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Abstract. We construct a reasonably efficient threshold and proactive
pseudo-random permutation (PRP). Our protocol needs only O(1) com-
munication rounds. It tolerates up to (n − 1)/2 of n dishonest servers
in the semi-honest environment. Many protocols that use PRPs (e.g., a
CBC block cipher mode) can now be translated into the distributed set-
ting. Our main technique for constructing invertible threshold PRPs is
a distributed Luby-Rackoff construction where both the secret keys and
the input are shared among the servers. We also present protocols for
obliviously computing pseudo-random functions by Naor-Reingold [37]
and Dodis-Yampolskiy [24] with shared input and keys.
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1 Introduction

Block ciphers are familiar cryptographic tools, which transform blocks of plain-
text into blocks of ciphertext of the same length. The DES (U.S. Data En-
cryption Standard) is a well-known example of a block cipher, which was, until
recently, used by many financial firms to protect online transactions. Tradition-
ally, pseudo-random permutations (PRPs) have been used to model secure
block ciphers [33]. They map l-bit inputs into unique l-bit outputs that appear
random to parties who lack the secret key. A close relative of the PRP is a
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pseudo-random function (PRF), which needs not be invertible, but whose
outputs also look like random bit-strings without the secret key [27].

Motivation. The security of these functions relies on the owner of the secret
key, who has a primary responsibility of keeping the key safe. Alas, it is not
always realistic to put all trust into a single party. The area of threshold cryp-
tography deals exclusively with sharing the ability to perform cryptographic
operations between a set of n servers [20]. A long line of research produced many
distributed protocols that are more efficient than generic multi-party solutions
when used for public key encryption [17,40,41], digital signatures [19,21,22,26],
key generation [1,8,25], pseudo-random functions [10,36,38], and other applica-
tions. The extra security and increased availability of constructions justify the
added complexity. The pseudo-random permutation is the only primitive that is
still missing from this long list.

Several initial attempts [9,34] gave a very basic sharing structure with many
limitations and drawbacks.4 The question of constructing a threshold PRP was
yet left open. In this paper, we resolve this problem. Many protocols are de-
fined for PRPs (block ciphers) and, when needed, can now be readily translated
into the distributed setting. This makes sense for sensitive operations like key-
encrypting-key in the Key Distribution Center [36]. Applications such as dis-
tributed remotely keyed authenticated encryption and CBC encryption mode
become possible, since they require a PRP as a building block (regular PRFs do
not suffice).

We focus on implementing the Luby-Rackoff construction [33] as a method
for building PRPs. It uses the Feistel permutation for function F (denoted F̄ ),
which sends a 2l-bit string (xL, xR) to a 2l-bit string (xR, xL ⊕ F (xR)). Luby
and Rackoff showed that a composition of four Feistel permutations (denoted
Ψ(F1, F2, F3, F4) = F̄1 ◦ · · · ◦ F̄4) is a secure 2l-bit PRP when Fi are independent
l-bit PRFs. While a sequential composition of PRFs to build a sequential PRP
is generic, there is a major technical difficulty in the distributed Luby-Rackoff
construction. Particularly, the difficult part is that if one uses a PRF as an
intermediate round function, then not just the secret key, but also the output
needs to be kept distributed to assure the security of the entire Luby-Rackoff
construction. At the same time, the computation needs to continue and compute
on these shares, which means that we need to compute on shared inputs as well.

Our Results. This paper describes an O(1) round distributed protocol for eval-
uating Ψ(F1, F2, F3, F4), which results in a threshold pseudo-random per-
mutation. Our protocol invokes the multiplication protocol for the underlying
secret sharing scheme O(mn + m log m) times, where n is the number of servers
and m is the maximum input length. It tolerates up to τ = b(n− 1)/2c dishonest

4 They showed how to build rather inefficient cascade ciphers Ek(x) =
gkm(. . . gk2(gk1(x))), where g(·) is itself a secure cipher, by sharing a sequence of
keys in a special way. For τ -out-of-n sharing, the number of keys and composition
layers is on the order of

`
n
τ

´
, which is exponential for most τ = ω(1).



servers in the semi-honest model, which is consistent with some prior work on
distributed PRFs [36] and multiparty tools [1, 12, 15] used in our constructions.
It can be made robust using standard techniques [42] and, as we show, can be
amended to ensure proactive security [31].

As we have explained, intermediate Feistel values arising after each round
of the Luby-Rackoff construction must be kept secret, yet we must evaluate the
PRFs Fi on them. Unfortunately, prior distributed PRF constructions [10,36,38]
are inapplicable to our problem, because they require the PRF input to be
publicly known. We give two protocols for distributed computation of PRFs by
Naor-Reingold [37] and Dodis-Yampolskiy [24] when both the secret keys and
the input are shared among the servers. Effectively, we implement oblivious
distributed PRFs, where servers do not learn what the input is, yet blindly
compute the PRF value.

We note that, theoretically, we can always use general multi-party tech-
niques [5] to distribute the computation of a PRP. Until recently, this was not
a viable option. These techniques either (i) required a linear number of com-
munication rounds (in the circuit depth) [5, 44] or (ii) ran in O(1) rounds but
used expensive zero-knowledge proofs for each gate of the circuit [4]. A recent
improvement by Damg̊ard et al. [16] allows to securely evaluate any circuit C in
O(1) rounds using O(|C|n) cryptographic operations (|C| is the circuit size). If
we distribute the DES circuit (which is believed to be a PRP) using Damg̊ard et
al.’s techniques, we obtain comparable efficiency to our threshold PRP.5 Our
protocol is thus fairly practical. In addition, it has theoretical value in and of
itself and could be of independent interest in other fields.

Overview of Our Construction. In our protocol, servers hold Shamir
shares [43] of secret keys SKi to PRFs Fi used in the Luby-Rackoff (LR) con-
struction of a PRP Ψ(F1, F2, F3, F4). The untrusted user who wants to compute
the PRP’s value broadcasts his input x to the servers. Servers somehow ver-
ify that the user is entitled to evaluate the PRP and engage in an interactive
protocol, which terminates with shares of the PRP’s value.

Our round functions Fi are based on a PRF by Dodis-Yampolskiy [24].
We chose this PRF because it possesses useful algebraic properties and can
be computed in O(1) rounds. Given an l-bit input x = x1x2 . . . xl (which can
be viewed as an element of ZQ) and a secret key SK ∈ ZQ, the PRF value is
FSK(x) = g1/(x+SK). Here, g is the generator of a group in which the decisional
Diffie-Hellman inversion (y-DDHI) problem is hard. The y-DDHI problem
asks: “given (g, gx, . . . , g(xy), R) as input, to decide whether R = g1/x or not.”
It appears hard in a quadratic residues subgroup GQ of Z∗P (P = 2Q + 1) for
sufficiently large primes P,Q.
5 In fact, for realistic settings, our algorithm performs better. The full DES circuit

contains about |C| ≈ 16000 Boolean gates [6]. Let the group size be a m = 1024
bit prime and the number of servers be n = 100. Our protocol performs roughly
(mn + m log m) · (m2n + mn2 log n) ≈ 1.95× 1013 bit operations, while Damg̊ard et
al.’s protocol [16] performs (|C|n) · (mn2 log n) ≈ 10.9× 1013 operations to compute
the DES circuit.



Dodis and Yampolskiy showed that FSK(·) is secure only for inputs of small
length l = ω(log k), which makes it unsuitable for the LR construction, whose
round functions must accept longer l = Θ(k) bit inputs (k is the security param-
eter). In this paper, we assume subexponential hardness of the y-DDHI problem.
This immediately allows us to support inputs of size a = Θ(kδ) for some small
δ ≈ 1/3. We can shrink the input to the LR construction from l = Θ(k) bits down
to a = Θ(kδ) bits using an ε-universal hash function hi(x) = (ix mod Q) mod 2a.
We thus get a new PRF F ′

i,SK(x) = FSK(hi(x)), which can be used in the (cen-
tralized) LR construction.

We distribute the LR construction using well-known multiparty tools of ad-
dition, multiplication, inversion, etc. [1, 3, 5]. We rely heavily on an O(1) round
protocol by Damg̊ard et al. [15], which computes shares of bits of x ∈ ZP from
shares of x. This protocol allows us to efficiently perform modular reduction,
exponentiation, and truncation of shared values.

We can compute the PRF F ′
i,SK(x) with shared input x and keys (i, SK) as

follows. Computing the ε-universal hash hi(x) = (ix mod Q) mod 2a amounts
to a single multiparty multiplication, followed by a call to Damg̊ard et al.’s
protocol to extract the trailing a bits. We can also distribute the computation
of FSK(x) = g1/(x+SK) because it is well-known how to do multiparty addition,
inversion, and exponentiation. As a result, we obtain a sharing of F ′

i,SK(x),
a random group element in GQ, whereas we need a sharing of a random l-bit
string. We can use a deterministic extractor E(x) = (x(P+1)/4 mod P ) mod 2l to
convert this group element into a random l-bit string. Computing this extractor
distributively entails a single distributed exponentiation followed by a call to
Damgard et al.’s protocol to extract l bits.

Armed with a protocol for computing the PRF F ′
i,SK(·), we can distribute a

single Feistel permutation, which maps (xL, xR) into (xR, xL⊕F ′
i,SK(xR)). The

only missing link is how to XOR shares of PRF’s bits with shares of input’s bits.
Given shares of bits b1, b2 ∈ {0, 1}, we can get a share of b1⊕b2 by distributively
computing (b1 + b2) · (2− (b1 + b2)). This completes our calculation. We obtain
a threshold PRP by iterating the distributed Feistel permutation four times,
cross-feeding its outputs to inputs.

Paper Organization. The remainder of the paper is organized as follows.
Section 2 reviews some preliminaries and defines our system model. In Sec-
tion 3, we give distributed protocols for evaluating pseudo-random functions by
Naor-Reingold [37] and Dodis-Yampolskiy [24] when both the keys and the in-
put are shared. Then in Section 4, we present our threshold PRP construction.
In Section 5, we describe a distributed exponentiation protocol, which is used
throughout the paper. Some practical applications of our threshold PRP appear
in Section 6. We conclude in Section 7.

2 Preliminaries

In this section, we discuss some basic definitions and assumptions.



2.1 Our Model

Let k be a security parameter. We consider n computationally bounded servers
P1, . . . , Pn, which are connected by secure and authentic channels6. Our proto-
cols are secure against a static, honest-but-curious adversary who controls up to
τ = b(n− 1)/2c servers. This threshold results from the multiplication protocol
by Ben-Or et al. [5], which is used throughout the paper. We prove security
in the framework by Canetti [11]. In the honest-but-curious setting, privacy is
preserved under non-concurrent modular composition of protocols. This compo-
sition theorem will be the main source of our privacy proofs.

2.2 Notation

The notation in this paper is adapted from [1, 15]. We define ZP as the set
{0, . . . , P − 1}. We denote additive shares over ZP of a value a ∈ ZP by
〈a〉P1 , . . . , 〈a〉Pn ∈ ZP ; i.e., a =

∑n
j=1〈a〉Pj mod P . Meanwhile, we denote Shamir

shares [43] of a ∈ ZP by [a]P1 , . . . , [a]Pn ∈ ZP ; i.e., a =
∑τ

j=1 λj [a]Pj mod P ,
where τ is the threshold and λj are the Lagrange coefficients.

We denote protocols as follows: the term [a]Pj ← PROTOCOL([b]Pj , c) means
that server Pj executes the protocol PROTOCOL with local input [b]Pj and public
input c. As a result of the protocol, it gets back local output [a]Pj . In all cases,
the local inputs and outputs will be Shamir shares over the appropriate field.

2.3 Building Blocks

We review some standard tools for multiparty computation that are used through-
out the paper. All these protocols require O(1) rounds of communication. We
measure their running time in terms of bit operations in m = dlog2 P e (the
modulus length) and n (the number of servers). Below, we use B as a shorthand
for O(nm2 + mn2 log n).

Sharing a secret. To compute a Shamir sharing of x ∈ ZP over ZP , player Pj

chooses random coefficients αk ∈ ZP for k = 1, . . . , τ . He then sends [x]Pi =
x+

∑τ
k=1 αk · ik mod P to player Pi. We denote this protocol by RANDSS(x, ZP );

it takes O(n2m log n) bit operations.

Basic operations. Addition and multiplication of a constant and a Shamir share
can be done locally. Hence, [x]Pj + c mod P is a polynomial share of x+ c mod P

and c · [x]Pj mod P is a share of xc mod P . These operations take O(m) and
O(m2) bit operations, respectively. Similarly, we can compute [x]Pj +[y]Pj mod P ,
which is a share of x + y mod P . Addition requires O(m) bit operations.

6 Such channels can be implemented using public-key encryption and digital signa-
tures.



Multiplication. We note that a product of polynomially many shared secrets
x1, . . . , xs ∈ Z∗P can be computed in constant rounds [3, 15]. We denote this
protocol by MUL([x1]Pj , . . . , [xs]Pj ); it uses O(sB) bit operations.

Conversion between bit shares. Given Shamir shares of a single bit b ∈ {0, 1}
in ZP , we may need to obtain its shares in ZQ. We can do this as follows.
First, each server Pj locally computes [b′]Pj ← −2 · [b]Pj + 1 (mod P ) to convert
the bit from a 0/1 to a 1/ − 1 encoding. Next, Pj chooses a random bj ∈
{1,−1} and shares it among servers in both ZP and ZQ. He computes [b′′]Pj ←
MUL([b′]Pj , [b1]Pj , . . . , [bn]Pj ) and reveals it for all servers to reconstruct b′′. Finally,
Pj multiplies b′′ (mod Q) by its share of MUL([b1]

Q
j , . . . , [bn]Qj ) and converts the

result to a 0/1 encoding. The protocol requires O(1) rounds and O(nB) bit
operations.

Bit representation. Let x ∈ ZP be a shared secret (written xm . . . x1 in binary).
In some situations, we will need to obtain Shamir shares of the bits of x. For
this, we will use a protocol by Damg̊ard et al. [15], denoted ([x1]Pj , . . . , [xm]Pj )←
BITS([x]Pj ), which uses O((m log m)B) bit operations.

Occasionally, we will need to compute shares of a least significant bits of
x ∈ ZP in ZQ (rather than in ZP ). We will first run the BITS([x]Pj ) protocol
and then convert each bit share from ZP to ZQ. We denote this protocol by
([x1]

Q
j , . . . , [xa]Qj ) ← BITS([x]Pj , a, ZQ). It requires O(1) rounds and O((an +

m log m)B) bit operations.
Given bit-by-bit shares of x ∈ ZP , denoted [x1]Pj , . . . , [xm]Pj , we can easily

obtain shares of x by locally computing [x]Pj ←
∑m

i=1 2i−1 · [xi]Pj mod P . This
takes O(m3) bit operations.

Inversion. Let x ∈ ZP be a shared secret. A protocol due to Bar-Ilan and
Beaver [3], denoted by INV([x]Pj ), allows us to compute the shares of x−1 mod P .
It takes an expected number of O(B) bit operations.

Generating a random number. Occasionally, servers may need to jointly generate
shares of a random number. A simple protocol, denoted JRP(ZP ), accomplishes
this in O(mn2 log n) bit operations [1]. There also exists a protocol JRPZ(ZP ) to
jointly compute a sharing of zero modulo P in O(mn2 log n) bit operations.

Exponentiation Some of our protocols require computing the shares of xy mod P
when: (i) the exponent y ∈ ZQ is shared, but the base is fixed; (ii) the base x ∈
ZP is shared and the exponent is fixed; or (iii) both the base and the exponent are
shared. We denote protocols for the above scenarios EXP1(x, [y]Qj ), EXP2([x]Pj , y),
and EXP([x]Pj , [y]Qj ). These protocols run in O(1) rounds and require, respectively,
O((mn+m log m)B), O(m3 +nB), and O(m4 +(mn+m log m)B) bit operations
per player. We describe them later in Section 5.



3 Distributed Pseudo-Random Functions

In this section, we describe two distributed PRF constructions, where both the
secret key and the input are shared. This will ensure that unscrupulous servers do
not learn the results of intermediate Luby-Rackoff computations. In Section 3.1,
we show how to do this for the PRF by Naor and Reingold [37]. Then in Sec-
tion 3.2, we describe how to do this for the recently introduced PRF by Dodis
and Yampolskiy [24].

Let the input size l : N 7→ N be a function computable in poly(k) time.
Sometimes, for simplicity, we will write l for l(k). The initial input for all servers
is a triple (P,Q, g), where P,Q are large primes such that P = 2Q + 1 and
P ≡ 3 mod 4. Here g is a generator of quadratic residues subgroup GQ of Z∗P .
The group Z∗P must be sufficiently large, i.e., P � 2k. Such a triple can be
publicly chosen without a trusted party by executing Bach’s algorithm [2].

Both centralized PRFs take as input an l-bit message x, the secret key SK
and output a random group element in GQ. In our distributed PRFs, each server
Pj receives a share of the secret key SK and l shares of bits of x.

3.1 Naor-Reingold PRF

The secret key SK = (a0, a1, . . . , al) consists of l + 1 random exponents in ZQ.
Given an l-bit input x = x1 . . . xl, the PRF FNR

SK : {0, 1}l 7→ GQ is defined as

FNR
SK (x) = (ga0)

Q
i : xi=1 ai .

This PRF was shown to be secure for polynomially sized inputs, l(k) = poly(k),
under the decisional Diffie-Hellman (DDH) assumption: “given (g, gx, gy) and
R ∈ GQ, it is hard to determine if R = gxy or not.”

We can compute the PRF value recursively. Set h0 = ga0 . Then, for all
i = 1, . . . , l,

hi =
{

hai
i−1 if xi = 1,

hi−1 otherwise. (1)

It is easily seen that the PRF value must be equal to hl. This form is convenient
for distributed computation when both the input x and the secret exponents ai

are shared. One problem here is that we need to implement an if-condition on
secret input x. We can use a simple trick and rewrite Equation (1) as

hi = hi−1(1− xi) + hai
i−1xi for xi ∈ {0, 1}. (2)

Computing the PRF value distributively amounts to several rounds of dis-
tributed multiplication and exponentiation:



Algorithm 1: A protocol PRF-NR(([a0]
Q
j , . . . , [al]

Q
j ), ([x1]Pj , . . . , [xl]Pj )) for

distributed computation of FNR
SK (x).

[0]Pj ← JRPZ(ZP ) BServers jointly generate a sharing of 0 mod P1

[h0]Pj ← [0]Pj + g mod P BAnd compute a share of generator g.2

for i← 1 to l BFor all input bits i,3

do4

[r]Pj ← MUL([hi−1]Pj , 1− [xi]Pj )5

[s]Pj ← EXP([hi−1]Pj , [ai]
Q
j )6

[t]Pj ← MUL([s]Pj , [xi]Pj ) Bwe compute shares of Equation (2)7

[hi]Pj ← [r]Pj + [t]Pj8

end9

return [hl]Pj BReturn a share of the PRF value.10

Proving security of this protocol is straightforward given the security of its
sub-protocols by the composition theorem. The size of the secret key is pro-
portional to the length of the input. What is worse, this protocol requires O(l)
rounds of communication. The running time is dominated by l calls to exponen-
tiation protocol in line 6, yielding O(m4l + (mn + m log m)Bl). bit operations
per player.

3.2 Dodis-Yampolskiy PRF

The pseudo-random function FDY
SK : {0, 1}l(k) 7→ GQ (|Q| > l) is as follows.

Given an l-bit input x (which can also be thought of as an element in ZQ) and
the secret key SK ∈ ZQ, the function value is FDY

SK (x) = g1/(x+SK) [24]. Dodis-
Yampolskiy’s proof of security relied on an unorthodox q-decisional Diffie-
Hellman inversion (q-DDHI) assumption: “given the tuple

(
g, gx, . . . , g(xq)

)
and R ∈ GQ as input, it is hard to decide whether R = g1/x or not.” Specifically,
they showed:

Theorem 1 (Dodis-Yampolskiy). Suppose an attacker who runs for s(k)
steps cannot break the 2l(k)-DDHI assumption in group GQ with advantage ε(k).
Then no algorithm running in less than s′(k) = s(k)/(2l(k) · poly(k)) steps can
distinguish FDY

SK (·) from a random function with advantage ε′(k) = ε(k) · 2l(k).

Because the security reduction is rather loose, we can construct PRFs only
with small superlogarithmic input l(k) = ω(log k). Unfortunately, “as is” this
PRF is unsuitable for use in the Feistel transformation. A Feistel transforma-
tion uses length-preserving PRFs which map l(k) = poly(k) input bits to l(k)
pseudo-random bits. In theory, small inputs are not a problem. We can either
(1) shrink the inputs using a collision-resistant hash function [14] or (2) utilize
the generic tree construction [27] to extend the input range. However, when we
need to distribute the computation of this PRF between different servers, nei-
ther of these options becomes acceptable. As of today, we do not know how to



efficiently distribute collision-resistant hash functions. And if we decide to utilize
the generic tree construction, then we might as well use the Naor-Reingold PRF
from the start.

Instead, we assume subexponential hardness of the q-DDHI assumption in
GQ; that is, we suppose that there is no way to break the q-DDHI assumption
except by computing the discrete logarithm of gx in Z∗P . The fastest algorithm
for computing discrete logarithms modulo P runs in time roughly exp((1+o(1)) ·√

log P
√

log log P ) [13]. It seems reasonable to assume that no algorithm running
in time less than s(k) = 2kε2 (for some small ε2 ≈ 1

3 ) can break the q-DDHI
assumption. Formally:

Definition 1 (strong DDHI assumption). We say that the strong DDHI
assumption holds in GQ if there exist 0 < ε1 < ε2 such that for all probabilistic
families of Turing machines {Ak}k∈N with running time O(2kε2 ) and q ≤ 2kε1 ,
we have: ∣∣∣ Pr

x

[
Ak(g, gx, . . . , g(xq), R) = 1 | R← g1/x

]
−

Pr
x

[
Ak(g, gx, . . . , g(xq), R) = 1 | R $← GQ

] ∣∣∣ ≤ poly(k)/2kε2
,

where the probability is taken over the coin tosses of Ak and the random choice
of x ∈ Z∗Q and R ∈ GQ.

By Theorem 1, the strong DDHI assumption immediately allows us to support
inputs of size kε1 for small ε1 > 0.

What we need is a shrinking hash function, which maps long l(k) = k bit
inputs to smaller a(k) = kε1 bit inputs, which can be used as an input to FDY

SK (·).
A typical tool used for this purpose is a family of δ-universal hash functions
H = {hi : {0, 1}l 7→ {0, 1}a}i∈Z∗Q .7 The simplest such construct is

hi(x) = (ix mod Q) mod 2a,

where the collision probability δ = 1/2a = 1/2kε1 is the best we can hope for.
We can thus define a new function F ′ : {0, 1}l 7→ GQ as

F ′
SK,i(x) = FDY

SK (hi(x)),

which is easily seen to be a secure PRF for polynomially sized inputs using a
standard hybrid argument.

This new PRF can be used in the Feistel transformation. We now describe
how to distribute its computation:

7 We say that a hash family is δ-universal if, for all distinct inputs x, x′ ∈ {0, 1}l, we
have Pri[hi(x) = hi(x

′)] ≤ δ.



Algorithm 2: A protocol PRF-DY([i]Qj , [SK]Qj , [x1]
Q
j , . . . , [xl]

Q
j )

[x]Qj ←
∑l−1

i=0 2i · [xi+1]
Q
j mod Q BEncode input x as an element in Z∗

Q.1

[r]Qj ← MUL([i]Qj , [x]Qj ) BThen hash it to ix mod Q.2

a←
⌊
l1/3

⌋
BShrinking factor a = l1/3.3

([r1]
Q
j , . . . , [ra]Qj )← BITS([r]Qj , a, ZQ) BChop all but a least significant bits.4

[x̃]Qj ←
∑a−1

i=0 2i · [ri+1]
Q
j mod Q5

[s]Qj ← [x̃]Qj + [SK]Qj mod Q BA share of (x̃ + SK).6

[t]Qj ← INV([s]Qj ) BInvert the share into 1/(x̃ + SK).7

[y]Pj ← EXP1(g, [t]Qj ) BExponentiate to get shares of g1/(x̃+SK).8

return [y]pj9

The security of the protocol again follows by composition theorem from secu-
rity of its subcomponents. Unlike Algorithm 1, this algorithm uses O(1) rounds
of communication. However, it relies on a rather strong complexity assumption.
Line 8 dominates the running time. It requires O((mn + m log m)B) bit oper-
ations, which is more than l times cheaper than the Naor-Reingold distributed
protocol.

4 Distributed Pseudo-Random Permutations

We now show how to construct a threshold pseudo-random permutation
by distributing the Luby-Rackoff construction. In principle, the Luby-Rackoff
construction can be used with any PRF. However, we will use it with the PRF
by Dodis-Yampolskiy [24], which allows us to evaluate the threshold PRP in
only O(1) communication rounds.

We begin by reviewing some formal definitions in Section 4.1. In Section 4.2,
we show how to distribute a single Feistel permutation. In Section 4.3, we put all
of the pieces together and explain how to distribute the entire Feistel cascade.
Finally, in Section 4.4, we analyze our protocol’s security and sketch how to
make it proactive.

4.1 Definitions

Definition 2 (Feistel transformation). Let F : {0, 1}l 7→ {0, 1}l be an l-
bit mapping. We denote by F̄ the permutation on {0, 1}2l defined as F̄ (x) =
(xR, xL ⊕ F (xR)), where x = (xL, xR). Note that F̄ is a permutation even if F
is not. Its inverse is given by F̄−1(yL, yR) = (f(yL)⊕ yR, yL).

Definition 3 (Feistel network). Let F1, . . . , Fk : {0, 1}l 7→ {0, 1}l be l-bit
mappings. Then a k-round Feistel network is a composition

Ψ(F1, . . . , Fk) = F̄1 ◦ F̄2 · · · F̄k
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Theorem 2 (Luby-Rackoff). The permutation Ψ(F1, F2, F3, F4) on {0, 1}2l

cannot be distinguished from a random permutation by a PPT adversary. Here,
Fi are independently keyed pseudo-random functions.

4.2 Distributed Feistel Transformation

In Section 3.2, we defined a PRF acting on l(k) = poly(k) bit inputs by F ′
i,SK(x) =

FDY
SK (hi(x)). We also gave an O(1) round protocol PRF-DY that computes shares

of a PRF value g1/(hi(x)+SK) from shares of input’s bits and secret key. We now
show how to distribute the Feistel transformation F ′

i,SK , which maps (xL, xR)
to (xR, xL⊕F ′

i,SK(xR)). The inverse Feistel transformation can be computed in
a similar manner.

Our PRF protocol outputs shares of a random group element in GQ. Mean-
while, we need a sharing of a random l-bit string to use in the Feistel transforma-
tion. We use a deterministic extractor, which does not lose any entropy, to extract
l bits of randomness. In the centralized setting, given PRF output ỹ ∈ GQ, we
can simply compute its square root by letting y = (ỹ(P+1)/4 mod P ) mod 2l (see
also Figure 1). To distribute the extractor, we use a distributed exponentiation
protocol followed by a conversion into bit shares. Notice that if we have shares of
bits xi, yi ∈ {0, 1}, denoted by [xi]

Q
j and [yi]

Q
j , we can compute a share of their

exclusive-OR as [zi]
Q
j ← [xi]

Q
j + [yi]

Q
j and [zi]

Q
j ← MUL([zi]

Q
j , 2− [zi]

Q
j mod Q).

Therefore, given bit shares of a 2l-bit input (xL, xR), we can readily compute
bit shares of a Feistel transformation:
Algorithm 3: One round of Feistel transformation
FEISTEL([i]Qj , [SK]Qj , [x1]

Q
j , . . . , [x2l]

Q
j ).

[ỹ]Pj ← PRF-DY([i]Qj , [SK]Qj , [xl+1]
Q
j , . . . , [x2l]

Q
j ) BPRF value at xR.1

[y]Pj ← EXP2([ỹ]Pj , (P + 1)/4) BExtract square root y(p+1)/4 mod P .2

([y1]
Q
j , . . . , [yl]

Q
j )← BITS([y]Pj , l, ZQ) BTruncate to l bits.3

for i← 1 to l (in parallel) BFor all bits i4

do5

[zi]
Q
j ← [xi]

Q
j + [yi]

Q
j mod Q6

[zi]
Q
j ← MUL([zi]

Q
j , 2− [zi]

Q
j mod Q) BWe compute a share of xi ⊕ yi.7

end8

return ([xl+1]
Q
j , . . . , [x2l]

Q
j , [z1]

Q
j , . . . , [zl]

Q
j ) BReturn shares of9

(xR, xL ⊕ F DY
SK (xR)).

Security follows from composition theorem and security of its subprotocols.
The protocol requires O(1) rounds of communication between servers, because
the for-loop is computed in parallel, and all other primitives take O(1) rounds.
The bit complexity is dominated by a call to the PRF-DY protocol in line 1 and
by l = o(m) calls to MUL in line 7, yielding O((mn + m log m)B) bit operations
per player.



4.3 Distributed Luby-Rackoff Construction

Once we have a distributed protocol for the Feistel transformation, it is easy to
distribute the Luby-Rackoff construction of PRP gs(x) = Ψ(F1, F2, F3, F4)(x).
Initially, the n servers own shares of four independently chosen secret keys for
the PRFs. These keys may either be jointly generated by servers or distributed
to servers by a trusted party. An untrusted user, who wants to evaluate the PRP
on input x = (xL, xR), broadcasts x to the servers.8 The servers convert x into
bit shares and then run the distributed Feistel transformation for four rounds.
We thus get:

Algorithm 4: LUBY-RACKOFF(([i1]
Q
j , [SK1]

Q
j ), . . . , ([i4]

Q
j , [SK4]

Q
j ), x)

[0]Qj ← JRPZ(ZQ) BShares of zero.1

for i← 1 to 2l (in parallel) BLocally compute shares of input’s bits.2

do3

[yi]
Q
j ← [0]Qj + xi mod Q4

end5

for rnd← 1 to 4 BRun the Feistel transformation for four rounds.6

do7

([y1]
Q
j , . . . , [y2l]

Q
j )← FEISTEL([irnd]

Q
j , [SKrnd]

Q
j , [y1]

Q
j , . . . , [y2l]

Q
j )8

end9

return ([y1]
Q
j , . . . , [y2l]

Q
j )10

The round complexity is O(1). Bit complexity is dominated by four calls to
the Feistel protocol, which take O((mn + m log m)B) bit operations per player.

Similarly, we can distribute the inverse permutation g−1
s (·) by replacing calls

to Feistel transforms with calls to inverse Feistel transforms. We denote the
resulting protocol by LUBY-RACKOFF−1. The round and bit complexity remain
the same.

4.4 Security

In the stand-alone case, the security of a PRP gs(·) : {0, 1}2l 7→ {0, 1}2l is
formalized via a game between an attacker and an oracle. The attacker can
query the oracle for gs(·) and g−1

s (·) on messages of his choice. Roughly, the
PRP is deemed secure if no attacker can tell apart gs(x∗) from random for any
message x∗, which was not asked as a query.

In the distributed setting, the attacker also gets transcripts of semi-honest
servers. The security property of threshold PRP states that these tran-
scripts do not help the attacker in any way. Formally, for any PPT A = (A1,A2)
that breaks the security of threshold PRP by corrupting servers Pi1 , . . . , Piτ ,
there exists a PPT B = (B1,B2) that breaks the security of the original PRP.

8 Alternatively, the user can split x into bit shares himself.



The attacker A learns key shares of corrupted servers. Then A1 runs in the
first stage where it can interact with any honest servers on inputs of his choice.
Attacker can ask servers either encryption queries where he learns shares of
gs(x) or decryption queries for g−1

s (y). At the end of the phase, A1 outputs
state information for A2 and a challenge input x∗, whose PRP value was not
asked as a query. In the second stage, a random coin b ∈ {0, 1} is tossed. A2

receives a challenge Γb, which is either Γ0 ← gs(x∗) or Γ1
$← {0, 1}2l. We let A2

interact with honest servers, but prohibit it from asking encryption queries on
x∗ or decryption queries on Γb. Finally, A2 outputs a guess b′. We say that A
breaks the scheme if Pr[b = b′] > 1/2 + negl(k).

Theorem 3. LUBY-RACKOFF protocol is an
⌊

n−1
2

⌋
-secure threshold pseudo-random

permutation in the static, honest-but-curious setting.

Proof (sketch). In the honest-but-curious setting, LUBY-RACKOFF protocol cor-
rectly computes a permutation gs(x) = Ψ(F1, F2, F3, F4)(x) for some secret key
s = ((i1, SK1), . . . , (i4, SK4)). We thus concentrate on the pseudorandomness
property.

For sake of contradiction, suppose there exists adversary A = (A1,A2) that
breaks the security of LUBY-RACKOFF. Since A is static, we assume it corrupts the
maximum allowed threshold of servers before the protocol starts9. By symmetry,
we can assume corrupt servers Pj have indices Bad = {1, . . . , τ}. Bad servers
learn their shares of secret key s. They also observe the protocol’s input x, output
y = gs(x), shares of output’s bits y1, . . . , y2l of both good and bad servers, and
all messages Ξ exchanged during the protocol. The adversarial view viewLuby,A
is thus a random variable〈

([i1]
Q
k , [SK1]

Q
k ), . . . , ([i4]

Q
k , [SK4]

Q
k ), x, y, [y1]

Q
j , . . . , [y2l]

Q
j , Ξ

〉
for j = 1, . . . , n and k ∈ Bad.

We construct a simulator B = (B1,B2) that breaks the security of a PRP
gs(·). It will run A in a virtual distributed environment and imitate A’s replies
to distinguish gs(·) from a random permutation, thereby violating Theorem 2.

Setup: Algorithm B generates random shares of keys for corrupt servers. For
j ∈ Bad, it picks
([i1]

Q
j , [SK1]

Q
j ), . . . , ([i4]

Q
j , [SK4]

Q
j ) $← Z∗Q × Z∗Q and gives them to A.

Responding to queries: When A initiates an honest server Pj (j 6∈ Bad) on
input x, B in turn asks his oracle for y = gs(x). It generates random output

shares [z1]
Q
j , . . . , [z2l]

Q
j

$← Z∗Q for j ∈ Bad. Then, B augments the set of
shares of corrupted servers into a full and random sharing of y’s bits. For
each bit yi ∈ {0, 1} (1 ≤ i ≤ 2l), B picks a random polynomial αi(x) ∈
ZQ[X] satisfying αi(j) = [zi]

Q
j and αi(0) = yi. The adversary A receives

randomized output shares (α1(j), . . . , α2l(j)) for all servers Pj (1 ≤ j ≤ n).

9 If not, we can arbitrarily fix some of the honest servers to be corrupt.



In the semi-honest setting, we can simulate the transcript of each subprotocol
used by LUBY-RACKOFF given its input and output values. We can thus use
these protocols as black-boxes and simulate messages Ξ in ViewLuby,A. These
values provide a perfect simulation of the coalition’s view. Decryption queries
are handled just like encryption queries except B queries another oracle
g−1

s (·).
Challenge: Eventually, attacker A outputs a message x∗ on which it wants to

be challenged. It claims to be able to distinguish output of LUBY-RACKOFF(x∗)
from a random 2l-bit string. B sends the same challenge x∗ to the trusted
party and gets back Γ , which is either gs(x∗) or a random string. Finally, B
gives Γ to A.

Guess: Attacker A continues to issue queries for messages other than x∗. Simu-
lator B responds to queries as before. Finally, A outputs a guess b′ ∈ {0, 1},
which B also returns as its guess.

ut

An adversary who controls less than τ = b(n− 1)/2c servers cannot break
the privacy of our protocol. The protocol can easily be amended to achieve
proactive security [31] and withstand the compromise of even all servers as
long as at most τ servers are corrupted during each time period. The basic idea is
to have servers periodically refresh their shares of the input and the secret keys.
To be exact, each server Pj will from time to time execute the JRPZ protocol to
generate a random share of zero, called [0]Qj . It will then update its input share
to [x]Qj ← [x]Qj + [0]Qj and its secret keys’ shares to [SKi]

Q
j ← [SKi]

Q
j + [0]Qj .

5 Distributed Exponentiation

We describe how to distribute the computation of xy mod P .
Earlier papers by Damg̊ard et al. [15] and Shoup et al. [1] sketched how to

implement distributed exponentiation for some of these scenarios. Unlike prior
constructions, in our schemes the modulus P is publicly known rather than
shared among the parties; this leads to simpler and more efficient protocols. We
also allow the base and the exponent to be shared over different moduli P and
Q.

5.1 Base x known, exponent y shared.

We can rewrite:

xy = x
Pl−1

i=0 2iyi =
l−1∏
i=0

(
yix

2i

+ 1− yi

)
mod P.



Algorithm 5: Protocol EXP1(x, [y]Qj ): Base x is publicly known and expo-
nent y is given as shares.

([y1]Pj , . . . , [yl]Pj )← BITS([y]Qj , ZP ). BObtain shares of exponent’s bits.1

for i← 1 to l (in parallel) do2

[zi]Pj ← [yi]Pj · x2i−1
+ (1− [yi]Pj ) mod P Bsquare-and-multiply algorithm3

used to compute x2i

end4

[z]Pj ← MUL([z1]Pj , . . . , [zl]Pj ) BCompute the product using5

return [z]Pj Bunbounded fan-in multiplication protocol.6

The cost of the protocol is dominated by the bit conversion protocol. Its bit
complexity is O((mn + m log m)B) and its round complexity is O(1).

5.2 Base x shared, exponent y publicly known.

Damg̊ard et al. [15] sketched how xy mod P can be computed in this scenario
for any x 6= 0. Below, we give a detailed protocol implementing his idea.

Algorithm 6: EXP2([x]Pj , y): Base x is given as shares, while exponent is
publicly known.

rj
$← Z∗P ; tj ← ry

j mod P BChoose a blinding factor rj and ry
j .12

RANDSS(rj) ; RANDSS(tj) BShare rj and tj between players.3

upon receiving (([r1]Pj , . . . , [rn]Pj ) ∧ ([t1]Pj , . . . , [tn]Pj )):4

[r]Pj ← MUL([r1]Pj , . . . , [rn]Pj ) BA jointly generated random r5

[t]Pj ← MUL([t1]Pj , . . . , [tn]Pj ) Band t = ry.6

[z]Pj ← MUL([x]Pj , [r]Pj ) BThis is a blinded share of xr,7

send([z]Pj ) to all players Bwhich we can reveal.8

upon receiving ([z]P1 , . . . , [z]Pn ):9

z ←
∑τ

j=1 λj [z]Pj mod P . BInterpolate shares to get z = xr.10

w ← zy mod P11

RANDSS(w) Share w = (xr)y between players.12

return MUL([w]Pj , INV([t]Pj )) BA share of z · t−1 = (xr)y · (ry)−1 = xy mod P .13

This protocol is easily seen private as long as x 6= 0. It runs in O(1) rounds.
The running time is dominated by calls to multiplication protocol in lines 5-7
and by computation of Shamir secret sharing in lines 2-3. The bit complexity is
thus O(m3 + nB).



5.3 Base x shared, exponent y shared.

Combining the above two protocols yields an exponentiation protocol where both
the base and the exponent are shared. Essentially, the protocol is the same as
EXP1 except in line 5, we replace local multiplication with a call to distributed
multiplication algorithm MUL. We also need to use EXP2 to compute the shares
of x2i

for i = 1, . . . , l. The final algorithm is as follows.

Algorithm 7: Protocol EXP([x]Pj , [y]Qj ): Both the base and the exponent
are given as shares.

([y1]Pj , . . . , [yl]Pj )← BITS([y]Qj , ZP ). BObtain shares of exponent’s l = blog Qc1

bits.

for i← 1 to l (in parallel) do2

[s]Pj ← EXP2([x]Pj , 2i−1 mod Q) Bs is a share of x2i

.3

[zi]Pj ← MUL([yi]Pj , [s]Pj ) + (1− [yi]Pj ) mod P BA share of yix
2i

+ (1− yi).4

end5

[z]Pj ← MUL([z1]Pj , . . . , [zl]Pj ) BCompute the product using6

return [z]Pj Bunbounded fan-in multiplication protocol.7

This protocol also runs in O(1) rounds. The protocol performs l invocations
of EXP2 and a single invocation of BITS and MUL; hence, it requires O(m4+(mn+
m log m)B) bit operations per player.

6 Applications of Our Construction

In this paper, we have constructed a threshold pseudorandom permutation.
Whenever a PRP is used as part of the construction, we can plug in our protocol
instead.

Let gs : {0, 1}2l 7→ {0, 1}2l be a 2l-bit pseudo-random permutation obtained
from the Luby-Rackoff construction Ψ(F1, F2, F3, F4). The PRP’s key s consists
of four secret keys SKi of pseudo-random functions Fi used in the construction.
We denote by LUBY-RACKOFF our distributed protocol, which evaluates the gs(·).

6.1 CCA-Secure Symmetric Encryption

A PRP is deterministic, so by itself it cannot be a secure encryption scheme [28].
The adversary can easily detect if the same message has been encrypted twice.
Desai [18] described how a CCA-secure symmetric encryption scheme can
be obtained from a PRP: The encryption Es(m) of a (2l − k)-bit message m is
defined as Es(m) = gs(m, r), where r is a k-bit randomly generated nonce. To de-
crypt, the user computes Ds(c) = g−1

s (c) and extracts the message. To distribute
the computation, the key s is split into shares among the n servers. Upon receiv-
ing a message m, the servers run the JRP protocol to generate shares of a secret
random number r. They can extract shares of k bits, written [r1]

Q
j , . . . , [rk]Qj ,



using the BITS protocol. Bit shares of m are easy to compute since m is public. Fi-
nally, the servers invoke LUBY-RACKOFF on ([m1]

Q
j , . . . , [m2l−k]Qj , [r1]

Q
j , . . . , [rk]Qj )

to get shares of gs(m, r).

6.2 Authenticated Encryption

If we make the nonce r public and check during decryption that it matches the
nonce in the ciphertext, then we get a distributed authenticated encryption
scheme (AE). Encryption of m is given by AEs(m) = (r, gs(m, r)). The decryp-
tion algorithmADs(r′, c) computes (r, m) = g−1

s (c) and checks that r = r′ before
returning m to the user. The message here is rather short: It is limited to (2l−k)
bits by the length of the PRP. For longer messages, we can use an amplification
paradigm of Dodis and An [23]: We compute a concealment (b, h) of message
m (|b| � |m|), which is a specialized publicly known transformation. In fact, we
can even implement distributed remotely keyed authenticated encryption
(RKAE) [7], where the servers do not need to perform any checks and just serve
as PRP oracles for an untrusted user. The secret key s is split into shares among
several computationally bounded smartcards, and an insecure, powerful host
performs most of computations. The insecure host computes a concealment (b, h)
of m and sends it to the smartcards, who run the LUBY-RACKOFF protocol, and
return shares of gs(b).

6.3 Cipherblock Chaining Mode

We often need to encrypt messages that are longer than 2l bits. The message m is
usually split into blocks (m1, . . . ,mk) each of length 2l. Then a PRP may be used
in cipher block chaining (CBC) mode [35], which initializes c0 with a random
2l-bit string and sets ci = gs(ci−1 ⊕mi) for i = 1, . . . , k. The encryption of m is
defined to be (c0, c1, . . . , ck). To decrypt, the user can compute mi = g−1

s (ci)⊕
ci−1. The servers own shares of secret key s. The untrusted user broadcasts
message m to the servers. We must be careful to guard against the blockwise
adaptive attacks [32]; hence, we require the user to send an entire message m.
The servers run the JRP protocol to generate a random shared number from
which shares of a 2l-bit c0 are extracted. For i = 1, . . . , k rounds, the servers
distributively XOR shares of ci−1 and mi (as in Section 4.3), and then run the
LUBY-RACKOFF protocol on the result.

6.4 Variable Input Block Ciphers

Existing block ciphers operate on blocks of fixed length (FIL). Often, one needs
a block cipher that can operate on inputs of variable length (VIL). There ex-
ist centralized constructions for VIL ciphers, which use a FIL block cipher as
a black box: most notably, CMC [30], EME∗ [29] and an unbalanced Feistel
network [39]. Our threshold PRP enables us to distribute the computation of
these modes. Besides basic arithmetic operations, these modes XOR the cipher-
texts (to distribute, we would use BITS), evaluate the fixed-length block cipher



(LUBY-RACKOFF), compute the universal hash function ha,b(x) = ax + b (MUL),
and truncate the outputs (BITS).

7 Conclusion

We gave a simple construction of a threshold PRP in the semi-honest model. Our
scheme is fairly practical. PRPs are commonly used tools in protocol design. Our
techniques enable distributing many protocols (using PRPs), which until now
only existed in the centralized setting. In particular, we showed how to distribute
the computation of a CBC encryption mode and a remotely keyed authenticated
encryption scheme.

One open problem is whether we could use group multiplication to imple-
ment the distributed Feistel transformation rather than having to convert group
elements into bit strings and avoid using the expensive protocol by Damg̊ard et
al. [16] altogether.
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