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Abstract

The paper analyzes a new public key cryptosystem whose security is based on a
matrix version of the discrete logarithm problem over an elliptic curve.

It is shown that the complexity of solving the underlying problem for the proposed
system is dominated by the complexity of solving a fixed number of discrete logarithm
problems in the group of an elliptic curve. Using an adapted Pollard rho algorithm
it is shown that this problem is essentially as hard as solving one discrete logarithm
problem in the group of an elliptic curve.
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1 Introduction

Public-key cryptography, based on the intractability of the discrete logarithm problem, was
introduced by Diffie and Hellman [5]. The Diffie-Hellman protocol allows two parties Alice
and Bob, who are communicating over an insecure channel, to generate a shared secret key
which is difficult to compute for an eavesdropper.

The discrete logarithm problem (DLP) over various finite groups has been studied exten-
sively. In the early days the main example has been the multiplicative group over a finite
field Fq. Odoni, Varadharajan and Sanders [11] introduced the discrete logarithm problem
for matrices over Fq and a Diffie-Hellman key exchange protocol based on matrices. However,
Menezes and Wu [9] reduced the discrete logarithm problem for matrices to some discrete
logarithm problems over small extensions of Fq.

In the late eighties Miller [10] and Koblitz [7] independently proposed to study the DLP
in the group of Fq-rational points of an elliptic curve. This was the start of an active research
in the area of elliptic curve cryptography (ECC), and its use for implementing public-key
protocols such as the Diffie-Hellman key agreement. The security of ECC is based on the
presumed intractability of the discrete logarithm problem over the curve.

A vast amount of research has been done on the security and efficient implementation
of ECC. Finite groups based on elliptic curves are very appealing, as the best algorithms
known to tackle the DLP over an elliptic curve has exponential running time, and this despite
intensive attempts on this problem. The interested reader may consult the recent book [3].

Recently, Climent, Ferrández, Vicent and Zamora [2] introduced a Diffie-Hellman key
exchange protocol which used a combination of matrix algebra ideas and adding points on
an elliptic curve. We will describe this new cryptosystem CFVZ in the next section. The
main results of this paper will be presented in Section 3. We will show that CFVZ can be
reduced to the problem of solving 2rs discrete logarithm problems over an elliptic curve in
a simultaneous manner. The complexity for doing this is considerably less than solving 2rs
single discrete logarithm problems over an elliptic curve.

2 The cryptosystem CFVZ of Climent-Ferrández-Vicent-

Zamora

Let E be an elliptic curve defined over the finite field Fq, and let E(Fq) denote the group of
Fq-rational points of E. Assume that E(Fq) is a cyclic group of order n. Denote by Matr(Z)
the set of all r × r matrices with integer entries and denote by Matr×s(E(Fq)) the set of
all r × s matrices whose entries are elements of the group E(Fq). Let r, s be fixed positive
integers and consider the set

ξ =

{[

A Π
B

]

: A ∈ Matr(Z), B ∈ Mats(Z), Π ∈ Matr×s(E(Fq))

}

.

The set ξ is a semigroup with the formal matrix multiplication

[

A Π
B

] [

C Φ
D

]

=

[

AC AΦ + ΠD
BD

]

,
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where

AΦ = [aij ][Pij] = [Qij ] with Qij =
r
∑

k=1

aikPkj

and similarly for ΠD.
Without loss of generality we will assume that A and B are matrices defined over Z/nZ.

If A and B are invertible matrices over the ring Z/nZ then we can consider the subgroup
generated by the public element

M =

[

A Π
B

]

.

Let m ≥ 1 be an integer. A direct computation shows that Mm =

[

Am Πm

Bm

]

where

Πm =
m
∑

i=0

Am−1−iΠBi. (1)

One way of setting up a discrete logarithm problem is:

“Given the matrices M and Mm, find m.”

As shown in [2], the order of M is the least common multiple of the orders of A and B
and hence the discrete logarithm problem has the character of a discrete logarithm problem
over the matrix ring.

A more interesting problem was introduced in [2], we will call this problem the

CFVZ discrete logarithm problem: given Π, Φ ∈ Matr×s(E(Fq)) , find
m ∈ Z such that Φ = Πm (whenever such an m exists).

Remark 2.1. Notice that if the CFVZ discrete logarithm problem has a solution m0, then
it has infinitely many solutions in Z. In fact, each element of the coset m0 + lZ is a solution,
if we let l be the order of M. Moreover, it may be Πm = Πm0

even for values of m for which
Mm 6= Mm0 .

Notice in addition that the sequence Πm is obtained from a recurrence relation, namely

Πm = AΠm−1 + ΠBm−1.

In particular, the sequence of the Πm has a period. However it is not true in general that
Πi = Πj implies Πi+1 = Πj+1.

The CFVZ discrete logarithm problem induces a Diffie-Hellman key exchange in the
following way:

• Alice chooses a private key k and computes

Mk =

[

Ak Πk

Bk

]

.

She takes Πk as her public key.
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• Bob chooses a private key l and computes

Ml =

[

Al Πl

Bl

]

.

He takes Πl as his public key.

• Then Alice and Bob consider matrices

R =

[

A Πl

B

]

and S =

[

A Πk

B

]

respectively and compute

Rk =

[

Ak (Πl)k

Bk

]

and S l =

[

Al (Πk)l

Bl

]

respectively.

The shared secret is then by equation (1)

(Πl)k =
k
∑

j=0

Ak−1−j

(

l
∑

i=0

Al−1−iΠBi

)

Bj =
l
∑

i=0

Al−1−j

(

k
∑

j=0

Ak−1−jΠBj

)

Bi = (Πk)l,

which both Alice and Bob can readily compute.
In order to attack the cryptosystem the following Diffie-Hellman problem has to be solved:

Problem 1. Given the matrix M, and the two public keys Πk and Πl, find (Πk)l = (Πl)k.

3 Cryptanalysis of the system

In this section we analyze the security of the CFVZ Diffie-Hellman key exchange as proposed
in [2]. We will show that solving the Diffie-Hellman Problem has the same complexity as
solving an ECDLP on E(Fq) and two linear system of equations in 2rs and r+s−1 or fewer
unknowns respectively.

For the applications, the curve E and the field Fq are always chosen so that the group
E(Fq) has prime order. However, here we will analyze the case when the group E(Fq) is
cyclic of order n, since this introduces no extra difficulty.

3.1 Reduction to a matrix problem

In a first step we show how to reduce the CFVZ discrete logarithm problem to a problem
involving matrices defined over Z/nZ only. For this assume that P ∈ E(Fq) is a generator
of the cyclic group E(Fq).

Let C = [cij ] ∈ Matr×s(Z/nZ) be a matrix such that

CP = Π where CP = [cijP ].
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Define the matrix

M =

[

A C
0 B

]

,

and assume

Mk =

[

Ak Ck

Bk

]

, where Ck =
k
∑

i=0

Ak−1−iCBi.

The following lemma is readily verified:

Lemma 3.1. Let k and l be positive integers and let

(Cl)k =
k
∑

j=0

Ak−1−j

(

l
∑

i=0

Al−1−iCBi

)

Bj .

Then
Πk = CkP and (Πl)k = (Cl)kP.

Based on this lemma, Problem 1 is solved if we solve a number of discrete logarithm
problems over the elliptic curve E(Fq), and the following matrix Diffie-Hellman problem:

Problem 2. Given the matrix M , and the two public keys Ck and Cl, find (Ck)l = (Cl)k.

In order to solve the CFVZ discrete logarithm problem it is therefore enough to compute

τ := 3rs (2)

discrete logarithm problems over the elliptic curve E(Fq) in order to compute matrices Ck,
Cl and C such that

Π = CP, Πk = CkP, and Πl = ClP.

Thereafter one has to tackle the linear algebra Problem 2.
In the remainder of this subsection we show that solving τ discrete logarithm problems

over the elliptic curve E(Fq) with regard to a fixed generator P is considerably less complex
than solving τ individual discrete logarithm problems. We now analyze the complexity of
solving a fixed number of DLPs in a given cyclic group. We also refer the reader to [8] for a
treatment of the same problem.

For this assume that P1, . . . , Pτ are points on the elliptic curve group E(Fq). We would
like to find integers n1, . . . , nτ such that:

Pi = niP, for i = 1, . . . , τ.

Using an adapted version of the Pollard rho algorithm we compute points of the form:

Qj =

τ
∑

i=1

cijPi + djP with cij, dj ∈ Z/nZ.
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We repeat this computation until there are more than τ equal pairs Qi = Qj and i 6= j.
This is a generalized birthday problem. Let Iij be the random variable having the value 1 if
Qi = Qj and the value zero otherwise and consider the random variable

W :=
∑

i<j

Iij.

We are interested that

P(W ≥ τ) >
1

2
(3)

where τ is defined by (2). As explained in [1, p. 104-107] (compare also with the recent
survey [4]) the random variable W is well approximated by a Poisson random variable. Based
on this fact, the probability of expression (3) can be computed in the following way:

Assume that α points Qj were computed. Let

λ :=

(

α

2

)

/n. (4)

Then the probability in (3) is approximated by the expression:

P(W ≥ τ) = 1 −
τ−1
∑

i=0

λi

i!
e−λ.

Already in the early 18’th century de Moivre [6, p. 214] was interested in the maximal
value τ such that P(W ≥ τ) ≥ 1

2
. Equivalently we can seek the minimal value α such that

with probability more than 1/2 there will be at least τ collisions.
Viewing the Poisson distribution as the limit of a binomial distribution with expected

value λ given by (4), one readily gets the approximation

τ ≤
(

α

2

)

/n,

or equivalently
√

α(α − 1) ≥
√

2τn.

The expected number of point additions for the τ discrete logarithm problems over E(Fq) is
therefore O(

√
rsn).

Once we have t ≥ τ collisions we immediately obtain a system of t linear equations:

T







P1

...
Pτ






=







v1

...
vτ






P = vP,

where T ∈ Matt×τ (Z/nZ) and the vector v ∈ (Z/nZ)τ . As soon as T has full rank τ , the
points Pi can all be computed from P through a simple matrix inversion of T . The cost of
inverting T over Z/nZ requires O(τ 3) modular multiplications.

In order to simultaneously solve the given τ discrete logarithm problems, we can also
follow a different approach. Let d be the determinant of the matrix T ∈ Matτ×τ (Z/nZ)
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that we obtain after collecting τ relations among the given points. Let g = gcd(d, n) be
the greatest common divisor of d and n, and let m = n/g. Then T has full rank over the
ring Z/mZ. Hence a simple matrix inversion gives us a1, . . . , aτ ∈ Z/mZ such that ni = ai

modulo m for all i = 1, . . . , τ . Because of the algorithm of Pohlig and Hellman, for all
practical purposes we can assume that n is of the form n = lp, where p is prime and l is
small. The probability that the determinant d is invertible modulo p is equal to

|GLτ (Z/pZ)|
|Matτ×τ (Z/pZ)| =

τ
∏

i=1

(

1 − 1

pi

)

.

Here |GLτ (Z/pZ)| denotes the number of invertible matrices of size τ × τ over Z/pZ,
|Matτ×τ (Z/pZ)| denotes the number of τ × τ matrices over Z/pZ. Therefore, with high
probability we can determine the value of n1, . . . , nτ modulo p. If l is small, then it is fea-
sible to compute the τ [l/2] points aiP, (ai + p)P, . . . , (ai + ([l/2] − 1)p)P for i = 1, . . . , τ ,
where [l/2] := min{b ∈ Z | 2b ≥ l}. Comparing them with Pi and −Pi one can recover the
value of ni modulo n.

If r and s are chosen relatively small in comparison to the size n of the elliptic curve,
then the computation of the matrices Ck, Cl and C is dominated by the task to find at least
3rs collisions, and this task has an expected complexity of O(

√
rsn) point additions.

3.2 Solution of the matrix problem

We are giving the matrix M in block-form, with A ∈ Matr×r(Z/nZ), C ∈ Matr×s(Z/nZ),
and B ∈ Mats×s(Z/nZ). We are working under the assumption that both A and B are
invertible. In fact, as we will see in the sequel we do not need this assumption in the analysis
of the complexity of Problem 2.

We can regard the operation of associating Ci to C as a map

−i : Matr×s(Z/nZ) −→ Matr×s(Z/nZ)
C 7→ Ci

.

The next lemma shows that the map distributes with respect to the sum.

Lemma 3.2. For any U, V ∈ Matr×s(Z/nZ) we have the identity

(U + V )i = Ui + Vi for i ∈ N.

Proof. Let

MX =

[

A X
0 B

]

for X = U, V, U + V . Then Xi is defined by

(MX)i =

[

Ai Xi

0 Bi

]

,

hence Xi = AXi−1 + XBi−1. We prove the thesis by induction on i. If i = 1, then

(U + V )1 = U + V = U1 + V1
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and the thesis is readily verified. Assume that (U + V )i−1 = Ui−1 + Vi−1 and prove the
analogous identity for i. We have

(U + V )i = A(U + V )i−1 + (U + V )Bi−1

= AUi−1 + AVi−1 + UBi−1 + V Bi−1

= Ui + Vi.

In the next lemma we prove that applying the map −i commutes with multiplying copies
of A on the left, and copies of B on the right. In fact, the same is true if we multiply on the
left by a matrix that commutes with A and on the right by a matrix that commutes with B.

Lemma 3.3. For any U ∈ Matr×s(Z/nZ) and for any j ∈ N, the following identities hold

(AjU)i = AjUi, (UBj)i = UiB
j .

Proof. Let

N =

[

A AjU
0 B

]

,

then (AjU)i is defined by

N i =

[

Ai (AjU)i

0 Bi

]

.

We prove the thesis by induction on i. If i = 1 then (AjU)1 = AjU = AjU1, so the thesis
is true. Assume that (AjU)i−1 = AjUi−1 and prove the analogous identity for i. By direct
computation, using the induction hypothesis, we obtain

(AjU)i = A(AjU)i−1 + (AjU)Bi−1

= A(AjUi−1) + Aj(UBi−1)

= Aj(AUi−1 + UBi−1)

= AjUi.

We can obtain the second identity by a similar argument.

In the next proposition we show how Problem 2 can be reduced to solving a linear system
over Z/nZ.

Proposition 3.4. Consider the linear system

Ck = a1C1 + · · ·+ ar+s−1Cr+s−1 (5)

where C1, . . . , Cr+s−1, Ck ∈ Matr×s(Z/nZ) are known, and a1, . . . , ar+s−1 ∈ Z/nZ are the
unknowns. The system has (at least) a solution. Any solution of (5) determines a homoge-
neous linear form fk(x1, . . . , xr+s−1) = a1x1 + · · · + ar+s−1xr+s−1 ∈ (Z/nZ)[x1, . . . , xr+s−1]
such that for all l ∈ N one has

(Cl)k = fk(Cl, (Cl)2, . . . , (Cl)r+s−1).
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Proof. Let χM(x) = det(xI −M) be the characteristic polynomial of M . Since χM(M) = 0,
then there exist α0, . . . , αr+s−1 ∈ Fp such that

Mk =
r+s−1
∑

i=0

αiM
i.

Hence by definition

Ck =

r+s−1
∑

i=0

αiCi =

r+s−1
∑

i=1

αiCi,

since C0 = 0. Then (α1, . . . , αr+s−1) is a solution of the linear system (5), in particular the
system always has at least a solution.

Now let (a1, . . . , ar+s−1) be a solution of (5). We claim that for all l ∈ N one has

(Cl)k =

r+s−1
∑

i=1

ai(Cl)i.

The thesis is trivially verified for l = 0 since C0 = 0. If l = 1 then (C1)i = Ci for all i, and

Ck =

r+s−1
∑

i=1

aiCi

since (a1, . . . , ar+s−1) is a solution of (5) by assumption. We proceed by induction on l ≥ 1.
Assume that the thesis holds for l − 1 and prove it for l. By induction hypothesis we

have that

(Cl−1)k =
r+s−1
∑

i=1

ai(Cl−1)i.

Since Cl = ACl−1 + C1B
l−1, then by Lemmas 3.2 and 3.3 we have the following chain of

equalities

r+s−1
∑

i=1

ai(Cl)i =

r+s−1
∑

i=1

ai

(

ACl−1 + C1B
l−1
)

i

=

r+s−1
∑

i=1

ai(ACl−1)i +

r+s−1
∑

i=1

ai(C1B
l−1)i

=
r+s−1
∑

i=1

aiA(Cl−1)i +
r+s−1
∑

i=1

ai(C1)iB
l−1

= A

[

r+s−1
∑

i=1

ai(Cl−1)i

]

+

[

r+s−1
∑

i=1

ai(C1)i

]

Bl−1

= A(Cl−1)k + CkB
l−1

= A(Ck)l−1 + CkB
l−1
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where the last equality follows from the fact that for each i, j one has (Ci)j = (Cj)i. Moreover,
by definition one has that

A(Ck)l−1 + CkB
l−1 = (Ck)l = (Cl)k.

This completes the proof.

Remarks 3.5.

• In the proof of Proposition 3.4 we do not need to make any assumption on the matrices
A, B. In fact, we only require the existence of a polynomial χM(x) of degree smaller
than or equal to r + s − 1, with the property that χM(M) = 0. Such a polynomial
χM(x) always exists, since every square matrix over a finite filed has a minimal and
characteristic polynomial. In particular, we do not need to assume that A and B are
invertible.

• The system (5) may or may not have a unique solution. If the system does not have
a unique solution, one of its solutions does not necessarily give us enough information
to recover Ak or Bk, hence k (solving a DLP in a matrix group).

• The rank of the system (5), hence the dimension of the family of solutions of the
system itself, is not relevant towards the goal of solving Problem 2. In fact, it follows
from Proposition 3.4 that any solution of (5) enables us to compute (Cl)k from the
knowledge of Ck and Cl. In practice, in order to simplify the computations it may be
useful to choose a sparse solution for the linear system (5) whenever this is possible.

• A necessary condition for uniqueness of the solution of the system (5) is that M be
non-derogatory (i.e. χM(x) is equal to the minimal polynomial of M).

The next corollary is a straightforward consequence of Proposition 3.4.

Corollary 3.6. With the notation of Section 1 and of Proposition 3.4 one has

(Πl)k = fk(Πl, (Πl)2, . . . , (Πl)r+s−1).

4 Complexity Analysis

In this paper we analyzed the complexity of solving the Diffie-Hellman Problem, as arising
from the Diffie-Hellman key-exchange proposed in [2]. The approach that we suggest in order
to solve the problem is the following:

1. Use a modified version of the algorithm rho of Pollard and find matrices C, Ck, Cl ∈
Matr×s(Z/nZ) such that CP = Π, CkP = Πk, and ClP = Πl.

2. Compute C1, . . . , Cr+s−1, then find one solution (a1, . . . , ar+s−1) of the linear system

Ck = a1C1 + . . . + ar+s−1Cr+s−1. (6)
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3. Compute (Cl)k = a1(Cl)1 + · · ·+ ar+s−1(Cl)r+s−1.

4. Compute the secret key (Πl)k = (Cl)kP .

We showed that the complexity of the first step amounts to solving τ = 3rs simultaneous
DLP’s in E(Fq) and the expected complexity is O(

√
rsn).

The complexity of the second step amounts to the inversion of a (r + s− 1)× (r + s− 1)
matrix over Z/nZ. When n ≫ r, s this complexity is polynomial in log n. Similarly the third
step is an easy linear algebra task. Finally the fourth step involves a number of costly point
additions on the elliptic curve.

When n ≫ r, s the complexity of the first step dominates the complexities of the other
steps. In this case the complexity of solving Problem 1 is at most O(

√
rsn).

Instead of computing 3rs DPL’s it is also possible to only find the matrices C and Ck by
solving 2rs DPL’s. Like in step 2 one finds (a1, . . . , ar+s−1) satisfying (6).

Using the recurrence relation one then finds (Πl)1, . . . , (Πl)r+s−1. From this the secret
key (Πl)k is readily computed as:

(Πl)k = a1(Πl)1 + · · ·+ ar+s−1(Πl)r+s−1.

The advantage of this variant of the algorithm is that only 2rs DLP’s have to be com-
puted. The disadvantage is that many more point additions are required in order to compute
(Πl)k. This variant is however faster in situations when r, s are small in comparison to n.
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