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Abstract

Public key encryption with keyword searREKS) enables user Alice to send a secret Kgy to a server that
will enable the server to locate all encrypted messages containing the keJipkiit learn nothing else. In this
paper, we propose a new PKES scheme based on pairings. There is no pairing operation involved in the encryption
procedure. Then, we provide further discussion on removing secure channel from PKES, and present an efficient
secure channel free PKE&heme. Our two new schemes can be proved secure in the random oracle model, under
the appropriate computational assumptions.
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I. INTRODUCTION

In 2004, Boneh et.al [1] proposed the conceptpoblic key encryption with keyword sear(REKS) scheme
to enable one to search encrypted keywords without compromising the security of the original data. Suppose Bob
wants to send Alice a messadé with keywordsWy, Wa, ..., W,,. Let pk4 be Alice’s public key. Bob encryptd/
using a standard public key encryptid.). He then appends to the resulting ciphertext a list of PEKS ciphertext
of each keyword. That i€/ (M, pka)||PKES(W1,pka)l|...||PKES(W,,pk4). This kind of encrypted messages
may be stored in a server. Alice can give the server a certain trafgpedhrough a secure channel that enables the
server to test whether one of the keywords associated with the message is equal to thE wbAlice’s choice.

Given PKES(W', pk4) and Ty, the server can test wheth& = W’. If W # W’ the server learns nothing
more aboufiV’.

Such PEKS scheme can be widely used in many practical applications. For instance, Boneh et.al [1] explain that
PEKS provides a mechanism that allows user Alice to have his email server extract encrypted emails that contain a
particular keyword by providing a trapdoor corresponding to the keyword, while the email server and other parties
excluding Alice do not learn anything else about the email. Shortly after Boneh et al's work, Waters et al. [2]

showed that the PEKS scheme can be applied to build encrypted and searchable audit logs.



The scheme of Boneh et.al [1] needs secure channel to transmit trapdoors to the server. However, building a secure
channel is usually expensive. Very recently, Baek et al. [3] discussed "removing secure channel”, and provided a
notion of secure channel free public key encryption with keyword se¢@€-PEKS) scheme.

In this paper, we propose a hew PKES scheme based on pairings. Its encryption procedure needs no pairing
operation. So our scheme is more efficient than that of Boneh et.al's. Then, we provide further discussion on the
notion and security model for SCF-PEKS scheme, and present an efficient SCF-PEKS scheme. The new schemes
can be proved secure in the random oracle model, under the appropriate computational assumptions.

The rest of this paper is organized as follows: In Section 2, we recall some preliminary works. In Section 3,
we present a new PKES scheme with efficiency discussion and security proof. In Section 4, we provide further
discussion on the formal model for SCF-PEKS schemes, and present an new efficient SCF-PEKS scheme with

provable security. Finally, we end the paper with a brief conclusion.

1. PRELIMINARIES
A. Public Key Encryption with Keyword Search

Definition 1. A public key encryption with Keyword Search (PEKS) scheme consists of four polynomial-time
algorithms:
« KeyGen Take as input a security parametergenerate a public/private key pdisk, sk).
« Trapdoor. Take as input the receiver’s private key and a wordiW, produce a trapdodfyy .
« PKES Take as input the receiver’'s a public key and a wordiW, produce a searchable encryptionl&f.
« Test Take as input the receiver’s public ke¥, a searchable encryptiatt = PEK S(pk, W'), and a trapdoor
Tw = Trapdoor(sk, W), output 1 ("yes”) if W = W’ and 0 ("no") otherwise.

Consistency requires that for any keywold, (pk, sk) = KeyGen(1*), Ty = Trapdoor(sk, W), we have
Test(pk, PEKS(pk,W),Tw) = 1.
In [1], Boneh et.al defined a security notion for PEKS schemes— "indistinguishability of PEKS against chosen

keyword attack” (IND-CKA).

IND-CKA game:

« KeyGen: The challenger runs th& eyGen(\) algorithm to generatépk, sk). It gives pk to the attacker.

» Phase 1 The attacker can adaptively ask the challenger for the trap@gofor any keywordW < {0,1}*
of his choice.

« Challenge At some point, the attacked sends the challenger two wordg,, 1/; on which it wishes to be
challenged. The only restriction is that the attacker did not previously ask for the tragbgprmsr Tyy,. The
challenger picks a randorn € {0,1} and gives the attacket' = PEKS(pk,W,) as the challenge PEKS

ciphertext.
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o Phase 2 The attacker can continue to ask for trapdo@is for any keywordWW of his choice as long as
W # Wy, Wi.

» Guess Eventually, the attacker outputst’ € {0,1} and wins the game i = b'.

Such an adversaryl is called an IND-CKA adversaryd’s advantage in attacking the schefidés defined as

the following function of the security parametgr
Advg,A()\) = |PT‘[b = b/] - 1/2|.
The probability is over the random bits used by the challenger and the adversary.

Definition 2. A PKES scheme is IND-CKA secure if for any polynomially time adversand, Adve 4(\) is
negligible.

B. Bilinear Pairings

Let (G1,+) and (G2, -) be two cyclic groups of prime order. é : G; x G; — G2 be a map which satisfies the
following properties.
1) Bilinear: VP, Q € G1,Va, § € Z,,é(aP, Q) = é(P,Q)*7;
2) Non-degenerate: IP is a generator of7;, thené(P, P) is a generator of7s;
3) Computable: There is an efficient algorithm to compét®, Q) for any P, Q € G;.
Such an bilinear map is called admissible bilinear pairind4]. The Weil pairings and the Tate pairings of elliptic
curves can be used to construct efficient admissible bilinear pairings.
We review two complexity problems related to bilinear pairings: the Bilinear Diffie-Hellman (BDH) problem [4]
and the Bilinear Diffie-Hellman Inverse (BDHI) problem [5], [6]. Lét be a generator of/;, anda,b,c € Z;.
« BDH problem: given P,aP,bP, cP € G4, outputé(P, P)**. An algorithm.A solves BDH problem with the
probability ¢ if
Pr[A(P,aP,bP,cP) = é(P, P)"] > ¢,
where the probability is over the random choice of gener&ter G7, the random choice af,b,c € Z; and
random coins consumed by.
« k-BDHI problem: given (P,aP,a2P,...a*P € (G})**+!, outputé(P, P)> . An algorithm 4 solvesk-BDHI
problem with the probability if

PrlA(P,aP,a*P,...d"P) = é(P,P)* | > ¢,

where the probability is over the random choice of generdtoe G7, the random choice ot € Z; and

random coins consumed by.

We assume through this paper that BDH problem amBDHI problem are intractable, which means that there

is no polynomial time algorithm to solve BDH problem BBDHI problem with non-negligible probability.

March 6, 2006 DRAFT



1. ANEwPKES SSHEME FROMPAIRINGS
A. The Scheme
Let (G1,4) and (G2, -) be two cyclic groups of prime order, é : G; x G; — G2 be an admissible bilinear
pairing, H; : {0,1}* — Zr andH, : G5 — {0,1}'°8% be two hash functions? is a generator of/y, i = é(P, P).
The scheme is described as following:

o KeyGen Pick a randome € Z*, computeX = x P, and outpuipk = X, andsk = .

« Trapdoor. Take as input secret key and keywordW, and outputly, = (Hy(W) + )~ L P.

« PEKS Take as input public keyX and a keyword¥, select randomly € Z*, computel/ = rH,(W)P+rX,
¢ = Hy(u") and output(U, c).

« Test For input public keyX, searchable encryption cipher-téxkf, ¢) and trapdooflyy, test if Ho(é(Tw,U)) =

c. If so, output 1; otherwise, output O.

B. Consistency and Efficiency
Consistency of the scheme is easily proved as follows:
Hy(é(Tw,U)) = Ha(e((Hy(W)+2) *PrH (W)P +7rX))
= Hy(e((Hy(W) +2) "' Pr(Hy (W) +2)P))

Hy(é(P,P)") = c.

Denote by M an ordinary scalar multiplication itG1,+), by E an Exp. operation inG,,.), and byé a
computation of the pairing. The hash functiéh : {0,1}* — G7 used by the scheme in [1] usually requires a
"Maptopoint operation” [4] to map a keyword to an element(i. As discussed in [4], Maptopoint operation
(denoted byP) is so inefficient that we can’t neglect it. Do not take other operations into account. We compare

our scheme to the scheme in [1] in the following table.

schemes KeyGen| Trapdoor PKES Test
scheme in [1] 1M 1M +1P | 2M + 1P + 1eé 1é
proposed 1M 1M 2M +1F lé

Note: The hash function used in our scheme which maps a keyword to an elenigntsrso efficient that we
usually can neglect it.

The construction seems to be more efficient in performance. Although fruitful achievements [7], [8] have been
made in enhancing the computation of pairings, the computation of pairings is still time consuming. Our new
scheme requires no pairing operation in PKES procedure.

Some general performance enhancements can also be applied to our scheme. For preRelectedand
p € Go, there are efficient algorithms [9] to computél, (IDx)P andy” for a randomr € Z; by pre-computing

and storing.
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C. Security Proof

Lemma 1. Let F, be an IND-CKA adversary that has advantage\) within a time boundl’(\). SupposeF,
makes at mosyr > 0 Trapdoor queries,q; > 0 hash function queries té7; and ¢> > 0 hash function queries
to Hy. Letn = maxz{q1,2qr}. Then there is an algorithnF; that solves thex-BDHI problem with advantage at
leaste(\)/(ngz) with a running timeO(T'()\)).

Proof: F; is given input parameters of pairig, G, G2, ¢) and a random instand&”, a P, a*P, ..., a™ P) of the
n-BDHI problem, whereP is random inG} anda is a random inZ;. 7; simulates the challenger and interacts

with Fy as follows:

« KeyGen 1. Randomly choose differentq, h1,...h,,—1 € Z¥, and computef(z) = Hf:_f(x + h;) =
Z?:_ol c;xt.
2. ComputeQ = S ja’ P = f(a)P, aQ = Y1 cia’t P, and Q@ = Y2, c;a’ 1 P. In the (unlikely)
situation where) = 14,, there exist amh; = —a, hence,F; can solve then-BDHI problem directly and
abort.

3.Computef;(x) = f(x)/(x + hi) = ;=7 d;a?. Obviously, (a + h;)7'Q = (a + hi) " f(a)P = fi(a)P =
Yy djal P for 1<i<n.
4. Randomly choose an indexvith 1 < ¢ < n, setv = 0, and start by givingr, the public keyY = aQ—hoQ.

« Phase 1:H;-queries F; maintains aH, list, initially empty. For a query¥V/, if W already appears on the
H, list in a tuple (W, g, D), F; responds withy. Otherwise, sety = v+ +, W, = W, if v = ¢, F; sets
g = hg, D, = L; otherwise,F; selects a random > . > 0 which has not been chosen and sgts= h, + hyo,
D, = (a+ h,)~'Q. In both case, adds the tupl&’,, g.,, D,) to H; _list and responds witly,,.

« Phase 1: Hy-queries F; maintains aH, list, initially empty. For a query;, F; checks ife; appears on
the H, list in a tuple (e;,u;). If not, F; picks a randomu; € {0,1}'°#9, and adds the tuplée;, u;)to the
Hy list. F1 returnsu; to Fy.

« Phase 1:Trapdoor queries. For inputV;, without any loss of generality, we can assume fiathas already
been asked to oraclH;. F; searches i, list for (W, g;, D;). If D; = L thenF; aborts. OtherwiseF;
responds withD;.

» Challenge Once ¥, decides that Phase 1 is over it outputs two keywdids W on which it wishes to be
challenged F; responds as follows:
1. 71 runs the above algorithm for responding &g -queries twice to obtaiiiV{, g;, Df) and (W7, g, D}).
If both D, # L and D] # L thenF; aborts. OtherwiseF; responds with the challenge ciphertékt), ¢)
for random selected € Z; and§ € {0,1}°e9, (Observe that if(bQ,¢) is a cipher-text corresponding
to W/ with » € {0,1} satisfying D; = L, by definition, the decryption o€ is & = Ha(é(Tw:,bQ)) =
Hy(e(a™'Q,bQ)) = Hx(6(Q.Q)* ).)

o Phase 2: H,-queries, Hyo-queries, Trapdoor queries. F; responds to these queries in the same way it does

in Phase 1 with the only restriction th#t; = W}, W] for Trapdoor queries.
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« Guess Eventually 7, produces its guess € {0,1} for ..

F1 keeps interacting witt#, until F, halts or aborts. IfFy produces a guess, F; picks a random tuplée;, u;)
from the Hy list. 71 computesy = eifl, B =¢Q,Q+ coP) and outputs(oz/ﬁ)‘ﬁ2 as the solution to the given
instance ofg;-BIDH problem. (Note that ifx = 6(Q, Q) ', then(a/B)% = é(P, P)* "))

This completes the description & .

Suppose that in a real attack gatfig is given the public key@Q,Y = aQ — hoQ) and F, asks to be challenged
on wordsW{ andWj. In responsef; is given a challengéb@, &). Then, just as discussed in [1], in the real attack
gameF, issues antdy query for eitherHs(é(Tw;, bQ)) or Ha(é(Twy,bQ)) with probability at leasRe ().

Now, assumingF; does not abort, we know thaf; simulates a real attack game perfectly up to the moment
when F, issues a query for eithells(é(Tw;, bQ)) or Ha(é(Tw;,bQ)). Therefore, the valudls(é(Tw,,bQ)) =
H,(¢(Q, Q) '*) will appear in theH,-list with probability at least()\). 7, will choose the correct pair with
probability at leastl /g.

During the simulation,/; does not abort in phases 1 or 2 becaus&@é Trapdoor queries isl — gr/n. The
probability that#; does not abort during the challenge stefis. Because: > 2¢r, we know that the probability
that F, does not abort during the simulation (i — ¢7/n)2/n > 1/n.

Therefore,F;’s success probability overall is at least\)/(ng2).

IV. PKES SCHEMESWITHOUT SECURE CHANNEL

PKES schemes need secure (encrypted and authenticated) channels between users and servers. However, building
a secure channel is usually expensive. In [3], Baek et.al suggested a formal mosetdioe channel free public
key encryption with keyword sear¢§BCF-PEKS) scheme, which defines SCF-PEKS scheme with six algorithms.
In this section, we provide further discussion on the formal model for SCF-PEKS schemes, and present an new

efficient SCF-PEKS scheme with provable security.

A. New Formal Model for SCF-PEKS Schemes

A SCF-PEKS scheme enables the sender to use the server's public key as well as the receiver’s public key to
generate PEKS ciphertexts. The receiver then can send a trapdoor to retrieve data associated with the encrypted

keyword via a public channel.

Definition 3. A SCF-PEKS scheme consists of four polynomial-time algorithms:
« KeyGen Take as input a security parametergenerate a public/private key paifsk, sk). This algorithm is
used to generate key pairs for users (including the receiver and the server).
« Trapdoor. Take as input the receiver’s private kek, and a wordW, produce a trapdodfyy .
« PKES Take as input the receiver’s public key:,, the server's public kepk; and a wordlW, produce a

searchable encryption 6f.
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o Test Take as input the server’s secret kef, and the receiver’s public keyk,, a searchable encryption
S = PEKS(pk,,pks,W'), and a trapdoofly, = Trapdoor(sk,, W), output 1 ("yes”) if W = W’ and 0

("no”) otherwise.

Consistency requires that for any keywdid, receiver's key paipk,, sk,) = KeyGen(1*), server's key pair
(pks, sks) = KeyGen (1)), Ty = Trapdoor(sk,, W), we haveTest(sks, pk,, PEKS(pk,, pks, W), Tyy') = 1.

As to security, informally, we can say a SCF-PEKS scheme is secure if it can catch the following goals:

« The attacker without the trapdoors for given keywords cannot tell the PEKS ciphertext is produced from which
keyword, even he knows the server’s secret key. We call this security propedigtinguishability against
chosen keyword attack with server's secret’gMD-CKA-SSK).

« The attacker without the server’s private key cannot make any decisions about the PEKS ciphertexts even
though the attacker gets all the trapdoors for the keywords that it holds. We call this security property
"indistinguishability against chosen keyword attack with all trapdd@isiD-CKA-AT).

Formally, we define the following two security notions.

IND-CKA-SSK game:

« KeyGen:The challenger runs th&E eyGen()\) algorithm twice to generate the server's key faik,, sk.) and
the receiver's key paitpk,, sk,). It gives pks, pk,, sks to the attacker.

« Phase 1 Challenge Phase 2 Guess The attacket4 does these steps almost the same as that in IND-CKA
game, except that the challenge ciphertextis= PEK S(pk.., pks, W;), whereb € {0,1}, Wy, W are the
two words to be challenged.

The adversary4 is called an IND-CKA-SSK adversaryl’s advantage is defined as:
AdvNPmCRAZSSE(N) = | Prb =] — 1/2).
The probability is over the random bits used by the challenger and the adversary.

Definition 4. A SCF-PKES schemé is IND-CKA-SSK secure if for any polynomially time adversafy Aduv ™"~ A=55K())
is negligible.

IND-CKA-AT game:

« KeyGen: The challenger runs th&eyGen(\) algorithm twice to generate the server's key paiks, sks)
and the receiver’s key paipk.., sk..). It gives pks, pk, to the attacker.

« Phase 1 The attacker can adaptively ask the challenger for the trap@igofor any keywordW < {0,1}*
of his choice.

« Challenge At some point, the attacked sends the challenger two wordg,, 1#; on which it wishes to be
challenged. The challenger picks a randbra {0,1} and gives the attacket = PEK S(pk., pks, W) as
the challenge PEKS.

March 6, 2006 DRAFT



« Phase 2 The attacker can continue to ask for trapdddyg for any keywordW of his choice.

» Guess Eventually, the attacked outputst’ € {0,1} and wins the game i = ¥'.

The adversaryA is called an IND-CKA-AT adversaryd’s advantage is defined as:
AdvNPmORATAT(N) = |Prib = 1] — 1/2].
The probability is over the random bits used by the challenger and the adversary.

Definition 5. A SCF-PKES schemé is IND-CKA-AT secure if for any polynomially time adversas, Advz "~ “*4=4T(x)

is negligible.

B. A New SCF-PEKS Scheme from pairings

Let (G1,+) and (Gs,-) be two cyclic groups of prime order, é : G; x G; — G2 be an admissible bilinear
pairing, Hy : {0,1}* — Z7 andH; : G2 — {0,1}'°8% be two hash functions? is a generator of/, p = é(P, P).
The scheme is described as following:

« KeyGen Pick a randome € Z*, computeX = x P, and outpuipk = X, andsk = .

« Trapdoor. Take as input secret key and keywordW, output Ty, = (Hy (W) + x)~ 1 P.

o PEKS Take as input a receiver’s public key, a server’s public key” and a keywordV/, select randomly

ri,ro € ZF, computeU = ri Hi(W)P + 7 X,V =roP, ¢c = Ha(é(r1 P+ rU,Y")) and output(U, V, ¢).
« Test Take as input the receiver's public key, the server's private key € Z}, a searchable encryption

cipher-text(U, V, ¢) and trapdoofTyy, test if Hy(é(yU,Tw + V')) = c. If so, output "yes”; otherwise, output

no-.

C. Consistency and Efficiency
Consistency of the scheme is easily proved as follows:
Hy(e(yU,Tw +V)) = Ha(e(U,(Hi(W)+z) 'P+1r2P)Y)
= Hy(é(ri(Hi(W) +z)P,(Hi (W) +z)"'P)? - &(U, 72 P)")
= Hy(é(rP,yP) - é(raU,yP))
= Hy(é(mP+rUY)) =c
Denote byM an ordinary scalar multiplication i(z1, +), by E an Exp. operation itiGs, .), by é a computation

of the pairing and byP a Maptopoint operation [4]. Do not take other operations into account. We compare our

scheme to the scheme in [3] in the following table.

schemes KeyGen| Trapdoor PKES Test
scheme in [3] 1M IM+1P | IM+1P+1E+2é | 2M + 1é
proposed 1M 1M 5M + 1eé 1M +1é

March 6, 2006 DRAFT



D. Security Proof

Lemma 2. Let Fy be an IND-CKA-SSK adversary that has advantage) within a time boundl’(\). Suppose
Fo makes at mosjr > 0 Trapdoor queries,q; > 0 hash function queries té/; and g > 0 hash function queries
to Hy. Letn = maxz{q1,2qr}. Then there is an algorithnF; that solves thex-BDHI problem with advantage at
leaste(\)/(ngz2) with a running timeO(T'()\)).

Proof: F; is given input parameters of pairir{g, G1, G2, é) and an a random instan¢®, a P, a*P, ..., a™ P) of
the n-BDHI problem, whereP is random inGT anda is a random inZ;. 7; simulates the challenger and interacts

with Fy as follows:

« KeyGen Randomly choose differerity, 21, ...h,—1 € Z;;, and and computg(z), Q, aQ, Q', (a + hi)~'Q
for 1 < i < n the same as that in the proof of Lemma 1. In the (unlikely) situation wheee 14,, there
exist anh; = —a, hence, F; can solve thej;-BDHI problem directly and abort.

2. Randomly choose an indéxwith 1 <t < n, setsv = 0. Select a randony € Z; and start by givingF,
the reciver’s public keyX = a@Q — ho@ and the server’s key paiy, yQ).

o Phase 1:H;-queries, Hy-queries, Trapdoor queries F; responds these queries the same way as that in the
proof of Lemma 1.

» Challenge Once ¥, decides that Phase 1 is over it outputs two keywdids W, on which it wishes to be
challenged F; responds as follows:

1. 71 runs the above algorithm for responding &q -queries twice to obtaiiiW{, ¢;, Df) and (W7, g1, D}).

If both Dj # 1 and D7 # L then F; aborts. OtherwiseF; responds with the challenge ciphertext
(1Q,72Q,¢) for random selectedy, > € Z; and¢ € {0,1}°8%. (Observe that if(11Q,7Q.¢) is a
cipher-text corresponding t&; with . € {0,1} satisfying D! = L, by definition, the decryption of’ is

€ = Hy(é(nQ, Ty +712Q)Y) = Ha(é(mQ,a~'Q +12Q)?) = Ha(&(Q, Q)@ +12)v) )

« Phase 2:H,-queries, Hy-queries, Trapdoor queries. F; responds to these queries in the same way it does
in Phase 1 with the only restriction th#t; = W}, W/ for Trapdoor queries.

« GuessEventually 7, produces its guess € {0, 1} for ..

F1 keeps interacting witt#, until 7, halts or aborts. IfFy produces a guess, F; picks a random tuplée;, h;)
from the H, list and computes = é(Q,12Q), a = eE“yrl/(S, B =é(Q,Q+coP) and outputgar/B)%  as the
solution to the given instance gf-BIDH problem. (Note that ife; = &(Q, Q)" (¢ +72)v, thena = ¢(Q, Q)* ',
hence,(a/3)% = é(P,P)* ")

This completes the description &% . Just as discussed in the proof of LemmaFl's success probability overall
is at least=(\)/(ngz).

Lemma 3. Let Fy be an IND-CKA-AT adversary that has advantage) within a time boundl’(\). SupposeF
makes at mosgr > 0 Trapdoor queries,q; > 0 hash function queries té/; and ¢> > 0 hash function queries to

H,. Then there is an algorithniF; that solves the BDH problem with advantage at lezst\) /g2 with a running
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time O(T'(A)).

Proof: F; is given input parameters of pairirlg, G1, G2, ¢) and a random instande’, a P, bP, cP) of the BDH
problem, whereP is random inG} anda, b, c are random elements ii;. 7, simulates the challenger and interacts
with Fy as follows:

« KeyGen: Select randomlyr € Z; and start by givingF, the reciver’s public keyX = xP and the server’s

public keyaP.

« Phase 1:H,-queries F; maintains aH; _list, initially empty. For a quenyV,, if W; already appears on the
H, list in a tuple (W, g;), F1 responds withg;. Otherwise,F; selects a randony; € Zy, adds the tuple
(W3, gi)to the H _list and responds witly;.

o Phase 1:H,-queries F; maintains aH,_list, initially empty. For a quene;, F; checks ife;, appears on
the H,_list in a tuple (e;, h;). If not, F; picks a randomh; € {0,1}°84, and adds the tuplée;, h;)to the
Hy list. F1 returnsh; to Fy.

« Phase 1:Trapdoor queries For inputW;, without any loss of generality, we can assume fiiathas already
been asked to oracld;. F; searches in; _list for (W;,g;) and F; responds withD; = (g; + =)' P.

« Challenge OnceF, decides that Phase 1 is over it outputs two keywdids W] on which it wishes to be
challenged 7, runs the above algorithm for responding i -queries twice to obtaifWy, g;) and (W7, g}).
Selectst € {0,1} and responds with the challenge ciphertéxthP + xbP, cP, ) for random selected <
{0,1}°8 9. (Observe that if(g/bP + xbP, cP, &) is a cipher-text corresponding &/, by definition, the test
procedure ofC is to testé = Hy(é(g/bP + xbP, (g, + ) "1 P + cP)?).)

o Phase 2: H,-queries, Hy-queries, Trapdoor queries. F; responds to these queries in the same way it does
in Phase 1.

« GuessEventually 7, produces its guess € {0, 1} for «.

F1 keeps interacting wittF, until 7, halts or aborts. 1fF;, produces a guess, F; picks a random tuplée;, u;)
from the Hy_list. F; computes and outputs = (e;/é(aP, bP))(gﬁ”)*l as the solution to the given instance of
BDH problem. (Note that it; = é(g/bP + 2bP, (¢ + )~ P + cP)*, thene; = é(bP, P)*é(P, P)**(9.+2) hence
a = (e;/é(aP,bP)) 9. +) " = g(P, P)ate)

This completes the description & .

We know that in the real attack gani& issues anH, query for Hy(é(ghbP + xbP, (gf + x) "' P + cP)%)
Hy(é(gybP + zbP, (¢4 + )~ ' P + ¢P)®) with probability at leasRe(\). Fisimulates a real attack game perfectly
up to the moment whe, issues a query foH, (é(g/bP+xbP, (g.+x) "t P+cP)®) with . € {0, 1}. Therefore, the
valueé(g/bP + xbP, (¢ +x) ' P + cP)* will appear in theH,-list with probability at leaste(\). F; will choose

the correct pair with probability at leasy/qo. Therefore, F;'s success probability overall is at leaxst(\)/qo.

V. CONCLUSION

In this paper, first, we propose a new PKES scheme based on pairings and prove its security in the random oracle

model. The new scheme is more efficient than that of Boneh et.al’'s. Then, we provide further discussion on the
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notion of SCF-PEKS scheme, give a formal security model and present an efficient SCF-PEKS scheme. The new

scheme can also be proved to be secure in the random oracle model.
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