2n−1 − κn

3
, (6)

where κn = 2 if odd n and κn = 1 if even n. From Lemma 2, there are three
cases: (1) the most bit is 0, (2) the most two bits are 11̄, and (3) the most two
bits are 10.

– In the case of (1), the number of two consecutive nonzero bits is Bn−1.
– In the case of (2), the lower bits are exactly equal to B(n− 2), and the most

two bits are always two consecutive nonzero bits. Therefore, the number two
consecutive nonzero bits is Bn−2 + 2n−2. (Refer to Lemma 2 and 3.)
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– In the case of (3), we know that it is related with the Case II and III of
B(n − 1). The number of two consecutive nonzero in B(n) derived from
Case III B(n− 1) is exactly equal to that of Case III B(n− 1). However,
there are some changes if the target part of B(n) which is derived from
Case II B(n − 1). That is if the number of the most consecutive nonzero
bits is even in the Case II B(n − 1) then the number of two consecutive
nonzero bits is decreased by one in B(n). (Refer to Lemma 2 and 3.)
From Lemma 4, #[Case II B(n − 1) with #(the most consecutive nonzero

bits) = even] = 2n−2+κn

3 , where κn = 2 if odd n and κn = 1 if even n.

Therefore it is equal to Bn−1 − Bn−2 −
(

2n−2+κn

3

)
.

Summing up those three values we obtain equation (6). From An = Bn/2n

and equation (6), we obtain

An = An−1 +
1

3

(1

2
− κn

(1

2

)n
)

. (7)

Then we know

An = A2 +
1

3

n∑

i=3

(1

2
− κn

(1

2

)i
)

=
1

6
n +

1

18
+

κn + 3

18

(
1

2

)n−1

,

where κn = 2 for odd n and κn = 1 for even n. ut

5 Bit Length of NAF and FAN

This section shows an evaluation formulae for the averaged siginificant length of
NAF and FAN, which are summarizes in the following theorem.

Theorem 2. Let n be any integer larger than 1. The average significant length
of NAF and FAN is

LN (n) = n −
1

3
+

(

−
1

2
n +

1

3κn

)(
1

2

)n

, (8)

LF(n) = n −
1

2
, (9)

where κn = 2 for odd n and κn = 1 for even n.

Proof. First we estimate the average significant length of F(n) denoted as
LN (n). From Lemma 2 and 6, #[F(n) with φn = 1] = 2n−2. Similarly, #[F(n)
with the most significant bit φi−1 = 1] = 2i−2 + 2i−3 for i = 3, 4, ..., n. Fi-
nally, there is only 1 whose length is 1 or 2. Therefore we have the following
relationship.

9



2nLF(n) = (n + 1)2n−2 +
n−2∑

i=1

(i + 2)(2i + 2i−1) + 2 · 1 + 1 · 1

= n2n − 2n−1,

LF(n) = n −
1

2
.

Next we estimate the average significant length of NAF denoted as LN (n).
From Lemma 6, the following equation holds.

2nLN (n) = 2nLF(n)

+
n∑

i=4

#[Case II B(i) with #(the most consecutive nonzero bits) = odd].

From Lemma 4,

n∑

i=4

#[Case II B(i) with #(the most consecutive nonzero bits) = odd]

=

{∑n−3

2

i=1
22i−1

3 +
∑n−3

2

i=1
22i+1−2

3 = 2n−1

3 − n
2 + 1

6 (if n is odd)
∑n−2

2

i=1
22i−1

3 +
∑n−4

2

i=1
22i+1−2

3 = 2n−1

3 − n
2 + 1

3 (if n is even)

=
2n−1

3
−

n

2
+

1

3κn
,

where κn = 2 if n is odd and κn = 1 if n is even. Thus

2nLN (n) = 2n

(

n −
1

2

)

+
2n−1

3
−

n

2
+

1

3κn
,

LN (n) = n −
1

3
+

(

−
1

2
n +

1

3κn

)(
1

2

)n

.

6 Zero Run Length of NAF and FAN

In this section, we investigate the averaged length of zero run regarding to NAF
and FAN. For example, the average length of zero run for 101̄01̄01 is 1. The
corresponding FAN is 11001̄1̄ and its average length of zero run is 2. In general
FAN has a longer zero run on average. Indeed we prove the following theorem.

Theorem 3. The average zero run of NAF and FAN converted from n bits
integers is equal to

LN (n) −H(n)

H(n) − 1
2

=
2
3n − 7

9 + εn

1
3n − 1

18 + εn

= 2 + O(n−1),

LF(n) −H(n)

H(n) − 1
2 − En

2n

=
2
3n − 17

18 + εn

7
24n − 5

72 + εn

=
16

7
+ O(n−1),
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respectively. Here we define

En =
1

24
n2n −

6 + 2κn

9
+ (

1

72
) · 2n,

where κn = 2 if n is odd and κn = 1 if n is even, and εn is the negligible function
in n.

Proof. At first we estimate the average zero run of NAF. The total number of
zero appeared in NAF converted from n bits integers is LN (n)2n − H(n)2n.
Because there is no consecutive nonzero bits, the number of zero runs can be
estimated by Hamming weight, namely there are H(n)2n − 2n−1 different zero
runs, where 2n−1 is the number of NAF whose least bit is nonzero. Therefore,
the average length of zero run for NAF is evaluated as follows:

LN (n)2n −H(n)2n

H(n)2n − 2n−1
=

LN (n) −H(n)

H(n) − 1
2

=
2
3n − 7

9 + εn

1
3n − 1

18 + εn

= 2 + O(n−1),

where εn is the negligible function in n. Next we estimate the average number of
zero run for FAN. The number of two consecutive nonzero bits 11 and 1̄1 should
be excluded from the number of different consecutive zeroes appeared in the
denominator above. In the following we estimate the number these exceptional
consecutive bits. Let En be the number of 11 and 1̄1 appeared in FAN converted
from n bits integers. We know E4 = 2, E5 = 6, and E6 = 16.

We use the three cases appeared in Lemma 2: (1) the most bit is 0, (2) the
most two bits are 11̄, and (3) the most two bits are 10. The estimation is similar
to Lemma 9.

– In the case of (1), the number is En−1.

– In the case of (2), from Lemma 3 the target part of B(n) is (11̄)
∥
∥B(n − 2).

From Lemma 5 we can see that only the strings such that (βn−2, βn−3) =
(1, 0) in B(n−2) generate new 11 in B(n). Thus the number is En−2 +2n−4.

– In the case of (3), the number of two consecutive nonzero bits in B(n) de-
rived from Case III B(n−1) is exactly equal to that of Case III B(n−1).
However, there are some changes if the target part of B(n) which is derived
from Case II B(n − 1) because #(the most consecutive nonzero bits) ≥ 2.
We consider Case II B(n− 1). From Lemma 5, we can derive the following
results;

• If #(the most consecutive nonzero bits) = 2 then there is no change of
the number of two consecutive nonzero bits.

• If #(the most consecutive nonzero bits) = even(> 2) then new 11 is
generated after conversion to FAN.

• If #(the most consecutive nonzero bits) = odd then 11 which was existed
is disappeared after conversion to FAN.
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Thus the number is

En−1 − En−2

+ #
[
Case II B(n − 1) with #(the most consecutive nonzero bits) = even (> 2)

]

− #
[
Case II B(n − 1) with #(the most consecutive nonzero bits) = odd

]

= En−1 − En−2 +
4 − κn2n−4

3κn
,

where κn = 2 if n is odd and κn = 1 if n is even. (Refer to Lemma 4.)

Therefore we have the following relationship:

En = 2En−1 +
κn2n−3 + 4

3κn
,

where κn = 2 if n is odd and κn = 1 if n is even.
Thus we obtain

En =
1

24
n2n −

6 + 2κn

9
+ (

1

72
) · 2n,

where κn = 2 if n is odd and κn = 1 if n is even.
Therefore, the average length of zero run for FAN is evaluated as follows:

LF(n)2n −H(n)2n

H(n)2n − 2n−1 − En
=

2
3n − 17

18 + εn

7
24n − 5

72 + εn

=
16

7
+ O(n−1).

7 Application to ECC

In this section we estimate the efficiency of scalar multiplication used for ECC
with NAF or FAN. We assume that the scalar is a randomly chosen n-bit integer.

Let ECDBL and ECADD be the efficiency of computing elliptic doubling and
addition, respectively. The average number of multiplication for computing scalar
multiplications using NAF or FAN is estimated by

(LN (n) − 1)ECDBL + (H(n) − 1)ECADD (10)

(LF(n) − 1)ECDBL + (H(n) − 1)ECADD. (11)

From Theorem 2, the difference of average efficiency is equal to

(
1

6
+

(

−
1

2
n +

1

3κn

)(
1

2

)n)

ECDBL, (12)

where κn = 2 for odd n and κn = 1 for even n.
Let M,S, I denote the computation time of a multiplication, a squaring, and

an inverse. We assume that 1S = 0.8M and 1I = 30M . When we use a Jacobian
coordinate for standard curves over prime field, ECDBL and ECADD require 8.8
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multiplications (4M+6S) [CMO98]. For example, ECC with 160 bits (n = 160)
using FAN is about 1.47 multiplications faster on average than that using NAF.

If ECDBL is repeatedly computed w times, we have an efficient variation,
called wECDBL that can be computed with 4wM + (4w + 2)S [ITT+99].

The difference of average efficiency from Theorem 3 is equal to

n

w1
∗ (7.2 ∗ w1 + 1.6) −

n

w2
∗ (7.2 ∗ w2 + 1.6), (13)

where w1 and w2 denote the expected number of w for NAF and FAN respec-
tively, and actually w1 = 1.987 and w2 = 2.269 for n = 160. Therefore the result
equation (14) is 15.97. This implies that FAN is about 15.97 multiplications
faster than NAF.

If we consider Sakai-Sakurai method [SS01] of multidoubling for Weierstrass
elliptic curves in terms of affine coordinates that can be computed with (4w +
1)M + (4w + 1)S + I. When n = 160 the difference of average efficiency is

n

w1
∗ (7.2 ∗ w1 + 31.8) −

n

w2
∗ (7.2 ∗ w2 + 31.8) = 317.47,

i.e. FAN is about 317.47 multiplications faster. Here, w1 = 1.987 and w2 = 2.269
for n = 160.
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