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Abstract. A secure group signature is required to be anonymous, that
is, given two group signatures generated by two different members on the
same message or two group signatures generated by the same member on
two different messages, they are indistinguishable except for the group
manager. In this paper we prove the equivalence of a group signature’s
anonymity and its indistinguishability against chosen ciphertext attacks
if we view a group signature as an encryption of member identity. Partic-
ularly, we prove ACJT’s group signature is IND-CCA2 secure, so ACJT’s
scheme is anonymous in the strong sense. The result is an answer to an
open question in literature.

1 Introduction

Group Signatures. A group signature, which includes at least algorithms of
Setup, Join, Sign, Verify, Open and Judge (defined in Section 2), is motivated by
enabling members of a group to sign on behalf of the group without leaking their
own identities; but the signer’s identity could be opened by the group manager,
i.e., GM, on disputes.

Models of Group Signatures. In formally, a secure group signature scheme
satisfies traceability, unforgeabilty, coalition resistance, exculpability, anonymity
and unlinkability [1]. Formal models [2–5] of secure group signatures compressed
the above requirements into redefined anonymity, traceability, non-frameability.

Anonymity. In [1], anonymity means similarly to IND-CPA (indistinguish-
able against chosen plaintext attacks, [6]), but in [2–5], it means similar to IND-
CCA2 (indistinguishable against chosen ciphertext attacks, Section 2). We mean
anonymity in the later strong sense hereafter.

An anonymous generic group signature is constructed based on any IND-
CCA2 public encryption scheme [3]. The question is whether an IND-CCA2
public encryption is the minimum requirement to construct an anonymous group
signature.

Some group signatures adopting ElGamal encryption are considered not
anonymous and it is pointed out that after replacing the ElGamal encryption
with a double ElGamal encryption scheme, an IND-CCA2 public encryption
scheme, the group signatures will become anonymous (e.g. [4, 7]). In [8], it is fur-
ther presented as an open question that whether ACJT’s scheme [1] utilizing a
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single ElGamal encryption scheme provides anonymity. We explore this problem
in this paper and answer the open question positively.

We point out that the problem lies in the behavior,specifically Open, of GM
or OA (decryption oracle in the case of public encryption scheme).

Take an ordinary ElGamal encryption [9] as an example, let (T1 = miy
r, T2 =

gr) be a challenge, an adversary can easily change it into a new ciphertext
(mysT1, g

sT2) and feed it to the decryption oracle, who definitely would reply
with mysmi since the query is valid and different from challenge, then the ad-
versary can resolve the challenge problem. In other word, ElGamal encryption
is IND-CPA[6].

It is well known that an IND-CCA2 encryption scheme is available by double
encrypting the same message under an IND-CPA encryption scheme [10]. The
resulting IND-CCA2 ElGamal ciphertext consists of two independent ElGamal
encryptions and a proof that the same plaintext is encrypted. The strong security
of double-encryption transformed IND-CCA2 schemes comes from the difficulty
of composing a valid ciphertext relating to the challenge by an computation
bounded adversary, while a uncorrupted decryption oracle only decrypts queried
valid ciphertexts.

Nevertheless a half corrupted decryption oracle might just ignore the inva-
lidity of a ciphertext, decrypt any one of the two ciphertext pieces and reply
to adversaries. It is possible in reality, for instance, a not well designed decryp-
tion software might misuse its decryption key by decrypting whatever it has got
before checking the validity of the ciphertext, throw away decryption outputs
inadvertently when they are found meaningless.

When ElGamal encryption is embedded in a group signature, e.g., ACJT
scheme [1], the intuition is that it is difficult for an adversary to forge a new
valid group signature from a challenge group signature, and the open oracle
would firstly check the validity of a query before replying with the decrypted
content.

In anonymous group signature schemes adopting double ElGamal encryption
[4, 7, 8], if GM(OA) is half corrupted, i.e., it would directly open any queried
group signature no matter whether the proof included in the ciphertext is correct
or not, or the whole group signature is valid or not, anonymity of the group
signature scheme is hard to guarantee.

So in case of half corrupted GM(OA), not all IND-CCA2 encryption will
ensure anonymity of the group signatures; but for uncorrupted GM(OA) an
IND-CPA secure encryption might be enough to ensure anonymity. The point is
that GM(OA), i.e., the open oracle should check the validity before applying its
private key instead of misusing it.

Our Contribution: We prove the equivalence between anonymity of a group
signatures and IND-CCA2 of it, if we view the group signature as a public key
encryption of group member identities. Particularly, we prove the ACJT’s group
signature is IND-CCA2 secure under the DDH assumption, so ACJT’s scheme is
anonymous in the strong sense of [3]. The result is an answer to an open question
proposed in [8].
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2 Formal Definitions

Group Signature [3]. Group manager GM is separated into issuer authority
IA and opener authority OA. A group signature GS is composed of the following
algorithms:

Setup. It includes a group key generation algorithm Gkg, and a user key gen-
eration algorithm Ukg.
– Gkg: a probabilistic polynomial-time algorithm for generating the group

public key gpk and IA’s secret key ik, as well as OA’s secret key ok,
given security parameter 1kg ;

– Ukg: a probabilistic polynomial-time run by a group member candidate
to obtain a personal public and private key pair (upki, uski), given se-
curity parameter 1k.

Join. A probabilistic polynomial-time interactive protocol between IA and a
member candidate with user public key upki that results in the user be-
coming a new group member in possession of secret signing key gski, i.e.,
a certificate signed by group issuer. They follow a specified relation R:
R(IDi,upki,uski,gski) = 1. Set Grp = Grp ∪ {IDi}, where Grp denotes
the set of valid group members, with initial value NULL.

Sign. A probabilistic polynomial-time algorithm which, on input a message M ,
gski,upki,uski,IDi ∈ Grp, and gpk, returns a group signature σ on M . (m,σ)
can also be written as (m, ρ, π), where ρ is a blinding of member identity, π
is a proof of correctness of ρ.

Verify. A deterministic polynomial-time algorithm which, on input a message-
signature pair (M, σ), and gpk, returns 1 (accept) or 0 (reject); a group
signature (M, σ) is valid if and only if Verify(M, σ) = 1.

Open. A deterministic polynomial-time algorithm that on input a message-
signature pair (M, σ), OA’s secret key ok, returns an ID, and a proof π
showing its correctness in decryption.

Judge. A deterministic polynomial-time algorithm that takes (M, σ, ID, π) as
input, returns 1 (accept) or 0 (reject) indicating a judgement on output from
Open.

Anonymity [3]. A group signature scheme is anonymous if for any polynomial-
time adversary A, large enough security parameter k, Advanon

A is negligible:
Advanon

A = P [Expanon−1
A (k) = 1] − P [Expanon−0

A (k) = 1], where experiments
Expanon−b, b = {0, 1} are defined as in Table 1. Oracles Ch, Open, SndToU ,
WReg, USK, CrptU are defined as:

Ch: It randomly chooses b ∈ {0, 1} and generates a valid group signature σ
on a given m under keys (IDu, upkb, uskb, gskb), where b ∈R {0, 1} .

Open: If input (σ,m) is not valid, it returns reject; else it open σ, outputs
(ID, π). We emphasize that Open oracle is fully reliable, i.e, decrypts a group
signature if and only if it is valid, in analyzing anonymity through this paper.

SndToU plays as IA in Join, i.e., generating valid certificates (secret signing
keys) gsku on queries. WReg resets any entry in registration table (storing Join
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transcripts) to specified value. USK returns uski, gski of specified member i.
CrptU sets a corrupted member’s upki to specified value.

Public Key Encryption [6]. Specify key space K, message space M and
ciphertext space C, a public key encryption scheme based on them consists of
the following algorithms:

–Gen: a probabilistic polynomial-time algorithm that on input 1k outputs a
public/secret key pair (pk, sk) ∈ K;

–Enc: a probabilistic polynomial-time algorithm that on input 1k, a message
m ∈M, pk, returns a ciphertext c ∈ C;

–Dec: a deterministic polynomial-time algorithm that on input 1k, a cipher-
text c ∈ C, sk, returns a message m′ ∈M or a special symbol reject.

IND-CCA2 [6]. A public key encryption is indistinguishable against chosen
ciphertext attacks if for any polynomial time adversary A, large enough security
parameter k, AdvIND−CCA2

A is negligible: AdvIND−CCA2
A = P [ExpIND−CCA2−1

A
(k) = 1] − P [ExpIND−CCA2−0

A (k) = 1], where experiments ExpIND−CCA2−b
A ,

b = {0, 1} are defined as in Table 1. Oracles Ch, Open,Enc are defined as:
Ch: It randomly chooses b ∈ {0, 1} and generates a valid encryption c of mb

on input (m0,m1).
Dec: On a query ciphertext c, it firstly checks its validity and returns de-

crypted plaintext if valid, else returns reject.
Enc: It generates a ciphertext c of queried m.

Expanon−b
A (k):

(gpk, ik, ok) ← GKg(1k),
d ← A(gpk,ik,Ch,Open,SndToU ,
WReg, USK, CrptU),
return d.

ExpIND−CCA2−b
A (k):

(pk, sk) ← Gk(1k),
d ← A(pk, Ch, Dec,Enc),
return d.

Table 1. Definitions of Experiments.

3 Equivalence of Anonymity and IND-CCA2

Abdalla et al. constructed a public key encryption scheme from any group sig-
nature [11], and proved that if the adopted group signature is secure, i.e., fully
anonymous (same as anonymous in [3]) and fully traceable [2] , their construc-
tion is an IND-CPA secure public key encryption, furthermore it is IND-CCA2 if
the message space is restricted to {0, 1}, but they did not investigate the inverse
direction.

It is evident that an IND-CCA2 secure public key encryption alone is im-
possible to produce a secure group signature because of lack of non-traceability
and non-frameability. Nevertheless we show the existence of an equivalence be-
tween anonymity of group signatures and IND-CCA2 of corresponding public
key encryptions.

An Encryption Scheme of Member Identity. Suppose there exists a
group signature GS as defined in Section 2, let K = {gpk, ik, ok : (gpk, ik, ok) ←
Gpk(1kg)}, M = {ID : R(ID, upku, usku, gsku) = 1 : ∃upku ← Ukg(1k),
gsku ← Join (upku , ik, gpk)} and C, the following algorithms compose a public
key encryption scheme EI:
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–Gen: i.e., Gkg, outputs pk = (gpk, ik), sk = ok;
–Enc: to encrypt an ID, firstly generate upku, usku, gsku such that R(ID,

upku, usku, gsku) = 1, select a random r ∈R {0, 1}∗, then run Sign on r, return
(σ, r);

–Dec: given a ciphertext (σ, r), run Open, and return an ID and a proof π.

Theorem 1. If GS is anonymous, then EI is IND-CCA2 secure.

Proof. Suppose A is an IND-CCA2 adversary of EI, we construct B to break
anonymity of GS.

B has inputs gpk, ik and accesses of oracles Ch, Open, SndToU , WReg,
USK, CrptU . It publishes M and corresponding (upku, usku, gsku), for IDu ∈
M. It simulates oracles of EI as follows:

Decryption Oracle EI.Dec: after getting query ciphertext (m, ρ, π), transfers
to Open oracle. If it is valid, Open would return corresponding plaintext, i.e.,
member’s identity ID. B transfers the reply to A.

Challenge Oracle EI.Ch: after getting query ID0, ID1 ∈ M, selects m ∈R

{0, 1}∗ and sends (ID0, ID1,m) to its oracle Ch. Ch would choose b ∈R {0, 1}
and generate a group signature of m by (upkb, uskb, gskb): (m, ρb, πb).

B may continue to answer queries to EI.Open except (m, ρb, πb).
B transfers (m, ρb, πb) to A who is able to figure out b with probability more

than 1/2. B outputs whatever A outputs. ut

Theorem 2. If EI is IND-CCA2 secure, then the underlying GS is anonymous.

Proof. Suppose A is a adversary against anonymity of GS, we construct B to
break IND-CCA2 security of EI.

B has access to oracles Ch, Dec. It simulates GS’s oracles GS.Ch, GS.Open,
GS.{SndToU,WReg, USK, CrptU} as follows:

Open Oracle GS.Open: after getting query (m, ρ, π), transfers to its decryp-
tion oracle Dec. If it is a valid ciphertext, Dec would return the corresponding
plaintext, i.e., member’s identity ID and π. B transfers the reply to A.

Oracles of GS.{SndToU,WReg, USK, CrptU}: since B has the private keys
of issue authority, it can simulate these oracles easily.

Challenge Oracle GS.Ch: after getting challenge query (ID0, upk0, usk0, gsk0),
(ID1, upk1, usk1, gsk1) and m, B transfers them to its challenge oracle Ch, who
chooses b ∈R {0, 1} and generates a valid encryption of IDb using random m:
(m, ρb, πb), i.e., a valid signature of m under (IDb, upkb, uskb, gskb). Subsequent
proof is the same as in Theorem 1. ut

4 Anonymity of ACJT’s Group Signature

ACJT’s scheme [1] dose not conform to the model of [3] (Section 2) completely,
but such aspects are beyond our consideration of anonymity here. The following
is a rough description of ACJT’s scheme:
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–Setup. IA randomly chooses a safe RSA modulus n and a, a0, g, h, specifies
two integer intervals ∆,Γ . OA chooses x, sets y = gx. gpk = {n, a, a0, y, g, h},
ik is factors of n, ok = x.

–Join. User selects uski = xi,upki = axi , where xi ∈R ∆, gets gski =
(Ai, ei), ei ∈R Γ from IA. A relation is defined R : Ai = (axia0)1/ei mod n.

–Sign. A group signature (T1, T2, T3, s1, s2, s3, s4, c) is a zero-knowledge proof
of knowledge of Ai, xi, ei, and T1, T2 is a correct encryption of Ai.

–Open. OA decrypts A := T1/T x
2 , and a proof of knowledge of decryption

key x.
–Verify&JUDGE. Verification of corresponding zero-knowledge proof.

Theorem 3. ACJT’s scheme is IND-CCA2 secure encryption of M = {A ∈
QRn|∃e ∈ Γ, x ∈ ∆,Ae = axa0}, under DDH assumption in random oracle
model.

The proof is standard as in [6], and provided in Appendix. It follows that:

Theorem 4. ACJT’s group signature is anonymous under DDH assumption in
random oracle model.
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A Proof of Anonymity

Theorem 5. If we view ACJT’s group signature [1] as an encryption scheme
of message space M = {A ∈ QRn|∃e ∈ Γ, x ∈ ∆,Ae = axa0 mod n}, then it is
IND-CCA2 secure under the assumption that DDH is hard when factorization
of n is known (in random oracle model).

Proof. Choose y = gx mod n, x ∈R [1, (p− 1)(q − 1)/4].

Game G0:

(A0, x0, e0, A1, x1, e1) ← AEnc,Dec,Random(p, q, n, y, g),

(m, ρb, πb) ← Ch(A0, x0, e0, A1, x1, e1),

b∗ ← AEnc,Dec,Random(m, ρb, πb),

If b∗ = b return 1, else return 0.

Sub-protocol Ch(A0, x0, e0, A1, x1, e1):
b ∈R {0, 1},
return Enc(Ab, xb, eb).

Sub-protocol Enc(A, x, e):
r ∈R [1, (p− 1)(q − 1)/4], m ∈R {0, 1}∗,
ρ =def (T1, T2, T3) = (Ayr, gr, gehr),
π = PK{(α, β, γ, δ) : a0 = Tα

1 /aβyγ ,T2 = gδ, 1 = Tα
2 /gγ , T3 = gαhδ, α ∈ Γ, β ∈ ∆}{m}

=(c, s1, s2, s3, s4),
c ← H(g, h, y, a0, a, T1, T2, T3,ac

0T
s1−c2γ1

1 /(as2−c2λ1
ys3),

T s1−c2γ1

2 /gs3 , T c
2 gs4 ,T c

3 gs1−c2γ1
hs4 ,m).

return (m, ρ, π).

Sub-protocol Dec(m, ρ, π):
Check validity of π by executing V (m, ρ, π).
If V (m, ρ, π) = 1, parse ρ into (T1, T2, T3),
return A = T1/T x

2 and a proof πd = PK{x : T1/A = T x
2 , y = gx},

else return reject.

Random Oracle H(r):
If r exists in table H, return corresponding h;
Else select h ∈R {0, 1}k, store (r, h) in H and return h.
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Sub-protocol V(m, ρ, π)
Parse ρ into T1, T2, T3 and π into c, s1, s2, s3, s4,
Let d′1 := ac

0T
s1−c2γ1

1 /(as2−c2λ1
ys3) mod n,

d′2 := T s1−c2γ1

2 /gs3 mod n,
d′3 := T c

2 gs4 mod n,
d′4 := T c

3 gs1−c2γ1
hs4 mod n,

Check table H for r = (g, h, y, a0, a, T1, T2, T3, d
′
1, d

′
2, d

′
3, d

′
4,m) and c.

If (r, c) does not exist in table H, return 0;
else if s1 ∈ ±{0, 1}ε(γ2+k)+1,s2 ∈ ±{0, 1}ε(λ2+k)+1,
s3 ∈ ±{0, 1}ε(γ1+2lp+k+1)+1,
s4 ∈ ±{0, 1}ε(2lp+k)+1, return 1.

Game G1:
Same as Game G0 except sub-protocol Ch.

Sub-protocol Ch(A0, x0, e0, A1, x1, e1):
b ∈R {0, 1}, m ∈R {0, 1}∗,
r, r′ ∈R [1, (p− 1)(q − 1)/4],
ρb =def (T1, T2, T3) = (Aby

r, gr′ , gebhr),
Simulate a proof
πb = PK{(α, β, γ, δ) : a0 = Tα

1 /aβyγ , T2 = gδ, 1 = Tα
2 /gγ , T3 = gαhδ, α ∈ Γ, β ∈ ∆}{m}

= (c, s1, s2, s3, s4),
c ← H(g, h, y, a0, a, T1, T2, T3,
ac
0T

s1−c2γ1

1 /(as2−c2λ1
ys3), T s1−c2γ1

2 /gs3 , T c
2 gs4 , T c

3 gs1−c2γ1
hs4 ,m).

return (m, ρb, πb).
The difference between G0 and G1 is that in G0 (g, y, T2, T1/Ab) is a DDH

sample, while a random sample in G1.

Game G2:
Same as Game G1 except sub-protocol Ch.

Sub-protocol Ch(A0, x0, e0, A1, x1, e1):
b ∈R {0, 1}, m ∈R {0, 1}∗,
r, r′, r′′ ∈R [1, (p− 1)(q − 1)/4],
ρb =def (T1, T2, T3) = (Aby

r, gr′ , gebhr′′),
Simulate a proof
πb = PK{(α, β, γ, δ) : a0 = Tα

1 /aβyγ , T2 = gδ, 1 = Tα
2 /gγ , T3 = gαhδ, α ∈ Γ, β ∈ ∆}{m}

= (c, s1, s2, s3, s4),
c ← H(g, h, y, a0, a, T1, T2, T3,
ac
0T

s1−c2γ1

1 /(as2−c2λ1
ys3), T s1−c2γ1

2 /gs3 , T c
2 gs4 , T c

3 gs1−c2γ1
hs4 ,m).

return (m, ρb, πb).
The difference between G1 and G2 is that in G1 (y, h, T1/Ab, T3/geb) is a

DDH sample, while a random sample in G2.
Denote A’s output in Game Gi as AGi , then suppose A is a successful ad-

versary against IND-CCA2 attacks, that is ∃ε > 0 which is non-negligible, so
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that
P [AG0 = 1|b = 1]− P [AG0 = 1|b = 0] ≥ ε.

Because

|P [AG0 = 1|b]− P [AG1 = 1|b]| ≤ AdvDDH
A , for b = 0 and 1.

|P [AG1 = 1|b]− P [AG2 = 1|b]| ≤ AdvDDH
A , for b = 0 and 1.

In Game G2, every component of challenge is randomized independently, so there
exists a negligible ε1

P [AG2 = 1|b = 1]− P [AG2 = 1|b = 0] < ε1,

But

ε ≤ P [AG0 = 1|b = 1]− P [AG0 = 1|b = 0]
= P [AG0 = 1|b = 1]− P [AG1 = 1|b = 1]

+P [AG1 = 1|b = 1]− P [AG0 = 1|b = 0]
+P [AG1 = 1|b = 0]− P [AG1 = 1|b = 0]

≤ 2AdvDDH
A + P [AG1 = 1|b = 1]− P [AG2 = 1|b = 1]

+P [AG2 = 1|b = 1]− P [AG2 = 1|b = 0]
+P [AG2 = 1|b = 0]− P [AG1 = 1|b = 0]

≤ 4AdvDDH
A + P [AG2 = 1|b = 1]− P [AG2 = 1|b = 0]

< 4AdvDDH
A + ε1

Thus AdvDDH
A is non-negligible. ut


