
Finding Low Degree Annihilators for a Boolean
Function Using Polynomial Algorithms

Vladimir Bayev ∗

Abstract. Low degree annihilators for Boolean functions are of great interest in
cryptology because of algebraic attacks on LFSR-based stream ciphers. Several
polynomial algorithms for construction of low degree annihilators are introduced in
this paper. The existence of such algorithms is studied for the following forms of
the function representation: algebraic normal form (ANF), disjunctive normal form
(DNF), conjunctive normal form (CNF), and arbitrary formula with the Boolean op-
erations of negation, conjunction, and disjunction. For ANF and DNF of a Boolean
function f there exist polynomial algorithms that �nd the vector space Ad(f) of all
annihilators of degree 6 d. For CNF this problem is NP-hard. Nevertheless author
introduces one polynomial algorithm that constructs some subspace of Ad(f) having
formula that represents f .

Keywords. Boolean function, low degree annihilator, polynomial algorithm, recursive
algorithm.

Algebraic immunity is an important cryptographic characteristic of a Boolean function. Low
algebraic immunity of a function means that this function has an annihilating multiplier of low
algebraic degree. The problem of annihilator seeking was initially discussed in [3] and [5].

Let F2 be the �eld of two elements, Vn = Fn
2 be the vector space of n-tuples over F2, Fn

be the set of all functions Fn
2 → F2. By deg f denote algebraic degree of a Boolean function

f ∈ Fn. A Boolean function g ∈ Fn is called an annihilator of f ∈ Fn if f · g = 0. We shall use
the following notation:

Ad(f) := {g ∈ Fn|f · g = 0, deg g 6 d}.
In [5] two algorithms for computation of Ad(f) are introduced. First of them is deterministic

and has complexity that bounded from above by some polynomial in 2n. The other algorithm
is probabilistic. Its time of computation has the mathematical expectation that bounded from
above by some polynomial in n. But this algorithm has nonzero probability of wrong result.
Besides, the algorithm assumes quick random access to input data.

In this paper we introduce several deterministic algorithms such that their complexity
bounded from above by some polynomial in n and in length of a function representation.

∗Moscow State University, the Faculty of Computational Mathematics and Cybernetics, vbayev@yandex.ru

1



We parameterize functions from Fn by words of �nite length in alphabet {0, 1}. This means
that for some set of words Yn ⊂ {0, 1}∗ we consider a map ϕn : Yn → Fn. In these terms, a
Boolean function is determined by some pair (n, y), where n ∈ N, y ∈ Yn. We shall use only
"reasonable" maps ϕn. There should exist a polynomial algorithm with input (n, y, x) (here
n ∈ N, y ∈ Yn, x ∈ Vn) such that this algorithm computes the value ϕn(y)(x).

Theorem 1. ([2]) Let y be a list of all monomials in polynomial representation of a Boolean
function fy ∈ Fn, i. e., fy is equal to the sum of all monomials from the list y. Then there
exists an algorithm with the following features. This algorithm has input (n, d, y), it computes
a basis of the vector space Ad(fy), and its time complexity is O(My · (Sd

n)3), where My is the
number of monomials in the list y and Sd

n =
∑d

k=0 Ck
n.

Proposition 1. For arbitrary f1, f2 ∈ Fn the following relations of vector subspaces of Fn

hold:
Ad(f1) + Ad(f2) ⊂ Ad(f1 · f2),

Ad(f1 + 1) + Ad(f2 + 1) ⊂ Ad(f1 ∨ f2 + 1),

Ad(f1) ∩ Ad(f2) = Ad(f1 ∨ f2),

Ad(f1 + 1) ∩ Ad(f2 + 1) = Ad(f1 · f2 + 1).

The proof is straightforward.

For x, α ∈ Vn, x = (x1, . . . , xn), α = (α1, . . . , αn) we denote

xα :=
n∏

i=1

xαi
i ,

where
xαi

i :=

{
xi,
1,

αi = 1
αi = 0.

Also, by Bn,d denote the set {f ∈ Fn| deg f 6 d}.

Theorem 2. There exists an algorithm with the following features. The input of this
algorithm is DNF (disjunctive normal form) that corresponds to a function f ∈ Fn. The
output of this algorithm is a basis of the vector space Ad(f). Finally, the time complexity of
this algorithm is bounded from above by some polynomial in n and in length of DNF.

Proof. For any α ∈ Vn we can compute a basis B of the vector space Ad(x
α) using the

algorithm from theorem 1. It takes O
(
(Sd

n)3
)
bit operations. Each basis vector b ∈ B is

represented in the form of b's coordinates in monomial basis of Bn,d. Let σ ∈ Vn be an arbitrary
vector. Consider the map ϕσ : Bn,d → Bn,d that is given by the formula ϕσ(g)(x) = g(x + σ).
It is clear that for any g ∈ Ad(x

α) its image ϕσ(g) belongs to Ad((x + σ)α). Moreover, ϕσ gives
isomorphism Ad(x

α) ∼= Ad((x + σ)α). The linear map ϕσ has the matrix Φσ of size Sd
n × Sd

n. It
is easy to construct a polynomial algorithm that computes this matrix. Thus {Φσ · b|b ∈ B} is
the basis of Ad((x + σ)α). So, we can obtain polynomial algorithm that computes the basis of
Ad((x + σ)α).

2



Let f ∈ Fn be represented in the form of DNF:

f(x) =
T∨

k=1

(x + σk)αk

,

where σk, αk ∈ Vn (k = 1, ..., T ). Then by proposition 1,

Ad(f) =
T⋂

k=1

Ad

(
(x + σk)αk

)
.

Therefore, having bases of Ad

(
(x + σk)αk

)
, we can compute a basis of Ad(f) via methods of

linear algebra. The time complexity of such algorithm is bounded from above by polynomial
in n and in T . ¥

Theorem 3. Let f ∈ Fn be represented in the form of CNF (conjunctive normal form).
Consider the problem of computing of a basis of Ad(f), having CNF of f . We claim that for
every d > 0 this problem is NP-hard.

Proof. It is clear that

f = 0 ⇔ Ad(f) = Bn,d ⇔ dim Ad(f) = Sd
n.

Thus the problem of computing of a basis of Ad(f), having CNF of f , is polynomial-time
reducible to CNF-satis�ability problem, which is NP-complete. ¥

Now, let a Boolean function f ∈ Fn be given by a formula F such that this formula consists
of symbols of variables, brackets, and the Boolean operations ¬, &,∨. We want to search for low
degree annihilators recursively. Sometimes we shall replace the operation ¬ by "+1". Let F ′

be some subformula of F , f ′ be the Boolean function that corresponds to F ′. In this notation,
for every subformula F ′ we shall obtain a pair of vector spaces

Gd(f
′) ⊂ Ad(f

′ + 1), Hd(f
′) ⊂ Ad(f

′), (1)

These vector spaces are given by their basis functions. As above, each basis function is repre-
sented in the form of its coordinates in monomial basis of Bn,d.

In the leaves of recursion tree we have the functions of the form fi(x1, . . . , xn) = xi. In
this case, there exists an algorithm such that its time complexity is polynomial in n and this
algorithm computes bases of the following vector spaces:

Ad(xi + 1) = {g · xi|g ∈ Fn, g does not depend on xi, deg g 6 d− 1},

Ad(xi) = {g · (xi + 1)|g ∈ Fn, g does not depend on xi, deg g 6 d− 1}.
Therefore, we can assign Gd(fi) := Ad(fi + 1), Hd(fi) := Ad(fi).

Let a subformula be of the form f ′ = f1 + 1 = ¬f1. Suppose recursive condition (1) holds
for the function f1. Then, if we make the following assignments

Hd(f
′) := Gd(f1),

3



Gd(f
′) := Hd(f1),

recursive condition (1) holds for the function f ′.
Let a subformula be of the form f ′ = f1 · f2. Suppose (1) holds for the functions f1 and f2.

By de�nition, put Gd(f
′) := Gd(f1) ∩Gd(f2), Hd(f

′) := Hd(f1) + Hd(f2). Using proposition 1
and recursive condition (1) for f1 and f2, we obtain

Gd(f
′) ⊂ Ad(f1 + 1) ∩ Ad(f2 + 1) = Ad(f1 · f2 + 1) = Ad(f

′ + 1),

Hd(f
′) ⊂ Ad(f1) + Ad(f2) ⊂ Ad(f1 · f2) = Ad(f

′).

Finally, let a subformula be of the form f ′ = f1 ∨ f2. Suppose (1) holds for the functions f1

and f2. By de�nition, put Gd(f
′) := Gd(f1) + Gd(f2), Hd(f

′) := Hd(f1)∩Hd(f2). Again, using
proposition 1 and recursive condition (1) for f1 and f2, we obtain

Gd(f
′) ⊂ Ad(f1 + 1) + Ad(f2 + 1) ⊂ Ad(f1 ∨ f2 + 1) = Ad(f

′ + 1),

Hd(f
′) ⊂ Ad(f1) ∩ Ad(f2) = Ad(f1 ∨ f2) = Ad(f

′).

We can use this recursive algorithm to compute bases of the vector subspaces Gd(f) ⊂
Ad(f + 1), Hd(f) ⊂ Ad(f). It is easy to check that the time complexity of this algorithm is
polynomial in n and in length of the formula F .

But this algorithm has a drawback. The vector subspaces Gd(f), Hd(f) might be equal to
{0}, while Ad(f + 1) and Ad(f) are nontrivial. In some cases the inclusion Ad(f1) + Ad(f2) ⊂
Ad(f1 · f2) is the equality. The remaining part of this paper contains two theorems about this
property.

Theorem 4. Let f1, f2 ∈ Fn be nonzero a�ne functions such that f1 6= f2 and f1 6= f2 + 1.
Then the vector space A1(f1 · f2) is the following direct sum

A1(f1 · f2) = A1(f1)⊕ A1(f2).

Proof. If ` ∈ Fn is an arbitrary nonzero a�ne function then A1(`) = {0, ` + 1}. Hence the
sum of subspaces A1(f1), A1(f2) is direct. We have to prove that dim A1(f1 · f2) = 2.

It is easy to prove that for the functions f1, f2 there exists an invertible a�ne map τ : Vn →
Vn such that

`1(x1, . . . , xn) := f1 ◦ τ(x1, . . . , xn) = x1,

`2(x1, . . . , xn) := f2 ◦ τ(x1, . . . , xn) = x1 + x2.

Since τ is invertible, we have the following isomorphisms:

A1(f1) ∼= A1(f1 ◦ τ) = A1(`1),

A1(f2) ∼= A1(f2 ◦ τ) = A1(`2),

A1(f1 · f2) ∼= A1((f1 · f2) ◦ τ) = A1((f1 ◦ τ) · (f2 ◦ τ)) = A1(`1 · `2).

Represent g ∈ A1(`1 · `2) in the following form

g(x1, . . . , xn) = a0 +
∑n

i=1
aixi.

4



It is obvious that ai = 0 for any i > 3. Then

g ∈ A1(`1 · `2) ⇔

g · `1 · `2 = 0 ⇔
(a0 + a1x1 + a2x2) · x1 · (x1 + x2) = 0 ⇔

a0x1 + a1x1 + a2x1x2 + a0x1x2 + a1x1x2 + a2x1x2 = 0 ⇔{
a0 + a1 = 0

a2 + a0 + a1 + a2 = 0
⇔

a0 + a1 = 0.

Thus we have three coe�cients a0, a1, a2 and one equation a0+a1 = 0. Therefore dim A1(f1 ·
f2) = dim A1(`1 · `2) = 2. ¥

Theorem 5. Let f1, f2 ∈ Fn be nonzero functions such that f2 does not depend on the
�rst m variables and f1 does not depend on the last n −m variables. Then the vector space
A1(f1 · f2) is the following direct sum

A1(f1 · f2) = A1(f1)⊕ A1(f2).

Proof. It is clear that A1(f1) ∩ A1(f2) = {0}. Let us show that any Boolean function
` ∈ A1(f1 · f2) can be represented in the form ` = `1 + `2, where `1 ∈ A1(f1), `2 ∈ A1(f2).
Consider z = (z1, . . . , zn) ∈ Vn. By x denote (z1, . . . , zm), by y denote (zm+1, . . . , zn). In this
notation we have (x, y) = z. Let ` ∈ A1(f1 · f2) be given by

`(z) =
n∑

i=1

aizi + b.

Then ` can be represented in the form

`(z) = `′(x) + `′′(y),

where
`′(x) =

m∑
i=1

aizi, `′′(y) =
n∑

i=m+1

aizi + b.

Hence
` ∈ A1(f1 · f2) ⇔

∀x∀y `(x, y) · f1(x) · f2(y) = 0 ⇔
∀x∀y `′(x) · f1(x) · f2(y) + `′′(y) · f1(x) · f2(y) = 0 (2)

There are only two possibilities:
(a) ∀x `′(x) · f1(x) = 0 : The condition f1 6= 0 means that ∃x0 : f1(x0) = 1. Substituting

x0 for x in (2), we get
∀y 0 · f2(y) + `′′(y) · 1 · f2(y) = 0 ⇔

5



∀y `′′(y) · f2(y) = 0.

Thus we have `′ ∈ A1(f1) and `′′ ∈ A1(f2).
(b) ∃x0 : `′(x0) · f1(x0) = 1 : In this case f1(x0) = 1. If we replace x by x0 in (2), we obtain

∀y 1 · f2(y) + `′′(y) · 1 · f2(y) = 0 ⇔

∀y (`′′(y) + 1) · f2(y) = 0 ⇔
∀y `′′(y) · f2(y) = f2(y).

If we combine the last equation with (2), we get

∀x∀y `′(x) · f1(x) · f2(y) + f1(x) · f2(y) = 0 ⇔

∀x∀y (`′(x) + 1) · f1(x) · f2(y) = 0.

The condition f2 6= 0 means that ∃y0 : f2(y0) = 1. Therefore

∀x (`′(x) + 1) · f1(x) = 0.

Finally, we obtain `′ + 1 ∈ A1(f1), `′′ + 1 ∈ A1(f2), and (`′ + 1) + (`′′ + 1) = `. ¥

References
[1] F. Armknecht: On the Existence of low-degree Equations for Algebraic Attacks, Cryptology

ePrint Archive: Report 2004/185, http://eprint.iacr.org/2004/185

[2] V.V. Bayev: On Some Algorithms for Constructing Annihilators of Low Degree for Boolean
Functions, to be published in J. "Discrete Mathematics" (in Russian).

[3] N. Courtois, W. Meier: Algebraic Attacks on Stream Ciphers with Linear Feedback, Euro-
crypt 2003, LNCS 2656, pp. 345-359, Springer, 2003.

[4] N. Courtois: Fast Algebraic Attacks on Stream Ciphers with Linear Feedback, Crypto 2003,
LNCS 2729, pp. 176-194, Springer, 2003.

[5] W. Meier, E. Pasalic, C. Carlet: Algebraic Attacks and Decomposition of Boolean Func-
tions, Eurocrypt 2004, LNCS 3027, pp. 474-491, Springer, 2004.

6


