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Abstract. We proposed the concept, piece in hand (soldiers in hand) matriz and
have developed the framework based on the concept so far. The piece in hand matrix
is a general concept which can be applicable to any type of multivariate public key
cryptosystems to enhance their security. In this paper, we make improvements in the
PH matrix method as follows. (i) In the PH matrix method, an arbitrary number of
additional variables can be introduced to the random polynomial term in the public
key, which is eliminated by the multiplication of the PH matrix to the public key in
the decryption. Thus these additional variables enables the public key to have more
than one solution, and therefore increases the difficulty to solve the public key. We
show, in an experimental manner, that the PH matrix method improved in this way is
secure even against the Grobner basis attack. (ii) In the nonlinear PH matrix method
proposed previously, the degree of polynomials in the public key is more than two, and
this may cause an undesirable increase in the length of the public key. In this paper,
we propose a nonlinear PH matrix method, where the degree of the public key is kept
the same as the degree of the public key of the original cryptosystem, which is normally
two.
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1 Introduction

The research of multivariate public key cryptosystems started with the works by Matsumoto et al. [8]
in 1983 and Tsujii et al. [13] in 1986. Especially, the multivariate public key cryptosystem which
was proposed by Matsumoto and Imai [9] in 1988 is known as the Matsumoto-Imai cryptosystem
nowadays. In 1995 Patarin constructed an attack against the Matsumoto-Imai cryptosystem in a
heuristic manner [11] and then proposed an improvement of the cryptosystem, called HFE, in 1996
[12]. Subsequently, Kipnis and Shamir introduced a general technique, called relinearization, to
solve system of multivariate polynomial equations, and used it to attack HFE in 1999 [7]. Recently,
Faugere and Joux showed in an experimental manner that computing a Grébner basis of the public
key is likely to be an efficient attack to HFE [3]. Because of the simplicity of this attack, it may



be a threat to any type of proposed multivariate public key cryptosystem, and now seems to be
thought of as a major attack against any such cryptosystem.

On the other hand, in the work [13] Tsujii et al. proposed a multivariate public key cryptosystem
by introducing a trapdoor called the sequential solution method, and then the cryptosystem was
broken by Hasegawa and Kaneko [4] for the special case where rational functions are used. Later
on, in 1989, [14] proposed the revised version of [13], where birational transformation, named core
transformation, was employed.! No attack to this revised version has been succeeded so far.

In 2000 Kasahara and Sakai proposed a multivariate public key cryptosystem with random
variables [5] and have improved the cryptosystem in a series of works such as [6]. On the other hand,
by introducing random terms to the Matsumoto-Imai cryptosystem, Ding proposed a multivariate
public key cryptosystem called the perturbed Matsumoto-Imai cryptosystem [2].

In 2003 one of us [15] proposed the concept, piece in hand matriz. Thereafter we have developed
the framework based on the concept in a series of works [16, 17, 18, 19] so far. The concept of the
piece in hand (PH, for short) matrix has the following properties:?> (i) The PH matrix is a general
concept which can be applicable to any type of multivariate public key cryptosystems to enhance
their security. (ii) In a framework of the PH matrix, the original public key, which is represented
by a polynomial vector, is randomized by adding a random polynomial term and then published.
In the decryption, the legitimate receiver can obtain the cipher text of the original cryptosystem by
multiplying the PH matrix to eliminate the random term, and then recover the plain text according
to the decryption of the original cryptosystem. (iii) There are two types of the PH matrices: a
linear matrix whose elements are constants and a nonlinear matrix whose elements are functions
of the plain text or random numbers.

In this paper, we make improvements in the PH matrix methods as follows: (i) In the PH matrix
method, an arbitrary number of additional variables can be introduced to the random polynomial
term in the public key, which is eliminated by the multiplication of the PH matrix to the public
key in the decryption. Thus the number of variables can be increased more than the number of
polynomials in the public key, where random numbers are substituted to the additional variables
in the encryption, and also these additional variables in the public key can be made to have more
than one solution. We show, in an experimental manner, that the PH matrix method improved in
this way is secure even against the Grobner basis attack. (ii) In the nonlinear PH matrix method
proposed previously, the degree of polynomials in the public key is more than two, and this may
cause an undesirable increase in the length of the public key. In this paper, we propose a nonlinear
PH matrix method, where the degree of the public key is kept the same as the degree of the public
key of the original cryptosystem, which is normally two.

1.1 Schemes of Multivariate Public Key Cryptosystems

We first review the schemes of multivariate public key cryptosystems. A multivariate public key
cryptosystem such as in [8, 13, 9, 14, 12, 10, 5, 2, 6] can be considered to comply with the following
scheme: Let F, be a finite field which has g elements. A plain text is represented by a column vector
p = (p1,p2,...,pk)], and a cipher text is represented by a column vector ¢ = (c1, ca, . .., c,)T, where
the components p; and ¢; are in F,, and T denotes the transpose of vector. Let F,[x] be the set

!The paper [14] was originally written in Japanese. An English translation of [14] is included in [17] as an appendix.
2Tt is possible to apply the concept to signature schemes. However, we only describe the application to encryption
schemes in this paper.



of all polynomials in variables x1,x2,...,7; with coefficients in F;. Then a polynomial vector
E(x) € Fylz]" and ¢ form the public key in the cryptosystem. The encryption is given by the
following transformation from p to c:

c = E(p).

The secret key is an efficient method to solve the equation E(x) = ¢ on « for any given ¢. Thus,
E(x) has to be constructed so that, without the knowledge about this method, it is difficult to find
p for any ¢ in polynomial-time.

Let us consider the situation that Bob has the secret key and Alice transmits her cipher text
c = E(p) to Bob. When Bob receives the cipher text, using the secret key he can efficiently decipher
it to obtain the plain text p. On the other hand, it is intractable for an eavesdropper, Catherine, to
recover p from e, since she has no knowledge about the secret key and she has to solve the equation
E(x) = c on x directly.

In most multivariate public key cryptosystems, the public key F(x) has the following form:

E(x) = (BoFyo A)(x). (1)

Here A and B are invertible linear transformations on Fqk and F,", respectively. Thus we can
assume that A is an invertible k x k& matrix and B is an invertible n X n matrix, where the entries
of both A and B are in F. Fj is a nonlinear function from Fqk to F," such that the components in
Fy(u) are polynomials in Fy[u], where Fy[u] is the set of all polynomials in variables uy,ug, ..., ug
with coefficients in F,, and a vector u = (u1,us,...,ux)’ is related to & by u = Az. In this type
of cryptosystem, Bob keeps A and B secret (and so Fj in some cryptosystems).

1.2 General Prescription for Enhancement by the PH Matrix Method

In this subsection, we recall the general prescription for the enhancement of the security of any
given multivariate public key cryptosystem by our PH matrix method, introduced by [16]. Let K be
any multivariate public key cryptosystem whose public key is E(x) € Fy[z1,...,x;]", as described
in the previous subsection. We construct new multivariate public key cryptosystem K through an
application of our PH method directly to the public key FE(x) of K in a sequential manner. A
public key E(x) of K is constructed from the original public key E(x) of K by the transformation:

E(xy,...,25) =S - E(xy,...,2,) + R- X[1,k]. (2)

Here X|[1, k] denotes the column vector whose components are all monomials in F[zq,. .., zg] of
total degree at most two, enumerated in any order. Thus, X[1, k] can be chosen as

_ T
XL k] = (121, 2122, .+, T 1Tk, TET ke, T1, T2y« - -5 Thy 1) .

S is an [ x n matrix whose entries are in Fg, In order to make our PH method work properly, we
assume that [ > n. On the other hand, R is an [ x t[1, k] matrix whose entries are in F,, where
t[1, k] is the number of components of X|[1, k]. Note that ¢[1, k] = (k;rQ) = (k®+3k+2)/2. The term
R - X[1,k] plays a role in randomizing E(z). Hence the R has to be chosen so that in E(x) each
polynomial component in the vector R - X[1, k] cannot be indistinguishable from the polynomials
which come from E(x). A plain text of K is represented by a vector in Fqk in the same way as in



IC. For any plain text vector p € Fqk of IE, the corresponding cipher text of K is represented by a
vector ¢ € F,! and is calculated by € = E(p).

We choose the R, PH matrix M, and S in sequence so as to satisfy the following three conditions.
We can show that this choice is efficiently possible.

Condition 1. [ > n +rank R. L]
Condition 2. M is an n x | matrixz such that MR = 0 and rank M = n. O
Condition 3. M S = I,,, where I, is the n X n identity matriz. ]

Then, g and E (x) form the public key of K. On the other hand, the PH matrix M together with
the secret key of I for the public key ¢ and E(x) of K form the secret key of K. The decryption of
K proceeds as follows. Since M E (x) = E(x) by the above conditions, on receiving the cipher text
¢ = E(p) for a plain text p, Bob can efficiently calculate ¢ = E(p) = M¢ by the multiplication
of ¢ by M from the left. Then, according to the decryption procedure of K, Bob can recover the
plain text p using the secret key of K.

1.3 Countermeasures against the Grobner Bases Attack

Recently, Faugere and Joux [3] showed in an experimental manner that computing a Grobner basis
of the public key is likely to be an efficient attack to HFE [12], which is one of the major variants
of multivariate public key cryptosystem. The attack is simply to compute a Grobner basis for the
ideal generated by polynomial components in E(x) — ¢, where ¢ is a cipher text vector. Thus,
because of the simplicity of this attack, it may be a threat to any type of proposed multivariate
public key cryptosystem.

Especially, from the point of view of Grobner bases, the secret linear transformation B in a
scheme whose public key has the form (1) may be useless. This is because any ideal I generated by
polynomials remains unchanged under the transformation of the generators of I by an invertible
matrix. Thus, by the following reason, the PH concept might be also useless to the Grébner attack
in its primitive implementation presented in the previous sections. We first note that, by the
definition of the PH matrix M, M(E(x) —¢) = E(x) — ¢, where ¢ = E(p) is a cipher text vector
of the enhanced cryptosystem Kandec=E (p) is a cipher text vector of the original cryptosystem

K. We can then show that there exist linear combinations g1,. .., gi—,, with coefficients in F, of
€1 —C1,...,€ — ¢ such that
(1 —¢c1,...,e—c) =(e1—C1,---s€n = Cny 1, Jl—n)s (3)

where (c1,...,cn)T = E(p) and (¢, . ..,&)T = E(p) are cipher text vectors of K and K, respectively,
and the polynomial vectors (eq,...,e,)T = E(x) and (€1,...,¢)T = E(z) are the public keys of
K and K, respectively. Thus, from the point of view of Grébner bases the system E(m) —¢=0of
polynomial equations might not be necessarily more difficult to solve than the system E(x)—c =0
due to the existence of the additional equations ¢y = 0,...,g9;—, = 0 for the former. In such a
case, the PH method might be useless to the Grobner attack. This paper proposes new PH matrix
methods which overcome this weakness, through elaborations of the original PH matrix method,
and is organized as follows.

In Section 2, we describe the linear PH method with random variables and consider its secu-
rity. In the above consideration, the polynomials eq,...,e, are assumed to be in Fy[z1,..., zg]



implicitly, and therefore the weakness of the original PH method against the Grobner attack is
of concern. Thus, one of the countermeasures against the weakness is to introduce additional
variables xg41,...,Z,m to the public key of K. Under this countermeasure, the g;’s in (3) are
no longer polynomials in Fg[z1,..., x|, but in Fylzq,..., 2], and therefore solving the system
E(a:l, ..., Tpy) — € = 0 of polynomial equations seems to be more difficult than solving the system
E(z1,...,zx) — ¢ = 0. This is done by introducing to the term R - X[1,k] in (2) the additional
variables zx41,...,2y, which are set to random values by Alice on the encryption. We propose
new PH matrix method based on this idea, and show that the new method properly works and
provides substantial robustness against the Grébner attack, based on computer experiments. We
then present another countermeasure against the Grobner basis attack through a nonlinearization
of the to PH matrix in Section 3 In the previous work [17], we already proposed nonlinear PH
matrix method. However, the order of polynomials in the public key of the enhanced cryptosystem
K is more than two in the previous method, and this may cause an undesirable increase in the
length of the public key of the enhanced cryptosystem. In a new nonlinear PH matrix method
proposed in this paper, the order of the public key of K is always the same as the order of the
public key of the original cryptosystem K. Thus, the new nonlinear PH matrix method is more
practical than the previous proposal. We conclude this paper with a discussion about the future
direction of our work in Section 4.

2 Linear PH Matrix Method with Random Variables

In this section, as a countermeasure against the Grobner attack, we introduce the linear PH matrix
method with random variables, based on the general prescription for the enhancement of the secu-
rity by the linear PH matrix method, described in Subsection 1.2. The point of the modification is
to introduce to the public key of the enhanced cryptosystem additional variables. By this counter-
measure, the computational complexity of the Grobner attack is likely to increase exponentially in
the number of the additional variables, as suggested by the experimental results below.

2.1 The New Method

Let K be any quadratic multivariate public key cryptosystem whose public key is given as £ (x1,..., k)
€ Fylz1,...,z]". We construct a new quadratic multivariate public key cryptosystem K based on
K as follows. Let p and m be any positive integers with p < k < m.

Key-Generation. In the key-generation stage, the public key and secret key of K are chosen
first. Then, a public key E(z1,...,2m,) € Fy[z1,...,2m]" of K is constructed from the original
public key E(x1,...,x) of K by the following transformation:

E(xi,...,xm) =5 - E(x1,...,2p, Y1, .-, Yk—p) + R - X[1,m], (4)
where (y1,...,Yk—p) = (21,...,Zm)A and A is a m x (k — p) matrix with elements in F; randomly
chosen. X[1,m| denotes the column vector whose components are all monomials in Fy[z1,...,zp]

of total degree at most two, enumerated in any order. Thus, X[1,m] can be chosen as

_ T
X[1,m] = (z121, 2122, - -+, Tin—1Tmy T Timy T1y T2y« « «y Tymy 1)



S is an | x n matrix whose entries are in Fy, In order to make our PH method work properly, we
assume that [ > n. On the other hand, R is an [ x ¢[1, m] matrix whose entries are in F,, where
t[1,m] is the number of components of X[1,m]. Note that t[1,m] = (m? + 3m + 2)/2. The S,
R, and PH matrix M are randomly chosen so as to satisfy Conditions 1, 2, and 3 in Subsection
1.2. Note that, as in the case of the original method, this choice can be efficiently possible. Bob
publishes p, m, ¢, and E’(xl, ..., Tp) after the key-generation.

Encryption. A plain text of K is represented by a vector in F,”. Now, assume that Alice wants
to send Bob a plain text vector p € F,”. The corresponding cipher text is represented by a vector
c e Fql in K, and is calculated through ¢ = E(pT,rT) by Alice, where » € F,"7P is chosen
randomly by Alice before the encryption of p.

Decryption. The decryption of K proceeds as follows. We first note that, by Conditions 2 and
3,

ME(z1,... ) = E(z1,...,2p, (x1,...,2m)A). (5)
Thus, on receiving the cipher text
e=E(@p",r") (6)

for the plain text p, Bob can efficiently obtain the value E(p”,s”) from the multiplication of €
by M, where s is a column vector in Fqk_p such that sT = (pT,rT)A. Then, according to the
decryption procedure of K, Bob can efficiently recover the plain text p using the secret key of K.
Note that s is discarded after the decryption.

2.2 Consideration on the Security
2.2.1 Strength against the Grobner Bases Attack

For any cipher text vector ¢, the corresponding plain text vector p is unique in (6). On the
other hand, r is not necessarily unique, since A is not invertible and R is chosen randomly. The
nonuniqueness of r may provides substantial robustness against the Grobner attack, as suggested
by the experimental results shown below.

We report in Table 1 the time required to compute a reduced Grobner base of the public key
both of HFE and of the HFE enhanced by the linear PH method with random variables. The
running-times are given for hp AlphaServer ES45 workstation with Alpha 21264 (EV68) processor
at 1250 MHz and 32GB of RAM. We use the algorithm Fj implemented on the computational
algebra system Magma V2.12-14. Note that n = k and ¢ = 2 for the public keys E(x1,...,zx) €
F,lz1,...,2,]" of HFE by its specifications. In the table, d denotes the degree of the univariate
polynomial in the encryption of the HFE scheme. In the lower half of the table, the linear PH
matrix method with random variables is applied to the public keys of HFE with ¢ = 2, n = k = 20,
and rank R = [ — n. The table shows that the increase of the number m — k of random variables
ZTktl,--.,Tm increases the running-time required to compute a reduced Grobner base of the public
key E(xl, ceyTm) € Falzy, ..., ZL‘m]l of the enhanced cryptosystem K. Thus, it would seem that
the linear PH matrix method with random variables provides substantial robustness against the
Groébner attack.



cryptosystems p | k| m | [ | running-times in second
HFE 10 <1
(128 < d < 513) 25 686
28 1404
the enhanced HFE | 10 | 20 | 30 | 25 1364
by the PH method | 10 | 20 | 35 | 25 5301
(d < 513) 10 | 20 | 37 | 25 8788
10|20 | 32| 28 3437
10| 20 | 36 | 28 9903
10 | 20 | 38 | 28 15091

Table 1: Comparison between running-times for HFE and the enhanced HFE by the PH method.

In the above examples on the enhanced HFE by the PH method, due to the constraint of
computing ability, only the cases of p = 10 and [ = 25,28 are computed where the ratios p/l of
plain text to cipher text are 10/25 = 40% and 10/28 ~ 36%, which seem to be inefficient. In
realistic situations, however, p will usually be selected to be more than 100 and [ — p be 10 ~ 20.
Thus the ratio is not so inefficient in practice. We will continue to make examples for more large
parameters.

2.2.2 Strength against Other Possible Attacks

It is not desirable that an eavesdropper, Catherine, can find the PH matrix M from a cipher text
¢ and the public key E(xl, ..., Tmy). This is because, if so, then she can easily obtain the value
E(p”,s") due to the equation (5). However, in this PH matrix method, it would seem difficult to
do so because of the existence of the y;’s in (4).

Assume, contrarily to the fact, that p = k and therefore

E(zy,...,zm) =95 E(x1,...,25) + R- X[1,m] (7)

holds. Then, by trying to eliminate the variables wgi1,...,2m in M'E(x1,...,zy), Catherine
may construct a matrix M’ such that M'E(zq,...,2y,) = E(z1,...,2%). This M’ works in the
same manner as the original PH matrix M, and therefore she may be able to calculate the value
E(p). This possibility seems to be excluded by introducing the y;’s in (4), since they are the
linear combinations of all variables x1, ..., x,,. Thus the attack by constructing a matrix M’ which
behaves just like as the original PH matrix M may not be successful in this PH matrix method

with random variables.

3 Nonlinearization of the PH Matrix

Another countermeasure against the Grobner attack is to nonlinearize the PH matrix, i.e., to
employ, as a PH matrix, a polynomial matrix M (z1,...,z;) whose entries are in Fy[zq,...,zg].
Since an ideal I generated by polynomials may change under the replacement of the generators
of I by the product of M (x1,...,x;) and them, unlike in the case of linear M, the nonlinear PH



matrix may provide substantial robustness against the Grobner attack. In the previous work [17],
we already proposed nonlinear PH matrix method. However, the order of polynomials in the public
key of the enhanced cryptosystem K is more than two in the previous method due to the use of
Fermat’s little theorem. This may cause an undesirable increase in the length of the public key
of the enhanced cryptosystem. In this section, we propose a new nonlinear PH matrix method
without using Fermat’s little theorem, where the order of the public key of K is always the same
as the order of the public key of the original cryptosystem K. Thus, the new nonlinear PH matrix
method is more practical than the previous proposal, from the point of view of the length of public
key.

Let K be any quadratic multivariate public key cryptosystem whose public key is given as
E(x1,...,z1) € Fylx1, ..., 25" We construct a new quadratic multivariate public key cryptosys-
tem K based on K as follows, through the modification of the linear PH matrix methods presented
in the previous sections. Let [ and h be any positive integers with [ > h.

Key-Generation. In the key-generation stage, the public key and secret key of K are chosen first.
Then, a public key E(x1,...,7x) € Fy[z1,...,21]' of K is constructed from the original public key

E(z1,...,zk) of K as follows. In the construction, a quadratic polynomial vector C(z1,....zx) €
Fq[azl,...,xk]h, an n X h matrix T, and a column vector w € F," are randomly chosen first.
Then polynomial vectors F(x1,...,7;) € Fy[z1,..., 24" and E(x1,...,7;) € Fylz1,...,2x]" are

calculated in sequence by the following equations:

F(xy,...,xx) = E(x1,...,2) = TC(x1,...,28) — u,

E@h“wwzs<Fm;ﬂww>+Rxmm

Here X1, k] is defined in the same manner as in Subsection 1.2. S is an [ x (n + 1) matrix whose
entries are in Fg, In order to make this PH method work properly, we assume that [ > n + 1. On
the other hand, R is an [ x ¢[1, k] matrix whose entries are in F,. In this notation, the (n+ 1) x {
nonlinear PH matrix M(x1,...,z) is defined as follows:

M(zq,...,2) = (TC(x1,...,xk) +u IL,)M.

The S, R, and M are randomly chosen so as to satisfy the following three conditions. This choice
is efficiently possible, as in the case of the linear PH matrix methods.

Condition 4. [ > (n + 1) 4+ rank R. O
Condition 5. M is an (n+ 1) x | matriz such that MR =0 and rank M = n + 1.
Condition 6. MS = I, where I, is the (n+ 1) x (n+ 1) identity matriz. O

Finally, a public key E (x1,...,2k) of K is calculated by the following equation:

E@““wsz<ggr:ﬁg), (8)



where B is a randomly chosen (I + h) x (I + h) invertible matrix. Thus, the order of the public key
of K is the same as the order of the public key of the original cryptosystem K. Bob then publishes
k, q, and E(xq,...,zx). We here check that, by Conditions 5 and 6,

M(zr,. .., a0) Bz, an) =(TC(z1, .., ax) +u In)MS< F(xh'l”’xk) )

+(TC(ar,...,21) +u L) MRX[L K]

=(TC(x1,...,xx) +u I) ( F(xl,.l..,xk) )

=TC(z1,...,25) +u+ F(x1,...,zk)

:E(xl, ce ,[Ek).
Thus, M(x1,...,xx) properly works as a PH matrix although it is a polynomial matrix. Note also
that the public key F(z1,...,xy) is certainly a quadratic polynomial vector.

Encryption. A plain text of K is represented by a vector in Fqk in the same way as in . Now,
assume that Alice wants to send Bob a plain text vector p. The corresponding cipher text is
represented by a vector ¢ € Fq”h in IC, and is calculated through ¢ = E(p) by Alice.

Decryption. The decryption of K proceeds as follows. On receiving the cipher text ¢ for the
plain text p, Bob can efficiently obtain the values E(p) and C(p) from the multiplication of €
by B~! using the equation (8). By M(z1,...,z)E(z1,...,21) = E(x1,...,2;), we here see that
(TC(p) +u I,)ME(p) = E(p). Thus, using the values E(p) and C(p), Bob can then efficiently
calculate the value E(p). Then, according to the decryption procedure of K, Bob can recover the

plain text p using the secret key of K.

4 Concluding Remarks

In this paper, we have elaborated the piece in hand (PH) matrix methods in order that the security
of a wide class of multivariate public key cryptosystems is likely to be enhanced by them even
against the Grobner bases attack. In the future work, we will demonstrate the enhancement of
security both by the linear PH matrix method with random variables (Section 2) and by the
nonlinear PH matrix method (Section 3) for all proposed multivariate public key cryptosystems in
an experimental manner extensively.

From the practical point of view, it is also important to evaluate the key length and the efficiency
of encryption and decryption in the enhanced cryptosystem. However, since the aim of the present
paper is mainly to improve the framework of the PH concept, this issue is discussed in another
paper. Because of the same reason, we have not considered the stronger security such as IND-
CCA type security but considered just the encryption primitive E for a multivariate public key
cryptosystem whose security is enhanced by the PH concept. We leave the consideration of the
stronger security to a future study.
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