

Browsers Defenses Against Phishing, Spoofing and Malware

08/25/06

Amir Herzberg

Dept. of Computer Science

Bar Ilan University

Abstract

Web users are increasingly victims of phishing, spoofing and malware attacks. In this article, we

discuss existing and proposed defense mechanisms. We highlight the vulnerabilities of current

defenses, and the challenges of validating and adopting new defenses.

1 SSL-based Logon

Most web browsers and servers support the Secure Socket Layer (SSL) protocol (or its standard

version, the Transaction Layer Security (TLS) standard); see [R00]. SSL (and TLS) are advanced,

public-key cryptographic protocols. Their main goal is it to protect the confidentiality of sensitive

traffic against an eavesdropper, who can listen to the traffic between the client and the server. For

example, merchant sites and login pages use SSL to protect, respectively, credit card numbers and

passwords, sent by users to the servers.

1.1 Simplified description of SSL as used in most sites.

SSL operation is divided into two phases: a handshake phase and a data transfer phase. We illustrate

this in Figure 2, for connection between a client and an imaginary bank site (http://www.bank.com).

During the handshake phase, the browser confirms that the server has a domain name public key

certificate issued by a trusted Certificate Authority (CA). A domain name public key certificate

Illustration 1: Simplified flows of the SSL protocol

Client’s browser Bank’s server

Hello, options

Certificate=Sign
CA.s

(www.bank.com,bank.e,...)

Encryt
bank.e

(k)

Encrypt
k
(Request, MAC

k
(Request))

Encryptk(Response, MACk(Response))

Data Transfer
Phase: Repeat
for each request

Handshake
Phase: once
per connection

contains a domain name, e.g. www.bank.com, a public encryption key for the domain (bank), e.g.

bank.e, and a digital signature over them: Sign
CA.s

(www.bank.com, bank.e). The CA computes the

signature using a digital signature algorithm, e.g. RSA or DSA, with the secret signing key CA.s,

chosen by and known only to the CA. The bank receives the certificate, in advance, from the CA.

The browser validates that the domain in the certificate is the desired domain, i.e. www.bank.com. It

then validates the signature over the certificate, by applying the signature validation function to the

received certificate, using the public validation key CA.v of the CA, installed in the browser in

advance. If the certificate has a valid signature, then the browser selects a random key k, and send it,

encrypted, to the server. The browser encrypts the key k using a public-key cryptosystem such as

RSA, with the public encryption key of the bank bank.e from the certificate, i.e. it sends

Encrypt
bank.e

(k) to the bank. This completes the (simplified description of) SSL handshake phase,

executed at the beginning of every SSL connection.

The data transfer phase of SSL uses the key k, sent encrypted from browser to server during

handshake phase, to authenticate and encrypt requests (sent from browser to server) and responses

(from server to browser). Again simplifying, the browser computes Encrypt
k
(Request,

MAC
k
(Request)) for each Request, and the server computes Encrypt

k
(Response, MACk(Response))

for each Response, where Encrypt is a shared-key cryptosystem, such as AES, and MAC is a shared-

key Message Authentication Code (MAC), such as HMAC. This protects the confidentiality and

integrity of requests and responses.

The handshake phase, as described, identifies the server (by its certificate and domain name), but

not the client. SSL includes an optional mechanism for client authentication, using a certificate of

the client, but this is rarely used. Instead, users usually identify themselves to the site, by presenting

their name and a password. This sensitive data is transferred using SSL, during the data transfer

phase, encrypted with the key k shared at the handshake phase.

1.2 SSL Certificate Validation

Currently, each certificate authority (CA) can decide on its own process for validating the identities

of subjects, upon issuing SSL certificates. Gradually, due to competitive pressures, certificate

authorities optimized and automated the validation process, sometimes compromising on the level

of identity validation.

In the extreme, some certificate authorities offer low cost certificates by simple, automated

validation of domain name ownership, e.g. by e-mail challenge-response. This validates only the

domain, and does not provide any validation for the actual identity of the organization (beyond the

domain name). As a result, such certificates are usually referred to as domain-validated.

Unfortunately, current browsers do not indicate to the user when a site uses a domain-validated

certificate. Furthermore, even for `full` certificates, where the identity is validated (not just the

domain), each authority may decide on its own process, again motivating weak (inexpensive and

quick) validation process. To conclude, the current SSL certificate validation is vulnerable, and

may allow rogue sites to obtain certificates for misleading identifiers (domain names and possibly

even organization names).

Extended validation certificates. There is an ongoing effort by several certificate authorities and

browser vendors, to define a new class of certificates, with strong, uniform identity validation

process, to be defined. Hopefully, the validation process and the certifying authorities issuing such

extended validation certificates, will be trustworthy, and this will prevent attackers from obtaining

such certificate for a domain with misleading identifiers. Browsers should indicate to users the use

of extended validation certificate.

There are some concerns about the viability of extended validation certificates. When will the

validation process be defined (it is already delayed)? How `painful' would it be? Would

corporations pay for the extended validation certificates? Would vendors indicate such certificates

to the users (and how)? Would user notice?

Certificate registry services. We now briefly present an alternative method to improve the

validation of certificates, which may avoid the costs of the extended validation certificates. The idea

is to establish one or more certificate registries. Such registries will be fully automated and very

low cost; essentially, all they do is to openly list all SSL certificates.

To prevent impersonation attempts, corporations will monitor new additions to the certificate

registries. Whenever detecting a new certificate which uses identifiers similar to their, the

corporation will protest, i.e. contact the issuing certificate authority and demand revocation of the

unauthorized certificate.

Upon receiving a new SSL certificate, the browser will query the certificate registry (chosen by the

user). The browser will differentiate between recently-listed certificates (which are suspect) vs.

long-listed certificates (which are unlikely to be unauthorized). Sites will register new certificates

for sufficient period, before beginning to use them, or sign the new certificate (using a registered

public key).

This idea requires the establishment of one (or few) certificate registries, comparable to existing

trademark registries (usually provided as a government service). Establishment of a new service can

be a serious obstacle; luckily, in this case, the operational expenses are very low.

Both the `extended validation` certificates, and the `certificate registry` service, attempts to improve

the validity of the identifiers in certificates. However, improving certificate validity is only

meaningful if users are aware of the use of certificates and of the identifiers in the certificate. In the

next subsection we argue that with current browsers, users are often unaware of whether SSL is

used, and of the relevant identifiers.

1.3 Usability Vulnerabilities of SSL Login in Current Browsers

The security of the SSL-based login process

depends on several correct-usage

assumptions. A failure of any of these

assumptions can lead to exposure of the

password. Here are three assumptions which

are related to user behavior; unfortunately, all

three assumptions are unrealistic:

SSL Usage Assumption 1: Users send their

password only via an SSL/TLS protected

connection.

Reality: Several experiments confirmed the

folklore belief, that in reality, most users

usually do not validate that SSL/TLS is active,

before entering their password on a login

form; see [DTH06,HG04]. This is expectable,

as the SSL indicators are not very visible;

most browsers indicate SSL activation only by

a padlock icon in status area, and expect users

to notice SSL inactive by the lack of the

padlock icon. Furthermore, many logon forms

are not sent to the browser over a protected

(SSL/TLS) connection; most of these forms

invoke SSL/TLS to protect the password, but
Illustration 2: The login portion of the homepage of

Chase bank (SSL not yet invoked).

an attacker could send a look-alike page that will send the password to the attacker instead, and

users will not be able to detect this. Adding to users confusion, many of these pages contain an

image of a padlock as part of the page itself; see e.g. the unprotected logon page of Chase in

Illustration 2. Such failures happen on several sensitive, widely used logon forms, e.g. of PayPal,

Chase, Microsoft passport, Bank of America, and (currently) many more (see the I-NFL Hall of

Shame).

SSL Usage Assumption 2: Users specify or confirm the identity of the site before entering

passwords.

Reality: As described above, browsers validate that the address (URL) of the site, belongs to the

domain in the certificate. However, users often do not directly specify the address of websites;

instead the browser often uses address from a link in another (potentially malicious) page, or from a

(potentially malicious) email message. In many browsers, sites can remove the address/location bar

and possibly include a fake one to prevent users from detecting the use of wrong address.

Furthermore, many users are not aware of the structure of domain names, e.g. may believe that the

domain name BankOfAmerica.reo.com belongs to Bank of America; indeed, this address was in

fact used legitimately for a BankOfAmerica service, without concern for the apparent domain

mismatch, showing users and corporations lack of attention to domain names; see Illustration 3.

Experiments confirm, that users indeed often fail to notice the use of incorrect addresses for

sensitive sites [DTH06,HG04].

SSL Usage Assumption 3: Users use independently, randomly chosen passwords for each service,

so that each password cannot be guessed, even given passwords used by same user for other

services.

Reality: Users often use weak passwords, listed in `dictionaries` of common passwords. Users

often reuse the same passwords for multiple sites, and provide passwords in insecure environments

such as public terminals.

In addition to the common failure of the user-behavior assumptions, there are other vulnerabilities

of the current SSL-based login process. In particular, attackers have been able to obtain SSL

certificates with misleading identifiers. We next discuss the certificate validation process.

Illustration 3: Example of a corporate site (belonging to Bank of America), residing in a domain

unrelated to the corporate. This demonstrates that users are not sensitive to the usage of correct

domains by corporate sites.

2 Site Identification and Security Toolbars

As explained in section 1.2 above, with current browsers, users often fail to detect an incorrect

address and/or the lack of protection (SSL). One natural remedy is to add a toolbar, providing site

identification (e.g. name/logo) and/or other security indicators, such as an improved indicator for

the usage of SSL/TLS, or an indicator for trusted vs. suspect sites.

Toolbars try to make it easier for users to identify sites and/or be aware of security status, by

presenting information in a dedicated area – in addition to the (limited) information already

presented by (existing) browsers. Two basic questions arise: would users notice (any) indicators

provided in Toolbars? And, if so – what is the right information to present? Such questions should

be tested experimentally.

Wu et al. [WMG06] compared the effectiveness of three possible contents for toolbars, as in

Illustration 4, which they termed: neutral-information toolbar (domain, established date, country),

SSL verification toolbar (organization and CA, or `not protected' indication), and system-decision

toolbar (color-coding: red for suspect site, green for `good site`, yellow otherwise). The SSL-

verification toolbar simulation follows TrustBar [HG04] (which we developed). However, the term

`SSL verification` does not capture TrustBar's main goal of site identification. We therefore

consider that the correct third category of toolbars is not SSL-validation but rather protected-site

identifying toolbars; see discussion below, in subsection 2.3.

With all three simulated toolbars, [WMG06] found high spoof rates, which is the fraction of

simulated attacks to which the participants disclosed the password.. The rates depended on the

contents of the bar and the method of attack, but mostly – on how users were introduced to the

toolbars. In a pilot study of [WMG06], one group received a printed tutorial on the indicators, and

had low (7%) spoof rate. The other group did not receive a tutorial, and had 94% spoof rate. We

found similar rates in a pilot study preceding [HG04].

Wu et al. concluded, that the tutorial caused users to be more alert than in normal use. To cancel

this effect, in their main study, Wu et al. only sent a tutorial by email, roughly in the middle of the

test. They found high spoofing rates: 52% before receiving the tutorial email, and 26% after

receiving it; notice that users were still more aware of security than usual, since they were aware of

the goal of the experiment. Wu et al. concluded that users ignore indicators on toolbars.

Illustration 4: The three simulated toolbars from [WMG06]

However, in our experiments, reported in [HG04], spoof rates dropped from 37% (FireFox 1.5, no

toolbar) to 8% (FireFox with TrustBar, displaying <site> identified by <CA>), and even 5%

(TrustBar displaying a petname, i.e. user-specified identifier). We believe the difference is mostly

due to the fact that in [HG04], we gave a brief, one-on-one introduction to the security indicators.

We believe that an email message is simply insufficient to allow users to use (any) security

indicators. Therefore, we used a different strategy to avoid user's focus on security: we defined their

goal as maximizing the number of selections (speed). This explains the high spoof rate of 37%

using only the default FireFox security indicators (after the tutorial, which also covered the existing

SSL indicators).

It therefore seems, contrary to the conclusion of [WMG06], that properly designed security and

identification toolbars can reduce spoofing. However, additional, more realistic and long-term

experiments are necessary, to measure how much of the reduction is long-lived, and not due to

increased security awareness due to the experiment.

In the reminder of this section, we discuss what indicators should appear in the toolbar. In

Subsection 2.1, we consider the case of web pages which are not protected (by SSL/TLS); our

conclusion is that secure authentication, using SSL/TLS or other cryptographic mechanisms, is

desirable. In Subsection 2.2 we discuss how to efficiently and securely authenticate web pages.

Finally, in Subsection 2.3, we discuss site identification indicators (for authenticates pages), and

spoofed-indicator attacks.

2.1 Toolbar Indicators for Unprotected Pages

Currently, most web pages, including many login pages, are not protected (by SSL/TLS). Users are

often unaware that a login page is unprotected; one reason is that most browsers only indicate

protected pages (by padlock, use of https not http), with only the absence of such indicator to

identify unprotected pages – and users may not notice the lack of the protected-page indicators.

Furthermore, [DTH06] showed that users often base their decisions of whether a site is trustworthy

of spoofed, on the (easily spoofable) content of the page, including `security indicators` such as

padlocks and `seals`, often placed within web pages.

Unprotected web pages are easy to spoof. Indeed, most users do not notice when these pages are

spoofed, even when the pages are hosted in a different domain – a very easy attack. This motivates

toolbars such as SpoofStick, simply showing the domain name more clearly, and more detailed

`neutral-information` toolbars such as Netcraft's (see Illustration 4). However, the information

presented by such toolbars seem to require analysis by the user for each use.

Indeed, [WMG06] found that `neutral-information` toolbar have higher spoof rate than `system

decision` toolbars. System decision toolbars display an evaluation of the site: red, green or yellow

`lights`, for suspected, trusted and other sites, respectively (see Illustration 4). After receiving the

tutorial, the spoof rate using system decision toolbars fell to 15%.

This improvement in spoof rate is partially due to the fact that in [WMG06], the `system indicators`

were emulated as completely accurate, displaying `red' warning for all spoofed sites (and for no

other site). This may be too optimistic.

System decision toolbars detect spoofed sites either using blacklists (of spoofed sites), or using

heuristic detection by the contents of the page. Currently, blacklists and heuristic detection can be

fairly effective. However, their effectiveness may reduce over time, as attackers adapt. Blacklisting

of IP addresses fails against attackers which use dynamic IP addresses (e.g. of Zombies, i.e.

maliciously-controlled computers of innocent users). Blacklisting of domain names is even easier to

circumvent, since the cost of changing domain names is small. URL blacklisting is even less

effective, since an attacker can have unlimited number of URL addresses within the same domain.

A reliable `green light` indicator of trustworthy sites could be valuable. Currently, `green light`

indicators are usually based on `white-list` of trusted sites. However, a `green light` indicator must

be secure against attacks, or it could lead to false sense of security, and to loss of trust when its

failures are published. Unfortunately, existing system-indication toolbars are not secure enough, and

are usually displayed, for unprotected sites, based on domain name and/or IP address. Such

indicators are therefore vulnerable to Man in the Middle (MITM) attacks as discussed above. The

(more common) domain-name white-lists also depend on the trustworthiness of information in the

Domain Name System (DNS), which is often controlled by attackers (e.g. using `DNS-poisoning`

attacks). This problem also exists for `neutral-information` toolbars. A `green light` indicator

should only be used for sites securely identified as trustworthy, e.g. using SSL/TLS.

We conclude that toolbars should avoid giving users a false impression of security, when using

unprotected sites. In TrustBar, we indicate unprotected sites by special icon (crossed-out padlock).

In early versions of TrustBar we displayed a warning for unprotected sites (as in Illustration 4), but

this caused users anxiety; a common response was, `I know my bank site is secure, so I can't trust

the toolbar'.

A problem with this conclusion, is that most sites, including of financial organizations, are not

protected (using SSL/TLS). This is mostly due to efficiency concerns. We next discuss efficient

techniques to securely authenticate web pages.

2.2 Efficient Web Page Authentication

Only few sites use SSL/TLS, and sites that do, often use it only for special pages such as login. The

main reason for that is the overhead of SSL/TLS. We now present two techniques that may allow

efficient web page authentication, with acceptable overhead.

First, the overhead of using SSL/TLS for authentication of pages can be significantly reduced. Use

of `null` encryption and efficient message authentication will significantly reduce the overhead of

the data transfer phase (Illustration 1). The overhead of the SSL/TLS handshake phase is mainly

due to the public key decryption at the server. SSL/TLS include a `session resumption' mechanism

to avoid this overhead, by saving the shared keying material in the server, but this is not widely

used, mainly due to the cost of such storage, and replicating the information among multiple web-

servers (for a large site).

However, RFC 4705 [SZ*06] provides an efficient mechanism for session resumption without

server-side state. RFC 4705 uses the `cookie` predicate: the client saves the state for the server. To

prevent client from changing the state, the state includes an authenticating tag, using a symmetric

message authentication key, known only to the server(s) . Once RFC 4705 is adopted by browsers,

the overhead of SSL/TLS session resumption would not be a critical problem.

However, such adoption may take substantial time. Furthermore, this solution requires each server

to know the secret information (keys). This can also be problematic, e.g. when using site hosting or

content distribution networks. The second technique, therefore, avoid the use of SSL/TLS entirely.

 Instead, to authenticate their web pages, the sites will digitally sign the contents, e.g. using the

XML DSIG standard [ERS02]. Digital signing is computationally-intensive, however it can be

applied once to satisfy all requests for the same (static) web page; some convention may allow

limited variability in the content, e.g. for customized values such as user name.

We next discuss how a toolbar should indicate, to the user, the identify of a (securely authenticated)

web page.

2.3 Site Identification Indicators and Spoofed-Indicators Attacks

Site identification indicators may help users identify trustworthy sites, known by name (logo,

trademark, etc.), and/or known to the user from previous visits. Site identifiers can be certificate-

derived or user-customized, and appear as textual strings (e.g. organization name or `petname`) or

graphical elements (e.g. logo or picture).

For certificate-derived identifiers, TrustBar, and later also version 7 of Internet Explorer, use the

organization name in the SSL/TLS certificate, and the text `Identified by:` followed by the name of

the certification authority (CA) responsible for this identification. The identification of the CA is

important as long as users do not indicate which certificate authorities they trust, or delegate this

authority to an appropriate service; browser vendors are not offering evaluation of Certificate

Authorities. In particular, by identifying the CA, users can differentiate between a CA that issues

low-cost `domain-validated` certificates, and an CA which issues only `full` certificates, which are

more expensive but better validated; see Subsection 1.2.

User-customized identifiers are individual to each user, selected by the user and/or randomly by

the system. User-customized identifiers can be implemented by the server, the browser, or a

browser extension (toolbar). User-customized toolbars include TrustBar [HG04] (user-selected

graphics or text), Petname [C06] (user-selected text), Dynamic Security Skins [DT05] and PassPet

[YS06].

The simplest deployment of user-customized identifiers is by a personalized (login) webpage,

typically containing a user-selected picture, e.g. [P04, Y06]. In these schemes, the server normally

selects the picture based on a cookie kept and provided by the browser. In [Y06], the picture

identifies the computer (more correctly, the browser), while [P04] allows users to move computers

or recover from lost cookie, but their solution may allow a Man In The Middle (MITM) attack. No

usability experiments with these methods were published yet.

In usability experiments of TrustBar, the user of user-customized identifiers resulted in better

detection rates and throughput [HG04], compared to certificate-derived identifiers, and much better

compared to classical browser indicators. Further experiments are required to confirm this

advantage, and to compare between different types of customized identifiers (chosen randomly or

by user, textual vs. graphical, in toolbar vs. provided by the site in the page).

Furthermore, user-defined identifiers may offer better protection against spoofed indicators attacks.

Spoofed indicator attacks present fake security indicators (e.g. toolbar), in order to trick the user,

e.g. to ignore the real security indicators. Several papers [DTH06, FB*97, LY03, YSA06, YYS02]

investigated different spoofed indicators attacks, and presented possible defenses. We only discuss

the fake internal window variant of the spoofed indicator attack.

The fake internal window attack uses a single browser window, controlled by the attacker. In the

content area of this window, the attacker emulates another browser window, which appears to

contain the (spoofed) web page of the victim organization, e.g. bank login page. This attack is most

effective if the attacker is able to hide all (or most) indicators of the existence of the `external`

window, such as borders, menus and other areas not defined by the page. For better security against

Illustration 5 An SSL protected page with TrustBar, with user-defined (or default) logo,

and identification of the Certificate Authority.

such defenses, web pages should not be allowed to hide such indicators.

However, even if the attacker cannot avoid some visibility of the `external` page, there is a risk that

users may not pay attention to the external page, and not realize that the `internal page` is a fake

browser window. The attacker controls the entire contents of the `internal', fake page, and in

particular can display there any (known) security indicator, including certificate-derived identifiers

such as organization name and logo. User-customized identifiers may help users detect the fake

page, if the adversary is unlikely to be able to correctly clone the identifiers.

To conclude, improved site identification can reduce the success probability of spoofing and

phishing attacks. User-customized identifiers, as in TrustBar and Petname, seem even more

effective, and may also provide some defense against spoofed indicators attacks. However,

significant probability of spoofing may remain, mainly due to the fact that users often are more

influenced by the content of the page, than by toolbars. Ideally, security mechanisms should

prevent the display of misleading content, instead of displaying it (in most of the window) along

with contradicting identifying or warning indicators (in smaller toolbars). In the next section, we

discuss some ideas toward this ambitious goal.

3 Defending against malicious content and malware

The basic function of browsers is to download content – web pages and other objects – from

servers. Many of the threats against web users, are due to malicious content, ranging from pictures

(e.g. unauthorized use of bank's logo for spoofing) to malicious code (malware), including `regular`

programs as well as malicious scripts and applets. In the first subsection, we discuss existing

defenses against malicious content and specifically malware. In the second subsection, we discuss a

new direction for defense – web content registries.

3.1 Current defenses against malicious content and malware

Current browsers offer some defenses against malware, but almost no defenses against malicious

non-executable content. Essentially, the only available defense against malicious content consist of

blacklists of suspect sites/objects. However, blacklists are ineffective against determined attacker,

that changes domain names (at negligible cost) and/or IP addresses (using IP addresses of `zombie`,

broken-into computers).

Additional defenses exist specifically against malware:

• Sandboxing: prevent remote code from harming the user, by limiting its abilities. The most

well-known application of sandboxing is for Java applets. Sandboxing is also used for other

automatically-downloaded code, in particular for JavaScript and other remotely-downloaded

scripts. There were numerous bugs and exploits due to failures to properly enforce

sandboxing on applets, scripts or other kinds of remote code. Furthermore, sandboxing

allows the remote code to control the user interaction (in a specified; limited area of the

screen); therefore sandboxing cannot prevent malware from attacks based on presentation of

misleading information inside this area (e.g., unauthorized presentment of corporate logo).

• Detection of known malware (by `signature`): malware may be detected and blocked by

identification of it, using known patterns (`signature`), often by anti-virus utilities. This can

fail when the attacker adaptively modifies the malware to avoid detection, and especially for

easily modifiable scripts.

• Certified code: code (or more generally, content) which is digitally signed and certified by

an appropriate authority to be trustworthy. This indicates that the code is not malware.

Certification can be effective, if executing only certified code, with appropriate, careful

certification process and heavy penalties to submitters of malware. However, existing efforts

of certifying code [R95,M] have limited success; and code executed in sandbox (mainly

applets and scripts) is rarely certified.

We conclude that existing browsers defenses against malicious content, and in particular malware,

are insufficient. Secure implementation of the sandbox model is challenging, and there have been

numerous vulnerabilities allowing attacks via scripts, applets, documents and even images.

In particular, some of the most common web attacks involve different forms of cross site scripting

(XSS) [C03], where a web site is tricked into sending a malicious script to the browser, usually

embedded in a web page. Such scripts often expose confidential information of the user of the site,

e.g. cookies allowing access to the user account, or otherwise attack the user, the site, or other

Internet services.

Furthermore, attackers can send deceptive content, attacking the user directly. This is how most

phishing/spoofing sites work: they copy the content, e.g. images and logos, of the original, cloned

site, thereby misleading users to believe they are at the trusted site (e.g. bank or download site). In

particular, when users think they reached a reliable download site, they may download and install

programs, overriding any security warnings.

How can browsers improve protection against malicious content, and in particular malware? One

possible answer may be to try to fix the certified code/content approach, which is technically sound

and secure, and failed in deployment. In the next subsection, we present one idea of how to possibly

`fix` the certified code/content approach, namely by using automated, inexpensive `registration`

process as a complement to the manual, expensive `certification` process.

3.2 Content Registry: Defense against Malicious Content

From the previous section, we conclude that current browsers often fail to protect against malware,

and malicious content in general. Some improvement may be possible by adopting improved

identification and security indicators, as discussed in Section 2. In particular, when using

customized identifiers, we found that spoof rate fell below 5% [HG04]. Unfortunately, [HG04] only

compared different indicators, over short periods; we expect much higher spoof rate over realistic

usage and long periods.

Users often trust the contents of the web page, and may ignore `external` security indicators such as

padlock [DTH06]. This trust is unjustified, since the contents are controlled by the website, or by a

Man in the Middle attacker (for unprotected sites). Most of the proposed solutions try to improve

awareness of the security indicators, and to block suspected `bad` sites. However, as we discussed,

this provides only limited protection.

In this subsection, we consider a different, somewhat revolutionary idea: trusted content registry

service, similar to the certificate registry services presented in Section 1.2. Registration is a low-

cost alternative to certification: all content on the web is registered automatically and free of charge,

similarly to search engines. Browsers and content-filters (e.g. firewall) can use the registration data,

to limit or block suspect content. Content limiting refers to using it with some precautions and

restrictions, e.g., reducing the capabilities of code (applets, scripts), or fading images. Using the

content registry service, we attempt to fulfill the users expectations that the browser displays and

uses (runs) only trustworthy content.

Trusted content registries can list code (scripts, applets, etc.) as well as non-executable content

(pictures, etc.). In both cases, the client `trusts` content which has been registered long enough, say

for T days; content which is not registered or only recently registered is limited or blocked.

Registry entries may also include the IP address, domain name and/or URL in which the content

was published. For images, this prevents unauthorized use of a logo in an unauthorized site (see

below on extending the solution to defend against Man in the Middle attackers). For code, this

prevents an attacker from registering malware at an isolated site, and later sending this malware

from other sites, e.g. in MITM or XSS attacks.

Hopefully, registered content, coming from the registered IP address (and domain name/URL), will

rarely be malicious, for two reasons:

1. Malicious content, including unauthorized use of content, would hopefully be detected (and

blacklisted and/or removed from registry) before the T days period. In particular, in the case

of images designed to emulate the appearance of a trusted site (e.g. bank or download site),

it may be possible to identify imposters by scanning new registry entries.

2. Currently, attackers often use very-short lived sites for spoofing and other attacks; one

reason is that such attacks are often based in victim computers, which often do not have a

fixed IP address, and without authorization or knowledge of the administrators. It can be

harder for the attacker to maintain the malicious content or code to remain available in the

site for T days, and the risk of detection is higher. Similarly, when attackers provide fake

content from a site using MITM or XSS attacks, this content is short lived, and furthermore

site owners can detect attempts to register new content to their site. Long-lived malicious

sites can be effectively blacklisted.

Obviously, not all recently published content

is malicious. In particular, many sites display

new content frequently (e.g. pictures in a

news site). Also, currently there are many

(legitimate) sites which use scripts which

contain frequently changing data such as user

identifier. Therefore, we need careful design

of the defense mechanism, to minimize

disturbance to legitimate, recently-published

or recently-modified content.

We may use different heuristics to allow new

content or frequently changing content. For

example, we can allow a news site, identified

by its IP address, to present new images.

More generally, we can allow a `white-list`

of `trusted` sites, for which the registry

validation is waived.

Furthermore, browsers can allow new objects

(unregistered or recently registered), if

certified by a rating authority; this allows

rapid publication of new objects (scripts or

images). Rating authorities may also indicate

specific ratings for objects, e.g. `PG-13`,

possibly using PICS or similar markup

[MRS96]. The user may indicate the trusted

rating authorities, or delegate this choice, e.g.

to antivirus service provider. By using well defined, easily disputable ratings, security service

providers will be able to use reputation and accreditation services to ensure the quality of the

content filtering process. Hence, the registration and certification mechanisms are complementary.

We can also reduce disturbance by limiting content rather than blocking it, e.g. displaying images

with fading or other visual modification (against unauthorized display of logo), or allowing a script

to run with reduced priviledges. Browsers can also allow users to manually waive content blocking

and limiting for a particular page.

Blocking/limiting MITM attacks. The registry as described was based on IP addresses (and

domain name/URL), and hence could be circumvented by a MITM attacker, providing incorrect

On query(h,IP,URL):

 If IP ∈ BlackList :

Return (NO);

 If h ∈ Ok(IP) :

Return(Ok);

 If h ∉ Objects :

 Obj = GET(URL);

If h=hash(Obj) :

 add h to Objects;

 Obj(h)=Obj;

 add <h,IP,date()> to Pend;

 Return(NO);

For every <h,IP,date> ∈ Pend

 s.t. date<date()- T

 and h ∈ Objects:

add h to Ok(IP);

Example 1: Content registry algorithm (simplified)

content for a page requested by the browser. It also does not defend against Cross Site Scripting

(XSS) attacks, exploiting a weakness in the server to send adversary-controlled script, or other

code/object, to the browser. Such attacker can exploit the whitelist mechanisms to avoid registry

validation entirely, or send the fake content using the address of the legitimate server, exploiting the

IP (or domain/URL) based lookup (the `Ok(IP)` table, in the simplified content registry server code

in Example 1).

A site can defend itself against XSS attacks, by always signing all of its scripts (and other objects),

and signaling to the browser to only allow signed scripts (or content in general).

Defending against MITM attacks seems to require elimination of the (address based) white-list, and

therefore, it also requires support by all (or most) sites, to avoid `false positives` (blocking/limiting

of legitimate content). Such support may consist of content signing and/or certification.

Subtle issues. Blocking or limiting unregistered content is a drastic change, and requires careful

consideration of many subtle issues beyond this article. In particular:

1. Currently, scripts often contain variables such as dates or customer identification. As a

result, such as script may appear to be rapidly changing. One solution is to separate script

code (which does not change frequently) from data, however it is preferable to avoid such

changes. Instead, it seems that it may be possible to automatically detect changing areas

within the script, and remove them from the registry.

2. Attackers may try to create misleading pictures by superimposing several legitimate

pictures, e.g. tiny pictures of few pixels. This may be addresses by restricting the number of

pictures and other heuristics.

3. The discussion required hashing of `objects`; this is easy for images and other types of

content which are handled as objects in the HTTP protocol, but may be harder to apply to

scripts and other elements sent within a web page. This may require careful parsing by the

browser; it may be hard to implement such functionality in an extension.

4. The computation of hash for each object is efficient and not expected to be a bottleneck.

However, the lookup operation at the registry should be well designed for efficiency,

possibly using Domain Name System (DNS) records and queries, and/or other efficient

caching mechanisms.

5. The registry may identify clients and secure queries, to protect against excessive use and

Denial Of Service attacks, e.g. providing incorrect URL.

6. Our discussion focused on code (especially scripts and applets) and images. Other forms of

content can also be malicious, including even attacks using some HTML mechanisms.

Conclusions

Web browsers implement the SSL/TLS protocols, defending the communication between client and

server from man-in-the-middle and eavesdropping adversaries. However, browsers provide

insufficient protection against simpler and more common attacks, such as phishing, spoofing and

malware. We explained the vulnerabilities of current browsers, and discussed some possible

improved defenses. Some of the defenses were tested experimentally, with encouraging results; we

hope that the use of such defenses may significantly improve protection of web users from

phishing, spoofing and malware.

References

[C03] Steven Cook, A Web Developer’s Guide to Cross-Site Scripting, SANS Institute, GIAC

practical repository, January 11, 2003.

[C06] Tyler Close, Petname Tool: Enabling web site recognition using the existing SSL

infrastructure, presented in W3C Workshop on Transparency and Usability of Web Authentication,

March 2006, New York City. Available from http://www.w3.org/2005/Security/usability-

ws/papers/02-hp-petname/.

[DT05] Rachna Dhamija and J. Doug Tygar. The battle against phishing: Dynamic security skins.

In Proc. ACM Symposium on Usable Security and Privacy (SOUPS 2005), pages 77–88, 2005.

[DTH06] Rachna Dhamija, J. Doug Tygar and Marti Hearst, Why phishing works. Proceedings of

the SIGCHI conference on Human Factors in computing systems, pp. 581-590, Montréal, Québec,

Canada, 2006.

[ERS02] Eastlake, J., Reagle, J. and D. Solo, XML-Signature Syntax and Processing, RFC 3275,

March 2002. Also a W3C Recommendation available at http://www.w3.org/TR/2002/REC-

xmldsig-core-20020212/.

[F05] Rob Franco, Better Website Identification and Extended Validation Certificates in IE7 and

Other Browsers, published in Microsoft Developer Network's IEBlog, November 21, 2005

(http://blogs.msdn.com/ie/archive/2005/11/21/495507.aspx).

[FB*97] Edward W. Felten, Dirk Balfanz, Drew Dean, and Dan S. Wallach. Web Spoofing: An

Internet Con Game. Proceedings of the Twentieth National Information Systems Security

Conference, Baltimore, October 1997. Also Technical Report 540–96, Department of Computer

Science, Princeton University.

[FS*01] Kevin Fu, Emil Sit, Kendra Smith, and Nick Feamster, Do’s and Don'ts of Client

Authentication on the Web, in the Proceedings of the 10th USENIX Security Symposium,

Washington, D.C., August 2001.

[HG04] Amir Herzberg and Ahmad Gbara, Protecting (even) Naïve Web Users, or: Preventing

Spoofing and Establishing Credentials of Web Sites DIMACS Technical Report 2004-23, May

2004. Latest version available from http://eprint.iacr.org/2004/155.

[LY03] Tieyan Li, Wu Yongdong. "Trust on Web Browser: Attack vs. Defense". International

Conference on Applied Cryptography and Network Security (ACNS'03). Kunming China. Oct. 16-

19, 2003. Springer LNCS.

[M] Introduction to Code Signing, Microsoft. Available online at

http://msdn.microsoft.com/workshop/security/authcode/intro_authenticode.asp

[MRS96] Jim Miller (Ed.), Paul Resnick and David Singer, Rating Services and Rating Systems

and Their Machine Readable Descriptions Version 1.1, W3C Recommendation,

http://www.w3.org/TR/REC-PICS-services, October 1996.

[P04] Passmark Security: Protecting Your Customers from Phishing Attacks: an Introduction to

Passmarks. (http://www.passmarksecurity.com/), 2004.

[R95] Aviel D. Rubin, Trusted Distribution of Software Over the Internet, Proc. ISOC Symposium

on Network and Distributed System Security, pp. 47-53, February, 1995.

[R00] Eric Rescorla. SSL and TLS: Designing and Building Secure Systems. Addison-Wesley,

2000.

[SZ*06] J. Salowey, H. Zhou, P. Eronen and H. Tschofenig, Transport Layer Security Session

Resumption without Server-Side State, RFC 4507, Networking working group, Internet

Engineering Task Force (IETF), May 2006.

[WMG06] Min Wu, Robert C. Miller and Simson L. Garfinkel, Do security toolbars actually

prevent phishing attacks?, Proceedings of the SIGCHI conference on Human Factors in computing

systems, pp. 601-610, Montréal, Québec, Canada, 2006.

[Y06] Yahoo, Give password scams the boot with personalized sign-in seals,

https://protect.login.yahoo.com/, 2006.

[YSA06] Zishuang (Eileen) Ye, Sean Smith and Denise Anthony. Trusted Paths for Browsers.

ACM Transactions on Information and System Security (TISSEC), vol. 8 , no. 2, pp. 153-186, May

2005.

[YS06] Ka-Ping Yee and Kragen Sitaker, Passpet: convenient password management and phishing

protection, Proceedings of the second symposium on usable privacy and security, pp. 32–43, 2006.

[YYS02] Eileen Zishuang Ye ,Yougu Yuan ,Sean Smith . Web Spoofing Revisited: SSL and

Beyond . Technical Report TR2002-417 February 1, 2002.

