
A Fast and Key-Efficient Reduction of Chosen-

Ciphertext to Known-Plaintext Security?

Ueli Maurer and Johan Sjödin

Department of Computer Science, ETH Zurich, CH-8092 Zurich, Switzerland
{maurer, sjoedin}@inf.ethz.ch

Abstract. Motivated by the quest for reducing assumptions in security
proofs in cryptography, this paper is concerned with designing efficient
symmetric encryption and authentication schemes based on any weak

pseudorandom function (PRF) which can be much more efficiently im-
plemented than PRFs. Damg̊ard and Nielsen (CRYPTO ’02) have shown
how to construct an efficient symmetric encryption scheme based on any
weak PRF that is provably secure against chosen-plaintext attacks. The
main ingredient is a range-extension construction for weak PRFs. By
using well-known techniques, they also showed how their scheme can be
made secure against the stronger chosen-ciphertext attacks.
The results of our paper are three-fold. First, we give a range-extension
construction for weak PRFs that is optimal within a large and natural
class of reductions (especially all known today). Second, we propose a
strengthening of a weak PRF to a PRF. Third, these two results imply
a (for long messages) much more efficient chosen-ciphertext secure en-
cryption scheme than the one proposed by Damg̊ard and Nielsen. The
results also give answers to open questions posed by Naor and Reingold
(CRYPTO ’98) and by Damg̊ard and Nielsen.

1 Introduction

1.1 Weakening of Cryptographic Assumptions

A general goal in cryptography is to prove the security of cryptographic systems
under assumptions that are as weak as possible. Provably secure encryption and
authentication schemes based on a pseudorandom function (PRF) [11] have been
studied extensively [10]. Informally, a PRF is an efficient function with a secret
key that cannot be efficiently distinguished from a uniform random function even
when it can be queried adaptively (i.e., under a chosen-plaintext attack (CPA)).

The notion of a PRF is very strong and, indeed, it is unclear whether func-
tions such as block ciphers proposed in the literature have this very strong secu-
rity property.1 When designing cryptographic schemes, it is prudent to postulate

? This work was partially supported by the Zurich Information Security Center. It
represents the views of the authors.

1 For example, the design criteria for AES did not include a requirement that a can-
didate proposal be a PRF, only that it be secure as a block cipher in certain modes
of operation, against certain types of attacks.

weaker properties as this makes it more likely that a certain function has such
properties or, equivalently, there are potentially more efficient implementations
for the weaker requirement compared to the stronger.

A very promising weaker notion of pseudorandomness, proposed by Naor and
Reingold [18] (see also [19, 1, 8, 20, 22]), is the weak PRF (WPRF). Informally,
a WPRF is a function with a secret key that cannot be efficiently distinguished
from a uniform random function when given a sequence of random inputs and
the corresponding outputs (i.e., under a known-plaintext attack (KPA)). Highly
efficient candidates for WPRFs are described in [7] (cf. [19]), although these are
not targeted at this particular security notion explicitly. It is an interesting open
problem for further research how much block-cipher design can benefit from this
weakening of the desired security goal.

While the design of WPRFs has not been studied as extensively as for PRFs,
a concrete argument showing that WPRFs are substantially weaker than PRFs
is that WPRFs can have rather strong structural properties which are known to
be devastating for PRFs. For instance, if G is a group of prime order p in which
the Decisional Diffie-Hellman (DDH) [9] assumption holds, then

F : Zp × G → G defined by Fk(x)
def

= F (k, x) = xk, (1)

where k denotes the secret key, is a WPRF that commutes (i.e., Fk(Fk′ (x)) =
Fk′ (Fk(x))) [17]. A WPRF can also be self inverse (i.e., Fk(Fk(x)) = x), have
a small fraction of bad points (e.g. Fk(x) = x or Fk(x) = k), and have related
outputs (e.g. Fk(x‖1) = Fk(x‖0) for all x). Due to such structural flaws, most
encryption and authentication schemes based on a PRF become insecure if the
PRF is simply replaced by a WPRF (for examples see [8]).

In this paper, we propose provably secure encryption and authentication
schemes, for the strongest security notion, under the sole assumption of a WPRF.
Of course, the security could be based on even weaker assumptions like the one-
wayness of certain functions (as PRFs can be obtained from any one-way function
[12, 11]), but these schemes are not of practical interest due to their inefficiency.

1.2 Contributions and Related Work

The main motivation for this paper is Damg̊ard and Nielsen’s elegant work on
WPRFs [8]. In their paper, the Pseudorandom Tree (PRT) construction was
introduced for transforming any WPRF F :{0, 1}n×{0, 1}n→{0, 1}n (where the
first argument is the key input) into a variable-output-length2 (VOL) WPRF

PRTF : {0, 1}3n × {0, 1}n × N→ {0, 1}∗.

They also proposed an efficient CPA-secure3 symmetric encryption scheme based
on PRTF , that is defined by encrypting a message m ∈ {0, 1}∗ under a key

2 For a VOL function family V : K×{0, 1}n×N → {0, 1}∗, |Vk(x, l)| = l for all k, x, l.
3 Here, CPA formalizes an adversary’s inability, given access to an encryption oracle,

to distinguish between two plaintexts given the encryption of one of them.

2

k ∈ {0, 1}3n and some auxiliary uniform randomness r ∈ {0, 1}n, as

(k, r, m) 7→
(

r, PRTF
k (r, |m|)⊕m

)

. (2)

To point out the efficiency of this encryption scheme (and also as a reference for
the schemes presented in this work), let us compare it with standard modes of
operation such as CBC and CTR. Whereas CBC and CTR invoke the underlying
block cipher once per message block to encrypt/decrypt, this scheme invokes the
underlying function F once per message block to encrypt/decrypt and roughly
2 · log2(b) times (where b is the number of message blocks) for generating more
key material from the initial key (see below). The key generation can be done
offline, so that the throughput is exactly the same as for CBC and CTR. However,
whereas CBC and CTR are CPA-secure if the underlying block cipher is a PRF,
the Damg̊ard-Nielsen scheme is CPA-secure even when the underlying function is
a WPRF, and as WPRFs can be more efficiently implementable than PRFs, their
scheme can also be the overall most efficient one. Unfortunately, these modes of
operations are not secure against the stronger chosen-ciphertext attack (CCA)4.
In [18, p. 279], Naor and Reingold posed an open problem of how to construct
an efficient CCA-secure encryption scheme based on any WPRF. Damg̊ard and
Nielsen showed (using well-known techniques) how their CPA-secure scheme can
be transformed to a CCA-secure one. Their open question [8, p. 464] whether
this can be done more efficiently has been the main motivation for this work.

Before we present our results, let us briefly describe the underlying idea of
the PRT-construction (illustrated in Fig. 1(a) on page 9). In a first step, some
key material k1, . . . , kd is generated from the initial key k by invoking F in an
iterative manner, and then the output blocks are derived by applying Fki

, for
i ∈ {1, . . . , d}, iteratively to the input or a previously derived output block.
For constructions of this type it is crucial for the security and the efficiency (in
terms of the number of applications of F relative to the output length) that
this is scheduled in the right way. Recently, two more constructions of this type,
the Expanded PRT (ERT) (see Fig. 1(a)) and the Factorial Tree (FCT), were
proposed in [16]. However, as we point out in Sect. 3.2, the latter and more
efficient construction of the two turns out to be flawed. A natural problem that
arises is to find the most efficient VOL-WPRF construction (of this type).

The contributions of this paper are the following:

1. The ICT-Construction – A VOL-WPRF from any WPRF: Our
Increasing Chain Tree (ICT) construction (see Fig. 1(b)) is more efficient
than PRT and ERT (with d generated keys ICT expands the input by a factor
of 2d − 1, whereas PRT and ERT expand the input by roughly 1.44d and
1.73d, respectively), and ICT also uses a shorter initial key (by a factor of 3).
Interestingly, the generated key sequence k1, . . . , kd is not pseudorandom as
opposed to the case for PRT and ERT. Indeed, we give strong arguments that
ICT is optimal within the large and natural class of constructions described
above, and hence also that it is optimal to use ICT instead of PRT in (2).

4 In a CCA, the adversary has access to an encryption and decryption oracle.

3

2. The IC-Construction – A PRF from any WPRF: Our Increas-
ing Chain (IC) construction is similar in nature to Goldreich, Goldwasser,
and Micali’s (GGM) [11] construction of a PRF from any PRG, but it
is more than twice as efficient than first transforming the WPRF into a
PRG and then applying the GGM-construction. It is also more efficient
than the strengthening of a WPRF to a PRF given in [19]5. This solves
their open problem [18, p. 278] whether a more efficient strengthening ex-
ists positively. Interestingly, if we instantiate the IC-construction with the
DDH-based WPRF F defined in (1), we get Naor and Reingold’s [20] highly
efficient PRF based on the DDH assumption but with a non-trivial6 reduc-
tion of the key-material by a factor of roughly the input length of the PRF.

3. CCA-Secure Encryption based on any WPRF: The above results
combined with a Wegman-Carter [25] based message authentication code
(MAC) and the well-known encrypt-then-MAC method [15, 5], yield a CCA-
secure encryption scheme from any WPRF that is substantially more effi-
cient than the CCA-secure encryption scheme proposed by Damg̊ard-Nielsen
(their number of applications to the WPRF for the MACing is linear in the
message length whereas ours is constant). We observe that for our purposes
a much weaker primitive than the MAC, namely a weak MAC (WMAC)7,
is sufficient (encrypt-then-WMAC actually does the job). This raises the
question of constructing possibly efficient WMACs from any WPRF.

4. Non-adaptive 8 CCA-Secure Encryption based on any WPRF and

WMAC: Although this type of security may (like CPA-security) be unsat-
isfactory in practice, the exact requirements for achieving standard security
notions are interesting in their own right. It might also motivate further
research on basing strong primitives on weak assumptions. Non-adaptive
CCA-security has been studied under stronger assumptions in [18].

2 Preliminaries

2.1 Notation and Definitions

Let s
$
←S denote that s is selected uniformly at random from the set S. If D is

a probability distributions over S then s← D denotes the operation of selecting
s at random according to D. If x and y are two bitstrings, x‖y denotes their

concatenation, x[i] the i-th bit of x, x[i, j]
def

= x[i]‖x[i + 1]‖ · · · ‖x[j] for i < j,

and x[i, i]
def

= x[i]. For two functions f and g, f ◦ g (x)
def

= f(g(x)). A function

has variable-input-length (VIL) if the domain is {0, 1}≤N def

= ∪N
i=1{0, 1}i (for

some N > 1), and a function f : {0, 1}n × N → {0, 1}∗ has variable-output-
length (VOL) if for all all x and l, |f(x, l)| = l and f(x, l + 1) = f(x, l)‖b for
some bit b. Let RN,n and R≤N,n denote uniform random functions with range

5 In that work, the PRF is reduced – via a pseudorandom synthesizer – to a WPRF.
6 The key is not replaced by a pseudorandom sequence based on F .
7 A WMAC is unforgeable under a known-plaintext attack (see [18]).
8 Here the adversary has no oracle access after the challenge (ciphertext) is presented.

4

{0, 1}n, and domain {0, 1}N and {0, 1}≤N , respectively. Let Rn,∗ denote a VOL-
function {0, 1}n×N→ {0, 1}∗ for which Rn,∗(·, l) is a uniform random function
{0, 1}n → {0, 1}l for all l. Abusing notation, we refer to Rn,∗ as a uniform
random VOL-function. We let Pr[Π : E] denote the probability of event E in
random experiment Π . AO denotes an algorithm A with access to an oracle O.

2.2 Cryptographic Functions

Concrete Security. We state our results in the concrete security framework,
which was formalized for the following primitives by Bellare, Kilian, and Rog-
away [4]. Let Of denote the oracle which, if invoked, returns (r, f(r)) for a
uniform random input r of the function f . The w-advantage of adversary A for
F : K × {0, 1}N → {0, 1}n with w ∈ {prf ,wprf ,mac,wmac} is defined as:

Advprf
F, A

def

=
∣
∣
∣Pr

[

k
$
←K, b← AFk : b = 1

]

−Pr
[
R← RN,n, b← AR : b = 1

]
∣
∣
∣

Advwprf
F, A

def

=
∣
∣
∣Pr

[

k
$
←K, b← AOFk

: b = 1
]

−Pr
[

R← RN,n, b← AOR

: b = 1
]∣
∣
∣

Advmac
F, A

def

=

∣
∣
∣
∣
Pr

[

k
$
←K, (m, τ) ← AFk, b =

{

1 if τ = Fk(m), m “new”
0 otherwise

: b = 1

]∣
∣
∣
∣

Advwmac
F, A

def

=

∣
∣
∣
∣
Pr

[

k
$
←K, (m, τ) ← AOFk

, b =

{

1 if τ = Fk(m), m “new”
0 otherwise

: b = 1

]∣
∣
∣
∣

where “m new” stands for the event that m is distinct from the inputs to Fk. The

maximal w-advantages are defined as Advw
F (t, q)

def

= maxA{Advw
F, A}, where the

maximum is taken over all A restricted to time-complexity9 t and q (respectively
q − 1 if w ∈ {mac,wmac}) invocations of its oracle.

VIL-Function Families. For a VIL-function family F : K × {0, 1}≤N →
{0, 1}n, the vil-mac-advantage Advvil-mac

F, A is defined like the mac-advantage,

except that the adversary A may query inputs of any length (≤ N). Let Of
vil

(for some VIL-function f) denote an oracle that on input l ≤ N generates a uni-
form random input r ∈ {0, 1}l and outputs (r, fk(r)). The vil-wmac-advantage
Advvil-wmac

F, A is defined like the wmac-advantage except that the oracle O is
replaced by Ovil. For w ∈ {mac,wmac}, the maximal advantage is defined as

Advvil-w
F (t, q, µ)

def

= maxA{Advvil-w
F, A }, where the maximum is taken over all A

with time-complexity t, making at most q − 1 oracle invocations such that the
total length of the inputs to F (including the forgery message) is at most µ bits.

VOL-Function Families. Let Of
vol denote the oracle that on input l ∈ N

outputs (r, f(r, l)) for a uniform random r ∈ {0, 1}n. For a VOL-function family
F : K × {0, 1}n × N→ {0, 1}∗, the vol-wprf -advantage of A for F is

Advvol-wprf
F, A

def

= Pr
[

k← K, b←AO
Fk
vol :b = 1

]

−Pr
[

R← Rn,∗, b←AOR

vol :b = 1
]

,

9 I.e., t is the worst-case total running time (including the length of A) of the experi-
ment in which A interacts with its oracle (in some fixed RAM model of computation).

5

and by maximizing over all A, restricted to time-complexity t and at most q ora-
cle queries whose sum totals at most µ, we get the maximal vol-wprf -advantage

Advvol-wprf
F (t, q, µ)

def

= maxA{Advvol-wprf
F, A }.

3 The IC- and ICT-Construction

In this section, we propose the IC-construction, for transforming a WPRF into a
PRF, and the ICT-construction, for transforming a WPRF into a VOL-WPRF.
Throughout, let F : {0, 1}n×{0, 1}n → {0, 1}n denote a function family and tF
the worst-case running time for computing F .10

3.1 A PRF from any WPRF

The IC-construction transforms F : {0, 1}n × {0, 1}n → {0, 1}n into

ICF : ({0, 1}n × {0, 1}n × {0, 1}n)× {0, 1}N → {0, 1}n,

for some fixed N , where ICF
k1,r,τ1

(x) is defined by the following algorithm:

if |x| > 1 then
for i = 2 to |x| do ki = Fki−1

(r)
for i = 1 to |x| do

if x[i] = 1 then
τi+1 = Fki

(τi)
else

τi+1 = τi

return τ|x|

The following theorem states that ICF is a PRF if F is a WPRF, even if the
r-value of the initial key is not kept secret. Note that F is invoked at most 2N−1
times. However, the first N−1 invocations can be pre-processed and cached, and
hence at most N invocations are necessary or, to be precise, as many invocations
as there are ones in the input.

Theorem 1. For any t, q, and input length N of ICF

Advprf

ICF (t, q) ≤ N ·

(

Advwprf
F (t, q) +

q(q + 1)

2n+1

)

.

Proof. Let Π0 denote the following random experiment for an adversary A with
time-complexity t which makes at most q queries to its oracle:

(k1, r, τ1)
$
←{0, 1}n × {0, 1}n × {0, 1}n, b← AICF

k1,r,τ1 .

10 For simplicity, we choose the key-length to be the same as the input length. We refer
to [8] for constructing such an F from any WPRF.

6

For any query x issued by A and any s ∈ {1, . . . , N}, the sequence (τ1, . . . , τs) (re-
sulting from the second for-loop) does not depend on x[s, N]. Hence, (τ1, . . . , τs)
can be reused for any other query x′ for which x[1, s−1] = x′[1, s−1]. We assume
that ICF

k1,r,τ1
reuses previously computed τ -values (for saving calls to F) when-

ever possible, by maintaining a look-up table with all the entries (x[1, s], τs+1)
for which x is a query to ICF

k1,r,τ1
, s ∈ {1, . . . , N}, and x[s] = 1. We also as-

sume that the calls to F in the first for-loop are pre-processed and cached. For
j = 1, . . . , N , let Π2j−1 be the same experiment as Π2j−2 except that Fkj

is re-
placed by a random function Rj , and let Π2j be the same experiment as Π2j−1

except that for each query x issued by A, for which x[j] = 1 and x[1, j] is not in
the look-up table, the output of Rj is replaced by a uniform random R ∈ {0, 1}n

and (x[1, j], R) is inserted into the table. Let Si be the event that b = 1 in Πi,
for i = 0, . . . , 2N . Now, as Π2N is equivalent to [R← RN,n, b← AR], we get

Advprf

ICF,A

def

=
∣
∣Pr[S0]−Pr[S2N]

∣
∣

≤
N∑

j=1

∣
∣Pr[S2j−2]−Pr[S2j−1]

∣
∣ +

N∑

j=1

∣
∣Pr[S2j−1]−Pr[S2j]

∣
∣

≤

N∑

j=1

Advwprf
F

(
t, min{q+1, 2j−1+1}

)
+

N∑

j=1

min

{
(q+1)q

2n+1
,
(2j−1+1)2j−1

2n+1

}

≤ N ·

(

Advwprf

F (t, q + 1) +
(q + 1)q

2n+1

)

,

due to the triangle inequality and the following two facts. First, A can (for
j = 1, . . . , N) be transformed to a WPRF distinguisher A′ for F with time-
complexity t, making at most min(q+1, 2j−1 +1) oracle invocations, and having
advantage at least |Pr[S2j−2] − Pr[S2j−1]|. A′ with adversary T , simulates the
experiment Π2j−2 if T is an instance of F and Π2j−1 if T is a random function
R (which is possible as all queries to Fkj

in Π2j−2 and to Rj in Π2j−1 are
distributed uniformly at random). Finally, A′ decides as A does. Second, Π2j−1

and Π2j are equivalent experiments as long as no collision among the inputs on
which Rj is invoked occurs. As Rj is invoked on at most min{q+1, 2j−1+1}
inputs and these are all random, the probability of this event is upper bounded
by min

{
(q+1)q/2n+1, (2j−1+1)2j−1/2n+1

}
. ut

Key Reduction of Naor-Reingold’s DDH-Based PRF. In [20], Naor and
Reingold presented a highly efficient construction of a PRF based on the DDH
assumption. It is easy to verify, that ICF with F as defined in (1) is the same PRF
but with a significantly shorter key by a factor of roughly N (recall that N is
the input length of ICF). To be more precise, the first for-loop (above) generates
a sequence k1, . . . , kN of keys from the initial key (k1, r, τ1) and the second for-
loop exactly corresponds to the Naor-Reingold construction with k1, . . . , kN as
its key. Note that the reduction is non-trivial in the sense that k1, . . . , kN is not
generated from a PRG based on F . For instance F−1

k1
(k2) = F−1

k2
(k3) holds which

can easily be verified given k1, k2, and k3.

7

The GGM-Approach. An alternative (but less efficient) approach to obtain a
PRF from any WPRF F is to first transform F into a pseudorandom generator
(PRG) and then apply the so-called GGM-construction [11] (which transforms a
PRG into a PRF). Informally, a PRG is an efficient deterministic function map-
ping a truly random string (or seed) to a longer string which is computationally
indistinguishable from random. Let us briefly describe the GGM-construction.
It transforms a length-doubling PRG G into a PRF (say with N -bits input) as

GGMk(x)
def

= Gx[1] ◦ . . . ◦Gx[N](k),

where G0(k) and G1(k) denote the left and right half of G(k), respectively. The
most efficient construction of a length doubling PRG G from F , that we are
aware of, uses 3 and 4 invocations to F , respectively, for computing G0 and G1:

G(k1‖r‖x)
def

= x‖Fk1
(x)‖Fk2

(x)‖Fk2
◦ Fk1

(x)‖Fk3
(x)‖r,

where k2 = Fk1
(r) and k3 = Fk2

(r). The proof that G is a PRG if F is a
WPRF follows directly from Theorem 2 (below) and the fact that G(k1‖r‖x) =
x‖ ICTF

k,r(x, 4n)‖r. Hence, to get a PRF with N -bits input and n-bits output,
we roughly need 4N invocations of F per call in the worst case (cf. the efficiency
of ICF above).

3.2 A VOL-WPRF from any WPRF

The ICT-construction is illustrated in Fig. 1(b) and is defined as

ICTF : ({0, 1}n × {0, 1}n)× {0, 1}n × N→ {0, 1}∗

((k, r), x, l) 7→
(
ICF

k,r,x(〈1〉)
∥
∥ ICF

k,r,x(〈2〉)
∥
∥ · · ·

∥
∥ ICF

k,r,x(〈dl/ne〉)
)
[1, l],

where 〈i〉 denotes the reversed standard bit encoding of i (e.g. 〈0〉 = 0, 〈1〉 =
1, 〈2〉 = 01, 〈3〉 = 11, 〈4〉 = 001). Note that ICF

k,r,x(〈0〉) = x can not be part of

the output, as x is the input. It is easy to verify, see Fig. 1(b), that ICTF
k,r(x, l)

needs d − 1 = blog2(dl/ne)c calls to F for computing (or pre-computing) the
needed keys k1, . . . , kd and further dl/ne calls for computing the output (i.e.,
one call per output block). The next theorem states that ICTF is a VOL-WPRF
if F is a WPRF. As for IC, the r-value of the key need not be kept secret.

Theorem 2. For any t, q, and µ

Advvol-wprf

ICTF (t, q, µ) ≤ dmax ·Advwprf
F (t′, q2dmax−1 + 1) +

4dmax · q2

2n
,

where t′ = t +O(q·lmax

n
· tF), dmax = blog2(dlmax/ne)c+ 1, and lmax ≤ µ is the

maximum allowed output length of ICTF .

Proof. Let Π0 denote the following random experiment for an adversary A with
time-complexity t that make at most q queries whose sum is at most µ:

(k, r)
$
←{0, 1}n × {0, 1}n, b← AO

ICT
F
k,r

vol .

8

PSfrag replacements

Fk1

Fk2

Fk3

Fk4

F
r

k′

0

r
r′

k′

1, k
′

2, k
′

3

x
Fk′

4

Fk′

3

Fk′

2

Fk′

1

k4

k3

k2

k1

G1

G2

G3

Gi

Fk2i−1
Fk2i

FF

k1

r r′

k′

1

k′

2, . . . , k
′

6

k′

1, . . . , k
′

6

k1, . . . , k6

PSfrag replacements

Fk1

Fk2

Fk3

Fk4

F
r

k′

0

r
r′

k′

1, k
′

2, k
′

3

x x

Fk′

4

Fk′

3

Fk′

2

Fk′

1

k4

k3

k2

k1

G1G1

G2G2 G2G2G2

G3G3G3G3 G3G3G3G3G3G3G3G3G3
Gi

Fk2i−1

Fk2i

(a) Computation of PRTF
k′

1
,r,r′(x, 14n) (bottom left) and ERTF

k′

1
,r,r′(x, 26n)

(bottom right), i.e., the maximal sized output using 6 generated keys k1, . . . , k6

(upper left). Here every output of Gi (defined upper right) for i = 1, 2, 3 is part
of the global output.

PSfrag replacements

Fk1

Fk2 Fk2

Fk3 Fk3
Fk3

Fk3

Fk4 Fk4
Fk4 Fk4

Fk4
Fk4

Fk4
Fk4

Fk5
Fk5

Fk5
Fk5

Fk5
Fk5

Fk5
Fk5

Fk5
Fk5

Fk5
Fk5

Fk5
Fk5

Fk5
Fk5

F
r

k1

r

r′

k2, k3, k4, k5

x

Fk′

4

Fk′

3

Fk′

2

Fk′

1

k0

k1

k2

k3

(b) Computation of ICTF
k1,r(x, 31n), i.e., the output of maximal size using 5

generated keys k1, . . . , k5 (upper right). Here every output of F – except for the
generated keys (upper right) – is part of the global output. We stress that the
order of the output blocks are not the same as presented in the text.

Fig. 1. Illustration of (a) PRT [8], ERT [16], and (b) ICT (of this paper). The generated
key sequence k1, k2, . . . is not pseudorandom in (b) as opposed to in (a) (see Sect. 3.1).

9

Let d denote the maximal number of generated keys (for F), needed for answering
the queries to ICTF

k,r issued by A. Note that the j-th instantiation of F , i.e., Fkj
,

for j ∈ {1, . . . , d}, is queried at most qj = q · (2j−1 + 1) times. For j = 1, . . . , d,
let Π2j−1 denote the same random experiment as Π2j−2 except that Fkj

is
replaced by a random function Rj , and let Π2j be the same experiment as Π2j−1

except that the outputs of Rj are replaced by uniform random n-bit strings.

Furthermore, let Π2d+1 denote the random experiment [R
$
←Rn,∗, b ← AOR

vol].
Now, for i = 0, . . . , 2d + 1, let Si denote the event that b = 1 in Πi. We get

Advvol-wprf

A, ICTF =
∣
∣Pr[S0]− Pr[S2d+1]

∣
∣

≤

d∑

j=1

∣
∣Pr[S2j−2]−Pr[S2j−1]

∣
∣ +

d∑

j=1

∣
∣Pr[S2j−1]−Pr[S2j]

∣
∣ +

∣
∣
∣
∣
Pr[S2d]− Pr[S2d+1]

∣
∣
∣
∣

≤

d∑

j=1

Advwprf

F (t, qj) +

d∑

j=1

q2
j

2n+1
+

q2

2n+1
≤ d ·Advwprf

F

(
t, q(2j−1+1)

)
+

q24d

2n
,

using the triangle inequality and the following facts. As Π2d and Π2d+1 are
equivalent experiments as long as the input part of the samples returned by
the oracle are distinct, we get |Pr[S2d] − Pr[S2d+1]| ≤ q2/2n+1. Furthermore,
as Π2j−1 and Π2j are equivalent as long as the random inputs to Rj are all
distinct, it holds that |Pr[S2j−1] − Pr[S2j]| ≤ q2

j /2n+1. Finally, |Pr[S2j−2] −

Pr[S2j−1]| ≤ Advwprf
t,qj

(F) as A can be transformed into a WPRF distinguisher
A′ for F with time-complexity t, that makes qj oracle queries and has advantage

|Pr[S2j−2]− Pr[S2j−1]|. A′ with oracle OT simply simulates the random experi-
ment that is equivalent to Π2j−2 if T is an instance of F and to Π2j−1 if T is a
random function R (this is possible as the inputs to Fkj

in Π2j−2 and to Rj in
Π2j−1 are distributed uniformly at random). Finally, A′ decides as A does. ut

The FCT-Construction is Flawed. Let us point out that the security proof
of FCT (in [16]) is flawed. The maximal sized output of FCTF for two generated
keys k1 and k2 is defined as

x 7→ Fk1
(x)‖Fk2

(x)‖Fk2
◦ Fk1

(x)‖Fk1
◦ Fk2

(x). (3)

Clearly, the construction is insecure for any WPRF F that commutes (i.e., for
which Fk2

◦ Fk1
(x) = Fk1

◦ Fk2
(x) for all k1, k2, and x). As such WPRFs exist

under the DDH assumption (see (1)), a fix of the security proof would contradict
the assumption and thus be a major breakthrough in number theory.11

Comparing ICT with other Constructions. The idea behind PRT of [8],
ERT of [16], and ICT is to first generate keys k1, . . . , kd from the initial key
(and F) and then to derive the output blocks sequentially by invoking Fki

(with
i ∈ {1, . . . , d}) to the input or a previously computed output block (see Fig. 1).

11 However, information theoreticly (and even in Minicrypt, i.e., under the assumption
that one-way functions exist but no public-key cryptography) (3) is secure [21, 22].

10

ICT is superior to PRT and ERT for three reasons. First, the initial key of
ICT is n bits (plus n bits that may be publicly known) versus 3n bits for PRT
and ERT. Second, ICT needs d − 1 invocations of F to generate the d keys
k1, . . . , kd whereas PRT and ERT needs 2d− 1. Third, the maximal output size
using k1, . . . , kd is (2d−1)n for ICT, roughly (3

d
2−1)n for ERT, and roughly

(2
d
2
+1−2)n for PRT.12 For all constructions, the keys needed for computing

outputs of length bounded by some fixed value (say lmax) can be pre-processed,
such that one call of F is needed per output block. But whereas ICT needs to

store say s
def

= blog2(dlmax/ne)c+1 keys, ERT and PRT store about d1.26 ·se and
2 · s keys, respectively. The factor in front of the wprf -advantage in the security
reduction reduces correspondingly, i.e., for s as defined above we roughly have

Advvol-wprf

ICTF (t, q) ≤ s ·Advwprf

F (t, 2s−1q) + 4sq2/2n

Advvol-wprf

ERTF (t, q) ≤ 1.26s ·Advwprf
F (t, 2s−1q/3) + 4sq2/(2n · 9)

Advvol-wprf

PRTF (t, q) ≤ 2s ·Advwprf
F (t, 2s−1q/4) + 4sq2/(2n · 16).

Optimality of the ICT-Construction. In [22], we show that there is no
black-box proof of the security for constructions that expands more than ICT
(for any fixed number of generated keys). Here, we show something stronger
for the constructions with log-time random access to output blocks, i.e., for
the rather balanced constructions where the maximal length of the composition
chains are in O(log(l)) for output length l, namely that ICT is optimal within
that class of constructions under the inverse DDH (IDDH) assumption [2].

To be more precise, note that – for l = 3n – the value ICTF
k1,r(x, l) is derived

by first computing k2 = Fk1
(r) and then returning

y := Fk1
(x)‖Fk2

(x)‖Fk2
◦ Fk1

(x).

For l = 7n, an extra key k3 = Fk2
(r) is derived and

y‖Fk3
(x)‖Fk3

◦ Fk1
(x)‖Fk3

◦ Fk2
(x)‖Fk3

◦ Fk2
◦ Fk1

(x)

is returned. A natural question is whether more can be output before a new
key needs to be generated, i.e., for a fixed number of generated keys (say k1,
k2, and k3), can we output more than ICTF maximally can (i.e., more than
7n bits) by invoking the instantiations (i.e., Fk1

, Fk2
, Fk3

) one more time than
ICTF does (i.e., 8 times instead of 7). The answer turns out to be “no” unless
the IDDH assumption is false, since otherwise there is a WPRF F , described
in (4), which with high probability both commutes and is self inverse, i.e., for all
k 6= k′: Prx[Fk ◦ Fk′ (x) = Fk′ ◦ Fk(x)] ≈ 1/4 and Prx[Fk ◦ Fk(x) = x] ≈ 1/2. If
F is used and more is output at least two output blocks will (by the pigeonhole
principle) have the same value with high probability (which is unlikely for a
uniform random VOL-function). F is defined for a group G of prime order ρ as

F : Zρ × G → G and Fk(x)
def

=

{

xk if x ∈ P1

xk−1

if x ∈ P2
, (4)

12 The latter two values are exact if d is even. Otherwise (2 ·3
d−1

2 −1)n and (3 ·2
d−1

2 −2)n
are exact, respectively.

11

where k−1 satisfies k ·k−1 = 1 (mod ρ) and {P1, P2} is a partition of G in roughly
equal sized sets (where we assume that it is efficient to decide whether x ∈ P1

or not). A proof that F is a WPRF if the IDDH assumption holds in G is given
in [14].

4 Applications

4.1 Symmetric Encryption

A symmetric encryption scheme SE = (E, D) consists of two efficient algorithms.
The (randomized) encryption algorithm E maps a key k and a message m to
a ciphertext c = Ek(m), and the deterministic decryption algorithm D maps a
key k and a ciphertext c = Ek(m) to the message m = Dk(c). There are several
notions for privacy and integrity of SE (for an overview, we refer to [5, 13, 3]).
We consider the IND-PX-CY notion (for X,Y ∈ {0, 1, 2}), introduced in [13].

Definition 1 (IND-PX-CY). LetM and K denote the message and key space
of SE = (E, D), respectively. The ind-px-cy-advantage of an adversary A for
SE and x, y ∈ {0, 1, 2} is defined as follows (where ⊥ denotes no oracle).

Advind-px-cy
SE, A

def

= 2·Pr
[

k
$
←K,(m0,m1)←AO1,O2, b

$
←{0, 1}, c← Ek(mb), b̂←AO′

1
,O′

2(c) : b̂=b
]

−1,

where (O1,O
′
1) =







(⊥,⊥) if x = 0
(Ek,⊥) if x = 1
(Ek, Ek) if x = 2

, (O2,O
′
2) =







(⊥,⊥) if y = 0
(Dk,⊥) if y = 1
(Dk, Dk) if y = 2

,

m0, m1 ∈ M with |m0| = |m1|, and A does not query O′
2 with c. By maximizing

over all A restricted to time-complexity t, at most q−1 encryption queries of
total length at most (µ−|m0|) bits, and q′ decryption queries of total length at

most µ′ bits, we let Advind-px-cy
SE (t, q, µ, q′, µ′)

def

= maxA{Advind-px-cy
SE,A } (where

one typically drops the parameters (q′, µ′) if y = 0).

The IND-P2-C0, IND-P2-C2, and IND-P1-C1 notions are often referred to as
IND-CPA, (adaptive) IND-CCA, and non-adaptive IND-CCA, respectively.

The integrity of ciphertext (INT-CTXT) [5] notion formalizes an adversary’s
inability – given access to an encryption oracle – to create a new valid ciphertext:

Definition 2 (INT-CTXT). For SE = (E, D) (with message space M and
key space K), let D∗

k denote an algorithm that on input c outputs 1 iff c is a
valid ciphertext under the key k, i.e., there exists m ∈ M such that Dk(c) = m.

Advint-ctxt
SE, A

def

=Pr

[

k
$
←K,AEk,D∗

k , b
def

=

{

1 If ∃i ∀j : D∗
k(yi) = 1 ∧ yi 6= cj

0 otherwise
: b = 1

]

,

where c1, . . . , cq denote the outputs from Ek and y1, . . . , yq′ denote A’s queries
to D∗

k. By maximizing over all A with time-complexity t, that makes at most q
queries to Ek of total length at most µ bits, and at most q′ queries to D∗

k of total

length at most µ′ bits, we let Advint-ctxt
SE (t, q, µ, q′, µ′)

def

= maxA{Advint-ctxt
SE, A }.

12

4.2 A CPA-Secure Encryption Scheme

In [8], Damg̊ard and Nielsen introduced an IND-P2-C0-secure encryption scheme
based on any VOL-WPRF V : {0, 1}κ × {0, 1}n × N → {0, 1}∗. To be precise,
their encryption scheme SE1 is defined by encrypting a message m ∈ {0, 1}∗,
under the key k ∈ {0, 1}κ and some auxiliary uniform randomness r ∈ {0, 1}n as

(k, r, m) 7→
(

r, Vk(r, |m|)⊕m
)

. (SE1) (5)

The following proposition originates from [8]. We give the proof for completeness.

Proposition 1. For any t, q, and µ

Advind-p2-c0
SE1

(t, q, µ) ≤ 2 ·Advvol-wprf

V (t, q, µ) +
q − 1

2n−1
.

Proof. Let Π0 denote the IND-P2-C0 random experiment

k
$
←{0, 1}κ, (x0, x1)← AEk , b

$
←{0, 1}, y ← Ek(xb), b̂← AEk(y)

for any adversary A with resources (t, q, µ). Furthermore, let Π1 be the same
experiment as Π0, except that Vk is replaced by a uniform random VOL-function
Rn,∗. Let Π2 be the same experiment as Π1, except that the input y to the
adversary is replaced by a truly random string y′ (of length |y|). For i = 0, 1, 2,

let Si denote the event that b̂ = b in experiment Πi. Then

Advind-p2-c0
SE1,A

def

= 2 · Pr[S0]− 1 = 2 · Pr[S2]− 1 + 2 ·

1∑

i=0

(Pr[Si]− Pr[Si+1])

≤ 2 ·
1

2
− 1 + 2 ·Advvol-wprf

V (t, q, µ) + 2 ·
q − 1

2n
,

where the inequality follows from the following three facts. First, A can be
transformed into VOL-WPRF distinguisher A′ for V with advantage Pr[S0] −
Pr[S1] and resources (t, q, µ). A′ with oracle T simply simulates the experiment
Π0 if T is an instance of V and Π1 if T is a uniform random VOL-function R (this
is possible as the inputs to Vk in Π0 and to Rn,∗ in Π1 are distributed uniformly
at random), and then A′ returns whatever A does. Second, Π1 and Π2 are
equivalent experiments as long as the random input to Rn,∗ in the computation
of y is different from the other random inputs to Rn,∗, an event upper bounded
by (q− 1)/2n. Third, Pr[S2] = 1/2 since b is independent of y. ut

Remark 1. Given the strong optimality arguments for ICT, it is clear that (2)
is optimal when ICT is used (instead of PRT) unless a significantly different
approach for range extension of WPRFs is invented.

13

4.3 A CCA-Secure Encryption Scheme

The well-known encrypt-then-MAC method is a general technique for construct-
ing an INT-CTXT- and IND-P2-C2-secure encryption scheme from any IND-P2-
C0-secure encryption scheme SE = (E, D) and any VIL-MAC W . The idea is
to simply encrypt with E and then authenticate the ciphertext using W [15, 5].
Here, we note that for the IND-P2-C0-secure scheme SE 1 based on any VOL-
WPRF V : {0, 1}κ1×{0, 1}n × N → {0, 1}∗, it is sufficient if W : {0, 1}κ2×
{0, 1}∗ → {0, 1}` is a VIL-WMAC (as the ciphertexts of SE1 are pseudoran-
dom). To be precise, the scheme SE2, defined by encrypting m ∈ {0, 1}∗ under a
key (k1, k2) ∈ {0, 1}κ1×{0, 1}κ2 and auxiliary uniform randomness r ∈ {0, 1}n as

(
(k1, k2), r, m

)
7→

(

r, Vk1
(r, |m|)⊕m

︸ ︷︷ ︸

c

, Wk2
(r‖c)

)

, (SE2) (6)

is IND-P2-C2 secure if V is a VIL-WPRF and W is a VIL-WMAC:

Theorem 3. For any t, q, µ, q′, and µ′

Advint-ctxt
SE2

(t, q, µ, q′, µ′) ≤ min

{

q′ ·Advvil-mac
W (t, q, µ+qn+µ′),

Advvol-wprf
V (t, q, µ) +

q2

2n+1
+ q′ ·Advvil-wmac

W (t, q, µ+qn+µ′)

}

Advind-p2-c2
SE2

(t, q, µ, q′, µ′) ≤ 2Advint-ctxt
SE2

(t, q, µ, q′, µ′) + Advind-p2-c0
SE1

(t, q, µ).

Proof. The proof of the first inequality consists of two parts. For the first part,
i.e., Advint-ctxt

SE2
(t, q, µ, q′, µ′) ≤ q′ ·Advvil-mac

W (t, q, µ + qn + µ′), we refer to [5].
For the second part, let Π0 denote the INT-CTXT random experiment

(k1, k2)
$
←{0, 1}κ1 × {0, 1}κ2 , AEk1,k2

,D∗

k1,k2

for some adversary A with resources (t, q, µ, q′, µ′). Furthermore, let Π1 be de-
fined as Π0 except that Vk1

has been replaced by a uniform random VOL-function
Rn,∗ and let Π2 be defined as Π1 except that the output of Rn,∗ is replaced by
a truly random string (no matter of the input). For i = 0, 1, 2, let E i denote the
event that D∗

k1,k2
outputs 1 in Πi. Then

Advint-ctxt
SE2,A

def

= Pr[E0] =
(

Pr[E0]− Pr[E1]
)

+
(

Pr[E1]− Pr[E2]
)

+ Pr[E2]

≤ Advvol-wprf
V (t, q, µ) +

(q − 1)q

2n+1
+ q′ ·Advvil-wmac

W (t, q, µ + qn + µ′),

due to the following three facts. First, A implies a VOL-WPRF distinguisher
A′ for V with advantage |Pr[E0]− Pr[E1]| and resources (t, q, µ). A′ with oracle
access to T simply simulates Π0 if T is an instance of V and Π1 if T is a uniform
random VOL-function R (this is possible as the inputs to Vk1

in Π0 and to
Rn,∗ in Π1 are distributed uniformly at random), and then A′ outputs 1 if and
only if A is successful. Second, Π1 and Π2 are equivalent experiments unless

14

the auxiliary random r-values are not all distinct, an event upper bounded by
q(q − 1)/2n+1. Third, from A we can construct a VIL-WMAC-forger A′′ for W
with advantage Pr[E2]/q′ and resources (t, q, µ + qµ + µ′). A′′ simply picks a
random element i ∈ {1, . . . , q′} and starts simulating Π2 – except for invoking
D∗

k1,k2
on A’s queries – by using its own oracle in place of Wk2

(this is possible
as all inputs to Wk2

in Π2 are distributed uniformly at random). However, once
A makes its i-th query to D∗

k1,k2
(if at all), A′′ stops the simulation and returns

it as its forgery.
For proving the second inequality, let Π ′

0 denote the IND-P2-C2 experiment

(k1,k2)
$
←{0, 1}κ1×{0, 1}κ2,

(x0, x1)←AEk1,k2
,Dk1,k2, b

$
←{0, 1}, y←Ek1,k2

(xb), b̂←AEk1,k2
,Dk1,k2 (y),

for some adversary A with resources (t, q, µ, q′, µ′). Without loss of generality,
we assume that A does not query Dk1,k2

with an output from Ek1,k2
. Let Π ′

1

be the same experiment as Π ′
0, except that all queries to Dk1,k2

are rejected.

Moreover, for i = 0, 1, let Si denote the event that b̂ = b in Π ′
i . Then

Advind-p2-c2
SE2,A

def

= 2 · Pr[S0]− 1 = 2 ·
(

Pr[S0]− Pr[S1]
)

+ 2 · Pr[S1]− 1

≤ 2 · Pr[E] + Advind-p2-c0
SE2

(t, q, µ) ≤ 2 · Pr[E] + Advind-p2-c0
SE1

(t, q, µ),

where E denotes the event that a query to Dk1,k2
in Π ′

1 (or Π ′
0) corresponds to

a valid ciphertext. The first inequality follows from the the fact that Π ′
0 and

Π ′
1 are equivalent experiments unless E occurs, and that Π ′

1 is equivalent to
the corresponding IND-P2-C0 experiment for SE2 (in which the VIL-WMAC is
superflous by Proposition 1). It remains to show that

Pr[E] ≤ Advint-ctxt
SE2

(t, q, µ, q′, µ′).

This is the case as A can trivially be transformed into a INT-CTXT adversary
A′′′ (for SE2) using the same resources and having advantage Pr[E]. A′′′ simply
runs A, by answering its encryption queries with its own encryption oracle and
rejecting all decryption queries. In addition, A′′′ forwards A’s decryption queries
to its D∗ oracle. If A presents its challenge input (m0, m1), A′′′ flips a coin b,
queries its encryption oracle with mb, and returns the result to A. ut

Remark 2. The above result leads to an interesting open question for further re-
search, namely, how efficient constructions are there of a VIL-WMAC W based
on any WPRF F . One approach – for constructing W – would be to first trans-
form F into the PRF ICF : {0, 1}3n × {0, 1}N → {0, 1}n (see Sect. 3.1) and
then apply the following rather standard method [25, 23, 6] for constructing a
VIL-MAC (and thus also a VIL-WMAC) from any PRF. Simply hash the mes-
sage using an ε-almost universal (AU) hash function H :K × {0, 1}∗ → {0, 1}N

(i.e., for all distinct m, m′ ∈ {0, 1}∗, Pr[k′ ← K : Hk′(m) = Hk′ (m′)] ≤ ε [24])

and then apply ICF to the result: Wk,k′(x)
def

= ICF
k ◦Hk′(x).13 This method is ap-

13 For any Q : K′×{0, 1}N → {0, 1}n and ε-AU hash function H : K×{0, 1}∗ → {0, 1}N ,
Advvil-mac

Q◦H (t, q, µ) ≤ Adv
prf

Q (t, q) + q(q − 1)ε/2 + 1/2n (see [6]).

15

pealing since H exists unconditionally and ICF is invoked on “short” inputs (of
size N). There are 21−N -AU hash functions, with 4N -bit key size and maximal
input length 2N , that should do for most practical applications (see [25]).

Remark 3. By combining (6) with V = ICTF and a W (as defined above), we
get a CCA-secure encryption scheme from any WPRF F . In [8], Damg̊ard and
Nielsen also proposed to use the encrypt-then-MAC method for achieving CCA-
security of SE1. However, their approach for constructing the VIL-MAC from
any WPRF introduces a too large overhead for the solution to be practical.
The number of applications of the WPRF per evaluation is in the order of the
message length. The approach we give in Remark 2 is more efficient using at
most N applications of the WPRF independently of the message length, where
typically N � n (recall that n is the block length of F). Whereas this additive
overhead is of little concern for “long” messages, it is an open problem whether
it can be improved for “short” messages.

4.4 A Non-Adaptive CCA-Secure Encryption Scheme

To achieve IND-P2-C1-security of SE1, we note that it is sufficient to WMAC the
auxiliary randomness r. This has the advantage (over SE2) that the WMAC does
not need to have VIL. To be precise, for V : {0, 1}κ1×{0, 1}n×N→ {0, 1}∗ and
W : {0, 1}κ2 × {0, 1}n → {0, 1}`, let SE3 denote the encryption scheme defined
by encrypting a message m ∈ {0, 1}∗ under the key (k1, k2) ∈ {0, 1}κ1 ×{0, 1}κ2

and some auxiliary uniform random string r ∈ {0, 1}n as

((k1, k2), r, m) 7→
(

r, Vk1
(r, |m|)⊕m, Wk2

(r)
)

. (SE3) (7)

Theorem 4. For any t, q, µ, q′, and µ′

Advind-p2-c1
SE3

(t, q, µ, q′, µ′) ≤ 2 · q′ ·Advwmac
W (t, q) + Advind-p2-c0

SE1
(t, q, µ+qµ′).

Proof. Let Π0 denote the IND-P2-C1 random experiment for any adversary A
with resources (t, q, µ, q′, µ′), i.e.,

(k1, k2)
$
←{0, 1}κ1×{0, 1}κ2,

(x0, x1)← AEk1,k2
,Dk1,k2 , b

$
←{0, 1}, y← Ek1,k2

(xb), b̂← AEk1,k2 (y).

Let Π1 be the same same random experiment as Π0 except for replacing A
with an adversary B (described next) that has the same advantage as A and
does not issue any query to Dk1,k2

for which the auxiliary random part is the
same as for a ciphertext returned previously by Ek1,k2

. To be precise, let `max

denote the maximal length of the second input part of the decryption queries
issued by A (clearly `max < µ′). The adversary B simply runs A and for each
encryption query m issued by A, B appends zeroes such that it is of length lmax,
i.e., m′ := m‖0`max−|m|, and then queries the encryption oracle with m′. On
output (r, c′, w) from the encryption oracle, B returns (r, c′[1, |m|], w) to A (and

16

stores (m′, (r, c′, w)) in a look-up table). If A queries some decryption query, say
(r, c, w′), for which r occurs in the look-up table as (m′, (r, c′, w)), B returns
c ⊕ c′[1, |c|] ⊕ m′[1, |c|] if w = w′ and otherwise rejects. When A presents its
challenge input (m0, m1), B flips a coin b, queries its encryption oracle with mb,
and returns the result to A. Finally, B decides as A does. Further, let Π2 be the
same experiment as Π1 except that all queries to Dk1,k2

are rejected.

Moreover, for i = 0, 1, let Si denote the event that b̂ = b in Πi. Then

Advind-p2-c1
SE3,A

def

= 2 · Pr[S0]− 1 = 2 · Pr[S2]− 1 + 2 ·

1∑

i=0

(

Pr[Si]− Pr[Si+1]
)

≤ Advind-p2-c0
SE3

(t, q, µ+qµ′) + 2 · Pr[E] ≤ Advind-p2-c0
SE1

(t, q, µ+qµ′) + 2 · Pr[E],

by the following three facts. First, Pr[S0] = Pr[S1] as B decides as A does.
Second, Π1 and Π2 are equivalent experiments unless the event E occurs that B
queries a valid ciphertext to its decryption oracle. It follows that

Pr[S1]− Pr[S2] ≤ Pr[E] ≤ q′ ·Advwmac
W (t, q),

as B can be transformed to a forger B′ for W with advantage at least Pr[E]/q′

using the resources (t, q). B′ simply picks a random i ∈ {1, . . . , q′} and starts
running B, answering its encryption queries with help of its own oracle and the
decryption queries by rejection. When B (if at all) issues its i-th decryption query
(ri, ci, wi), B′ returns (ri, wi) as its forgery (without making any extra calls to
its encryption oracle). Third, Π2 corresponds to the IND-P2-C0 experiment (in
which the WMAC W is superfluous by Proposition 1). ut

Remark 4. Combining (7) with V = ICTF and W = ICF ◦ H results in an
IND-P2-C1-secure scheme based on any WPRF F , but with the advantage that
the ε-AU hash function H only is applied on fixed-sized strings (of length n).
Alternatively, using W = ICF saves the call to H and results in n/2 overhead
applications on average (as ICF is then invoked on random inputs).

References

1. W. Aiello, S. Rajagopalan, and R. Venkatesan. High-speed pseudorandom number
generation with small memory. In Fast Software Encryption, volume 1636 of LNCS,
pages 290–304. Springer, 1999.

2. F. Bao, R. H. Deng, and H. Zhu. Variations of Diffie-Hellman problem. In
ICICS ’03, volume 2836 of LNCS, pages 301–312. Springer, 2003.

3. M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment of
symmetric encryption. In Proc. of the 38th Symposium on Foundations of Com-

puter Science, pages 394–403. IEEE, 1997.
4. M. Bellare, J. Kilian, and P. Rogaway. The security of cipher block chaining. In

Advances in Cryptology — CRYPTO ’94, volume 839 of LNCS, pages 341–358.
Springer, 1994.

17

5. M. Bellare and C. Namprempre. Authenticated encryption: Relations among no-
tions and analysis of the generic composition paradigm. In Advances in Cryptology

— ASIACRYPT ’00, volume 1976 of LNCS, pages 531–545. Springer, 2000.
6. J. Black, S. Halevi, H. Krawczyk, T. Krovetz, and P. Rogaway. Umac: Fast and

secure message authentication. In Advances in Cryptology — CRYPTO ’99, volume
1666 of LNCS, pages 313–328. Springer, 1999.

7. A. Blum, M. L. Furst, M. J. Kearns, and R. J. Lipton. Cryptographic primitives
based on hard learning problems. In Advances in Cryptology — CRYPTO ’93,
volume 773 of LNCS, pages 278–291. Springer, 1993.

8. I. Damg̊ard and J. B. Nielsen. Expanding pseudorandom functions; or: From
known-plaintext security to chosen-plaintext security. In Advances in Cryptology

— CRYPTO ’02, volume 2442 of LNCS, pages 449–464. Springer, 2002.
9. W. Diffie and M. Hellman. New directions in cryptography. IEEE Transactions

on Information Theory, IT-22(6):644–654, 1976.
10. O. Goldreich. Foundations of Cryptography – Volume II – Basic Applications.

Cambridge University Press, 2004.
11. O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions.

J. ACM, 33(4):792–807, 1986.
12. J. H̊astad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom generator

from any one-way function. SIAM J. Comput., 28(4):1364–1396, 1999.
13. J. Katz and M. Yung. Complete characterization of security notions for probabilis-

tic private-key encryption. In Proc. of the 32nd Annual Symposium on Theory of

Computing, pages 245–254. ACM, 2000.
14. M. Keller. Constructing weak pseudorandom functions with prescribed structure,

2006. Semester Thesis, ETH Zurich.
15. S. Kent and R. Atkinson. IP encapsulating security payload (ESP), November

1998. Request for Comments 2406.
16. K. Minematsu and Y. Tsunoo. Expanding weak PRF with small key size. In ICISC

’05, volume 3935 of LNCS, pages 284–298. Springer, 2005.
17. M. Naor, B. Pinkas, and O. Reingold. Distributed pseudo-random functions and

KDCs. In Advances in Cryptology — EUROCRYPT ’99, volume 1592 of LNCS,
pages 327–346. Springer, 1999.

18. M. Naor and O. Reingold. From unpredictability to indistinguishability: A simple
construction of pseudo-random functions from MACs. In Advances in Cryptology

— CRYPTO ’98, LNCS, pages 267–282. Springer, 1998.
19. M. Naor and O. Reingold. Synthesizers and their application to the parallel con-

struction of pseudo-random functions. J. Comp. Sys. Sci., 58(2):336–375, 1999.
20. M. Naor and O. Reingold. Number-theoretic constructions of efficient pseudo-

random functions. J. of the ACM, 51(2):231–262, 2004.
21. K. Pietrzak and J. Sjödin. Weak pseudorandom functions in minicrypt, November

2006. Manuscript.
22. K. Pietrzak and J. Sjödin. Domain extension for weak PRFs; the good, the bad,

and the ugly. In Advances in Cryptology — EUROCRYPT ’07, LNCS. Springer,
2007. To appear.

23. V. Shoup. On fast and provably secure message authentication based on universal
hashing. In Advances in Cryptology — CRYPTO ’96, volume 1109 of LNCS, pages
313–328. Springer, 1996.

24. D. R. Stinson. Universal hashing and authentication codes. In Advances in Cryp-

tology — CRYPTO ’91, volume 576 of LNCS, pages 74–85. Springer, 1992.
25. M. N. Wegman and J. L. Carter. New hash functions and their use in authentication

and set equality. J. Comp. Sys. Sci., 22:265–279, 1981.

18

