
Efficient Public Key Encryption with Keyword

Search Schemes from Pairings
Chunxiang Gu, Yuefei Zhu, Yajuan Zhang

Network Engineering Department of Information Engineering University,

P.O. Box 1001-770, Zhengzhou, 450002, P.R.China

E-mail: gcxiang5209@Yahoo.com.cn

Abstract

Public key encryption with keyword search(PEKS) enables user Alice to send a secret keyTW to a server that

will enable the server to locate all encrypted messages containing the keywordW , but learn nothing else. In this

paper, we propose a new PKES scheme based on pairings. There is no pairing operation involved in the encryption

procedure. Then, we provide further discussion on removing secure channel from PKES, and present an efficient

secure channel free PKESscheme. Our two new schemes can be proved secure in the random oracle model, under

the appropriate computational assumptions.

Keywords: Public key encryption with keyword search, pairings, provable secure.

I. I NTRODUCTION

In 2004, Boneh et.al [1] proposed the concept ofpublic key encryption with keyword search(PEKS) scheme

to enable one to search encrypted keywords without compromising the security of the original data. Suppose Bob

wants to send Alice a messageM with keywordsW1,W2, ..., Wn. Let pkA be Alice’s public key. Bob encryptsM

using a standard public key encryptionE(.). He then appends to the resulting ciphertext a list of PEKS ciphertext

of each keyword. That isE(M, pkA)||PKES(W1, pkA)||...||PKES(Wn, pkA). This kind of encrypted messages

may be stored in a server. Alice can give the server a certain trapdoorTW through a secure channel that enables the

server to test whether one of the keywords associated with the message is equal to the wordW of Alice’s choice.

Given PKES(W ′, pkA) and TW , the server can test whetherW = W ′. If W 6= W ′ the server learns nothing

more aboutW ′.

Such PEKS scheme can be widely used in many practical applications. For instance, Boneh et.al [1] explain that

PEKS provides a mechanism that allows user Alice to have his email server extract encrypted emails that contain a

particular keyword by providing a trapdoor corresponding to the keyword, while the email server and other parties

excluding Alice do not learn anything else about the email. Shortly after Boneh et al.’s work, Waters et al. [2]

showed that the PEKS scheme can be applied to build encrypted and searchable audit logs.

2

The scheme of Boneh et.al [1] needs secure channel to transmit trapdoors to the server. However, building a secure

channel is usually expensive. Very recently, Baek et al. [3] discussed ”removing secure channel”, and provided a

notion of secure channel free public key encryption with keyword search(SCF-PEKS) scheme.

In this paper, we propose a new PKES scheme based on pairings. Its encryption procedure needs no pairing

operation. So our scheme is more efficient than that of Boneh et.al’s. Then, we provide further discussion on the

notion and security model for SCF-PEKS scheme, and present an efficient SCF-PEKS scheme. The new schemes

can be proved secure in the random oracle model, under the appropriate computational assumptions.

The rest of this paper is organized as follows: In Section 2, we recall some preliminary works. In Section 3,

we present a new PKES scheme with efficiency discussion and security proof. In Section 4, we provide further

discussion on the formal model for SCF-PEKS schemes, and present an new efficient SCF-PEKS scheme with

provable security. Finally, we end the paper with a brief conclusion.

II. PRELIMINARIES

A. Public Key Encryption with Keyword Search

Definition 1. A public key encryption with Keyword Search (PEKS) scheme consists of four polynomial-time

algorithms:

• KeyGen: Take as input a security parameterλ, generate a public/private key pair(pk, sk).

• Trapdoor: Take as input the receiver’s private keysk and a wordW , produce a trapdoorTW .

• PKES: Take as input the receiver’s a public keypk and a wordW , produce a searchable encryption ofW .

• Test: Take as input the receiver’s public keypk, a searchable encryptionC = PEKS(pk, W ′), and a trapdoor

TW = Trapdoor(sk, W), output 1 (”yes”) ifW = W ′ and 0 (”no”) otherwise.

Consistency requires that for any keywordW , (pk, sk) = KeyGen(1λ), TW = Trapdoor(sk, W), we have

Test(pk, PEKS(pk, W), TW) = 1.

In [1], Boneh et.al defined a security notion for PEKS schemes– ”indistinguishability of PEKS against chosen

keyword attack” (IND-CKA).

IND-CKA game:

• KeyGen: The challenger runs theKeyGen(λ) algorithm to generate(pk, sk). It gives pk to the attacker.

• Phase 1: The attacker can adaptively ask the challenger for the trapdoorTW for any keywordW ∈ {0, 1}∗

of his choice.

• Challenge: At some point, the attackerA sends the challenger two wordsW0,W1 on which it wishes to be

challenged. The only restriction is that the attacker did not previously ask for the trapdoorsTW0 or TW1 . The

challenger picks a randomb ∈ {0, 1} and gives the attackerC = PEKS(pk, Wb) as the challenge PEKS

ciphertext.

March 6, 2006 DRAFT

3

• Phase 2: The attacker can continue to ask for trapdoorsTW for any keywordW of his choice as long as

W 6= W0,W1.

• Guess: Eventually, the attackerA outputsb′ ∈ {0, 1} and wins the game ifb = b′.

Such an adversaryA is called an IND-CKA adversary.A’s advantage in attacking the schemeE is defined as

the following function of the security parameterλ:

AdvE,A(λ) = |Pr[b = b′]− 1/2|.

The probability is over the random bits used by the challenger and the adversary.

Definition 2. A PKES schemeE is IND-CKA secure if for any polynomially time adversaryA, AdvE,A(λ) is

negligible.

B. Bilinear Pairings

Let (G1,+) and(G2, ·) be two cyclic groups of prime orderq. ê : G1 ×G1 → G2 be a map which satisfies the

following properties.

1) Bilinear: ∀P, Q ∈ G1,∀α, β ∈ Zq, ê(αP, βQ) = ê(P, Q)αβ ;

2) Non-degenerate: IfP is a generator ofG1, then ê(P, P) is a generator ofG2;

3) Computable: There is an efficient algorithm to computeê(P, Q) for any P, Q ∈ G1.

Such an bilinear map is called anadmissible bilinear pairing[4]. The Weil pairings and the Tate pairings of elliptic

curves can be used to construct efficient admissible bilinear pairings.

We review two complexity problems related to bilinear pairings: the Bilinear Diffie-Hellman (BDH) problem [4]

and the Bilinear Diffie-Hellman Inverse (BDHI) problem [5], [6]. LetP be a generator ofG1, anda, b, c ∈ Z∗q .

• BDH problem: given P, aP, bP, cP ∈ G1, output ê(P, P)abc. An algorithmA solves BDH problem with the

probability ε if

Pr[A(P, aP, bP, cP) = ê(P, P)abc] ≥ ε,

where the probability is over the random choice of generatorP ∈ G∗1, the random choice ofa, b, c ∈ Z∗q and

random coins consumed byA.

• k-BDHI problem : given (P, aP, a2P, ...akP ∈ (G∗1)
k+1, output ê(P, P)a−1

. An algorithmA solvesk-BDHI

problem with the probabilityε if

Pr[A(P, aP, a2P, ...akP) = ê(P, P)a−1
] ≥ ε,

where the probability is over the random choice of generatorP ∈ G∗1, the random choice ofa ∈ Z∗q and

random coins consumed byA.

We assume through this paper that BDH problem andk-BDHI problem are intractable, which means that there

is no polynomial time algorithm to solve BDH problem ork-BDHI problem with non-negligible probability.

March 6, 2006 DRAFT

4

III. A N EW PKES SCHEME FROMPAIRINGS

A. The Scheme

Let (G1,+) and (G2, ·) be two cyclic groups of prime orderq, ê : G1 × G1 → G2 be an admissible bilinear

pairing,H1 : {0, 1}∗ → Z∗q andH2 : G2 → {0, 1}log q be two hash functions.P is a generator ofG1, µ = ê(P, P).

The scheme is described as following:

• KeyGen: Pick a randomx ∈ Z∗q , computeX = xP , and outputpk = X, andsk = x.

• Trapdoor: Take as input secret keyx and keywordW , and outputTW = (H1(W) + x)−1P .

• PEKS: Take as input public keyX and a keywordW , select randomlyr ∈ Z∗q , computeU = rH1(W)P +rX,

c = H2(µr) and output(U, c).

• Test: For input public keyX, searchable encryption cipher-text(U, c) and trapdoorTW , test ifH2(ê(TW , U)) =

c. If so, output 1; otherwise, output 0.

B. Consistency and Efficiency

Consistency of the scheme is easily proved as follows:

H2(ê(TW , U)) = H2(ê((H1(W) + x)−1P, rH1(W)P + rX))

= H2(ê((H1(W) + x)−1P, r(H1(W) + x)P))

= H2(ê(P, P)r) = c.

Denote byM an ordinary scalar multiplication in(G1,+), by E an Exp. operation in(G2, .), and by ê a

computation of the pairing. The hash functionH1 : {0, 1}∗ → G∗1 used by the scheme in [1] usually requires a

”Maptopoint operation” [4] to map a keyword to an element inG1. As discussed in [4], Maptopoint operation

(denoted byP) is so inefficient that we can’t neglect it. Do not take other operations into account. We compare

our scheme to the scheme in [1] in the following table.

schemes KeyGen Trapdoor PKES Test

scheme in [1] 1M 1M + 1P 2M + 1P + 1ê 1ê

proposed 1M 1M 2M + 1E 1ê

Note: The hash function used in our scheme which maps a keyword to an element inZ∗q is so efficient that we

usually can neglect it.

The construction seems to be more efficient in performance. Although fruitful achievements [7], [8] have been

made in enhancing the computation of pairings, the computation of pairings is still time consuming. Our new

scheme requires no pairing operation in PKES procedure.

Some general performance enhancements can also be applied to our scheme. For pre-selectedP ∈ G1 and

µ ∈ G2, there are efficient algorithms [9] to computerH1(IDX)P andµr for a randomr ∈ Z∗q by pre-computing

and storing.

March 6, 2006 DRAFT

5

C. Security Proof

Lemma 1. Let F0 be an IND-CKA adversary that has advantageε(λ) within a time boundT (λ). SupposeF0

makes at mostqT > 0 Trapdoor queries,q1 > 0 hash function queries toH1 and q2 > 0 hash function queries

to H2. Let n = max{q1, 2qT }. Then there is an algorithmF1 that solves then-BDHI problem with advantage at

leastε(λ)/(nq2) with a running timeO(T (λ)).

Proof: F1 is given input parameters of pairing(q, G1, G2, ê) and a random instance(P, aP, a2P, ..., anP) of the

n-BDHI problem, whereP is random inG∗1 anda is a random inZ∗q . F1 simulates the challenger and interacts

with F0 as follows:

• KeyGen: 1. Randomly choose differenth0, h1, ...hn−1 ∈ Z∗q , and computef(x) =
∏n−1

i=1 (x + hi) =
∑n−1

i=0 cix
i.

2. ComputeQ =
∑n−1

i=0 cia
iP = f(a)P , aQ =

∑n−1
i=0 cia

i+1P , andQ′ =
∑n−1

i=1 cia
i−1P . In the (unlikely)

situation whereQ = 1G1 , there exist anhi = −a, hence,F1 can solve then-BDHI problem directly and

abort.

3.Computefi(x) = f(x)/(x + hi) =
∑n−2

j=0 djx
j . Obviously,(a + hi)−1Q = (a + hi)−1f(a)P = fi(a)P =

∑n−2
j=0 dja

jP for 1 ≤ i ≤ n.

4. Randomly choose an indext with 1 ≤ t ≤ n, setv = 0, and start by givingF0 the public keyY = aQ−h0Q.

• Phase 1:H1-queries. F1 maintains aH1 list, initially empty. For a queryW , if W already appears on the

H1 list in a tuple(W, g, D), F1 responds withg. Otherwise, setsv = v + +, Wv = W , if v = t, F1 sets

gv = h0, Dv = ⊥; otherwise,F1 selects a randomn ≥ ι > 0 which has not been chosen and setsgv = hι+h0,

Dv = (a + hι)−1Q. In both case, adds the tuple(Wv, gv, Dv) to H1 list and responds withgv.

• Phase 1:H2-queries. F1 maintains aH2 list, initially empty. For a queryei, F1 checks ifei appears on

the H2 list in a tuple (ei, ui). If not, F1 picks a randomui ∈ {0, 1}log q, and adds the tuple(ei, ui)to the

H2 list. F1 returnsui to F0.

• Phase 1:Trapdoor queries: For inputWi, without any loss of generality, we can assume thatWi has already

been asked to oracleH1. F1 searches inH1 list for (Wi, gi, Di). If Di = ⊥ thenF1 aborts. Otherwise,F1

responds withDi.

• Challenge: OnceF0 decides that Phase 1 is over it outputs two keywordsW ′
0,W

′
1 on which it wishes to be

challenged.F1 responds as follows:

1. F1 runs the above algorithm for responding toH1-queries twice to obtain(W ′
0, g

′
0, D

′
0) and (W ′

1, g
′
1, D

′
1).

If both D′
0 6= ⊥ and D′

1 6= ⊥ thenF1 aborts. Otherwise,F1 responds with the challenge ciphertext(bQ, ξ)

for random selectedb ∈ Z∗q and ξ ∈ {0, 1}log q. (Observe that if(bQ, ξ) is a cipher-text corresponding

to W ′
ι with ι ∈ {0, 1} satisfying D′

ι = ⊥, by definition, the decryption ofC is ξ = H2(ê(TW ′
ι
, bQ)) =

H2(ê(a−1Q, bQ)) = H2(ê(Q,Q)a−1b).)

• Phase 2:H1-queries, H2-queries, Trapdoor queries. F1 responds to these queries in the same way it does

in Phase 1 with the only restriction thatWi 6= W ′
0,W

′
1 for Trapdoor queries.

March 6, 2006 DRAFT

6

• Guess: EventuallyF0 produces its guessι′ ∈ {0, 1} for ι.

F1 keeps interacting withF0 until F0 halts or aborts. IfF0 produces a guessι′, F1 picks a random tuple(ei, ui)

from theH2 list. F1 computesα = eb−1

i , β = ê(Q′, Q + c0P) and outputs(α/β)c−2
0 as the solution to the given

instance ofq1-BIDH problem. (Note that ifα = ê(Q,Q)a−1
, then(α/β)c−2

0 = ê(P, P)a−1
.)

This completes the description ofF1.

Suppose that in a real attack gameF0 is given the public key(Q,Y = aQ−h0Q) andF0 asks to be challenged

on wordsW ′
0 andW ′

1. In response,F0 is given a challenge(bQ, ξ). Then, just as discussed in [1], in the real attack

gameF0 issues anH2 query for eitherH2(ê(TW ′
0
, bQ)) or H2(ê(TW ′

1
, bQ)) with probability at least2ε(λ).

Now, assumingF1 does not abort, we know thatF1 simulates a real attack game perfectly up to the moment

whenF0 issues a query for eitherH2(ê(TW ′
0
, bQ)) or H2(ê(TW ′

1
, bQ)). Therefore, the valueH2(ê(TW ′

ι
, bQ)) =

H2(ê(Q,Q)a−1b) will appear in theH2-list with probability at leastε(λ). F1 will choose the correct pair with

probability at least1/q2.

During the simulation,F1 does not abort in phases 1 or 2 because ofF0’s Trapdoor queries is1− qT /n. The

probability thatF1 does not abort during the challenge step is2/n. Becausen ≥ 2qT , we know that the probability

thatF1 does not abort during the simulation is(1− qT /n)2/n ≥ 1/n.

Therefore,F1’s success probability overall is at leastε(λ)/(nq2).

IV. PKES SCHEMESWITHOUT SECURECHANNEL

PKES schemes need secure (encrypted and authenticated) channels between users and servers. However, building

a secure channel is usually expensive. In [3], Baek et.al suggested a formal model forsecure channel free public

key encryption with keyword search(SCF-PEKS) scheme, which defines SCF-PEKS scheme with six algorithms.

In this section, we provide further discussion on the formal model for SCF-PEKS schemes, and present an new

efficient SCF-PEKS scheme with provable security.

A. New Formal Model for SCF-PEKS Schemes

A SCF-PEKS scheme enables the sender to use the server’s public key as well as the receiver’s public key to

generate PEKS ciphertexts. The receiver then can send a trapdoor to retrieve data associated with the encrypted

keyword via a public channel.

Definition 3. A SCF-PEKS scheme consists of four polynomial-time algorithms:

• KeyGen: Take as input a security parameterλ, generate a public/private key pairs(pk, sk). This algorithm is

used to generate key pairs for users (including the receiver and the server).

• Trapdoor: Take as input the receiver’s private keyskr and a wordW , produce a trapdoorTW .

• PKES: Take as input the receiver’s public keypkr, the server’s public keypks and a wordW , produce a

searchable encryption ofW .

March 6, 2006 DRAFT

7

• Test: Take as input the server’s secret keysks and the receiver’s public keypkr, a searchable encryption

S = PEKS(pkr, pks,W
′), and a trapdoorTW = Trapdoor(skr,W), output 1 (”yes”) if W = W ′ and 0

(”no”) otherwise.

Consistency requires that for any keywordW , receiver’s key pair(pkr, skr) = KeyGen(1λ), server’s key pair

(pks, sks) = KeyGen(1λ), TW = Trapdoor(skr,W), we haveTest(sks, pkr, PEKS(pkr, pks,W), TW) = 1.

As to security, informally, we can say a SCF-PEKS scheme is secure if it can catch the following goals:

• The attacker without the trapdoors for given keywords cannot tell the PEKS ciphertext is produced from which

keyword, even he knows the server’s secret key. We call this security property ”indistinguishability against

chosen keyword attack with server’s secret key” (IND-CKA-SSK).

• The attacker without the server’s private key cannot make any decisions about the PEKS ciphertexts even

though the attacker gets all the trapdoors for the keywords that it holds. We call this security property

” indistinguishability against chosen keyword attack with all trapdoors” (IND-CKA-AT).

Formally, we define the following two security notions.

IND-CKA-SSK game:

• KeyGen:The challenger runs theKeyGen(λ) algorithm twice to generate the server’s key pair(pks, sks) and

the receiver’s key pair(pkr, skr). It gives pks, pkr, sks to the attacker.

• Phase 1, Challenge, Phase 2, Guess: The attackerA does these steps almost the same as that in IND-CKA

game, except that the challenge ciphertext isC = PEKS(pkr, pks,Wb), whereb ∈R {0, 1}, W0,W1 are the

two words to be challenged.

The adversaryA is called an IND-CKA-SSK adversary.A’s advantage is defined as:

AdvIND−CKA−SSK
E,A (λ) = |Pr[b = b′]− 1/2|.

The probability is over the random bits used by the challenger and the adversary.

Definition 4. A SCF-PKES schemeE is IND-CKA-SSK secure if for any polynomially time adversaryA, AdvIND−CKA−SSK
E,A (λ)

is negligible.

IND-CKA-AT game:

• KeyGen: The challenger runs theKeyGen(λ) algorithm twice to generate the server’s key pair(pks, sks)

and the receiver’s key pair(pkr, skr). It gives pks, pkr to the attacker.

• Phase 1: The attacker can adaptively ask the challenger for the trapdoorTW for any keywordW ∈ {0, 1}∗

of his choice.

• Challenge: At some point, the attackerA sends the challenger two wordsW0,W1 on which it wishes to be

challenged. The challenger picks a randomb ∈ {0, 1} and gives the attackerC = PEKS(pkr, pks,Wb) as

the challenge PEKS.

March 6, 2006 DRAFT

8

• Phase 2: The attacker can continue to ask for trapdoorsTW for any keywordW of his choice.

• Guess: Eventually, the attackerA outputsb′ ∈ {0, 1} and wins the game ifb = b′.

The adversaryA is called an IND-CKA-AT adversary.A’s advantage is defined as:

AdvIND−CKA−AT
E,A (λ) = |Pr[b = b′]− 1/2|.

The probability is over the random bits used by the challenger and the adversary.

Definition 5. A SCF-PKES schemeE is IND-CKA-AT secure if for any polynomially time adversaryA, AdvIND−CKA−AT
E,A (λ)

is negligible.

B. A New SCF-PEKS Scheme from pairings

Let (G1,+) and (G2, ·) be two cyclic groups of prime orderq, ê : G1 × G1 → G2 be an admissible bilinear

pairing,H1 : {0, 1}∗ → Z∗q andH2 : G2 → {0, 1}log q be two hash functions.P is a generator ofG1, µ = ê(P, P).

The scheme is described as following:

• KeyGen: Pick a randomx ∈ Z∗q , computeX = xP , and outputpk = X, andsk = x.

• Trapdoor: Take as input secret keyx and keywordW , outputTW = (H1(W) + x)−1P .

• PEKS: Take as input a receiver’s public keyX, a server’s public keyY and a keywordW , select randomly

r1, r2 ∈ Z∗q , computeU = r1H1(W)P + r1X, V = r2P , c = H2(ê(r1P + r2U, Y)) and output(U, V, c).

• Test: Take as input the receiver’s public keyX, the server’s private keyy ∈ Z∗q , a searchable encryption

cipher-text(U, V, c) and trapdoorTW , test if H2(ê(yU, TW + V)) = c. If so, output ”yes”; otherwise, output

”no”.

C. Consistency and Efficiency

Consistency of the scheme is easily proved as follows:

H2(ê(yU, TW + V)) = H2(ê(U, (H1(W) + x)−1P + r2P)y)

= H2(ê(r1(H1(W) + x)P, (H1(W) + x)−1P)y · ê(U, r2P)y)

= H2(ê(r1P, yP) · ê(r2U, yP))

= H2(ê(r1P + r2U, Y)) = c.

Denote byM an ordinary scalar multiplication in(G1,+), by E an Exp. operation in(G2, .), by ê a computation

of the pairing and byP a Maptopoint operation [4]. Do not take other operations into account. We compare our

scheme to the scheme in [3] in the following table.

schemes KeyGen Trapdoor PKES Test

scheme in [3] 1M 1M + 1P 1M + 1P + 1E + 2ê 2M + 1ê

proposed 1M 1M 5M + 1ê 1M + 1ê

March 6, 2006 DRAFT

9

D. Security Proof

Lemma 2. Let F0 be an IND-CKA-SSK adversary that has advantageε(λ) within a time boundT (λ). Suppose

F0 makes at mostqT > 0 Trapdoor queries,q1 > 0 hash function queries toH1 and q2 > 0 hash function queries

to H2. Let n = max{q1, 2qT }. Then there is an algorithmF1 that solves then-BDHI problem with advantage at

leastε(λ)/(nq2) with a running timeO(T (λ)).

Proof: F1 is given input parameters of pairing(q, G1, G2, ê) and an a random instance(P, aP, a2P, ..., anP) of

then-BDHI problem, whereP is random inG∗1 anda is a random inZ∗q . F1 simulates the challenger and interacts

with F0 as follows:

• KeyGen: Randomly choose differenth0, h1, ...hn−1 ∈ Z∗q , and and computef(x), Q, aQ, Q′, (a + hi)−1Q

for 1 ≤ i ≤ n the same as that in the proof of Lemma 1. In the (unlikely) situation whereQ = 1G1 , there

exist anhi = −a, hence,F1 can solve theq1-BDHI problem directly and abort.

2. Randomly choose an indext with 1 ≤ t ≤ n, setsv = 0. Select a randomy ∈ Z∗q and start by givingF0

the reciver’s public keyX = aQ− h0Q and the server’s key pair(y, yQ).

• Phase 1:H1-queries, H2-queries, Trapdoor queries. F1 responds these queries the same way as that in the

proof of Lemma 1.

• Challenge: OnceF0 decides that Phase 1 is over it outputs two keywordsW ′
0,W

′
1 on which it wishes to be

challenged.F1 responds as follows:

1. F1 runs the above algorithm for responding toH1-queries twice to obtain(W ′
0, g

′
0, D

′
0) and (W ′

1, g
′
1, D

′
1).

If both D′
0 6= ⊥ and D′

1 6= ⊥ then F1 aborts. Otherwise,F1 responds with the challenge ciphertext

(γ1Q, γ2Q, ξ) for random selectedγ1, γ2 ∈ Z∗q and ξ ∈ {0, 1}log q. (Observe that if(γ1Q, γ2Q, ξ) is a

cipher-text corresponding toW ′
ι with ι ∈ {0, 1} satisfying D′

ι = ⊥, by definition, the decryption ofC is

ξ = H2(ê(γ1Q,TW ′
ι
+ γ2Q)y) = H2(ê(γ1Q, a−1Q + γ2Q)y) = H2(ê(Q,Q)γ1(a

−1+γ2)y).)

• Phase 2:H1-queries, H2-queries, Trapdoor queries. F1 responds to these queries in the same way it does

in Phase 1 with the only restriction thatWi 6= W ′
0,W

′
1 for Trapdoor queries.

• Guess:EventuallyF0 produces its guessι′ ∈ {0, 1} for ι.

F1 keeps interacting withF0 until F0 halts or aborts. IfF0 produces a guessι′, F1 picks a random tuple(ei, hi)

from theH2 list and computesδ = ê(Q, γ2Q), α = e
(γ1y)−1

i /δ, β = ê(Q′, Q + c0P) and outputs(α/β)c−2
0 as the

solution to the given instance ofq1-BIDH problem. (Note that ifei = ê(Q,Q)γ1(a
−1+γ2)y, thenα = ê(Q,Q)a−1

,

hence,(α/β)c−2
0 = ê(P, P)a−1

.)

This completes the description ofF1. Just as discussed in the proof of Lemma 1,F1’s success probability overall

is at leastε(λ)/(nq2).

Lemma 3. Let F0 be an IND-CKA-AT adversary that has advantageε(λ) within a time boundT (λ). SupposeF0

makes at mostqT > 0 Trapdoor queries,q1 > 0 hash function queries toH1 and q2 > 0 hash function queries to

H2. Then there is an algorithmF1 that solves the BDH problem with advantage at least2ε(λ)/q2 with a running

March 6, 2006 DRAFT

10

timeO(T (λ)).

Proof: F1 is given input parameters of pairing(q, G1, G2, ê) and a random instance(P, aP, bP, cP) of the BDH

problem, whereP is random inG∗1 anda, b, c are random elements inZ∗q . F1 simulates the challenger and interacts

with F0 as follows:

• KeyGen: Select randomlyx ∈ Z∗q and start by givingF0 the reciver’s public keyX = xP and the server’s

public keyaP .

• Phase 1:H1-queries. F1 maintains aH1 list, initially empty. For a queryWi, if Wi already appears on the

H1 list in a tuple (Wi, gi), F1 responds withgi. Otherwise,F1 selects a randomgi ∈ Z∗q , adds the tuple

(Wi, gi)to theH1 list and responds withgi.

• Phase 1:H2-queries. F1 maintains aH2 list, initially empty. For a queryei, F1 checks ifei appears on

the H2 list in a tuple (ei, hi). If not, F1 picks a randomhi ∈ {0, 1}log q, and adds the tuple(ei, hi)to the

H2 list. F1 returnshi to F0.

• Phase 1:Trapdoor queries: For inputWi, without any loss of generality, we can assume thatWi has already

been asked to oracleH1. F1 searches inH1 list for (Wi, gi) andF1 responds withDi = (gi + x)−1P .

• Challenge: OnceF0 decides that Phase 1 is over it outputs two keywordsW ′
0,W

′
1 on which it wishes to be

challenged.F1 runs the above algorithm for responding toH1-queries twice to obtain(W ′
0, g

′
0) and(W ′

1, g
′
1).

Selectsι ∈ {0, 1} and responds with the challenge ciphertext(g′ιbP + xbP, cP, ξ) for random selectedξ ∈
{0, 1}log q. (Observe that if(g′ιbP + xbP, cP, ξ) is a cipher-text corresponding toW ′

ι , by definition, the test

procedure ofC is to testξ = H2(ê(g′ιbP + xbP, (g′ι + x)−1P + cP)a).)

• Phase 2:H1-queries, H2-queries, Trapdoor queries. F1 responds to these queries in the same way it does

in Phase 1.

• Guess:EventuallyF0 produces its guessι′ ∈ {0, 1} for ι.

F1 keeps interacting withF0 until F0 halts or aborts. IfF0 produces a guessι′, F1 picks a random tuple(ei, ui)

from the H2 list. F1 computes and outputsα = (ei/ê(aP, bP))(g
′
ι+x)−1

as the solution to the given instance of

BDH problem. (Note that ifei = ê(g′ιbP + xbP, (g′ι + x)−1P + cP)a, thenei = ê(bP, P)aê(P, P)bca(g′ι+x), hence

α = (ei/ê(aP, bP))(g
′
ι+x)−1

= ê(P, P)abc.)

This completes the description ofF1.

We know that in the real attack gameF0 issues anH2 query for H2(ê(g′0bP + xbP, (g′0 + x)−1P + cP)a)

H2(ê(g′1bP + xbP, (g′1 + x)−1P + cP)a) with probability at least2ε(λ). F1simulates a real attack game perfectly

up to the moment whenF0 issues a query forH2(ê(g′ιbP +xbP, (g′ι+x)−1P +cP)a) with ι ∈ {0, 1}. Therefore, the

value ê(g′ιbP + xbP, (g′ι + x)−1P + cP)a will appear in theH2-list with probability at least2ε(λ). F1 will choose

the correct pair with probability at least1/q2. Therefore,F1’s success probability overall is at least2ε(λ)/q2.

V. CONCLUSION

In this paper, first, we propose a new PKES scheme based on pairings and prove its security in the random oracle

model. The new scheme is more efficient than that of Boneh et.al’s. Then, we provide further discussion on the

March 6, 2006 DRAFT

11

notion of SCF-PEKS scheme, give a formal security model and present an efficient SCF-PEKS scheme. The new

scheme can also be proved to be secure in the random oracle model.

REFERENCES

[1] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano. Public Key Encryption with Keyword Search, In Eurocrypt 2004, LNCS 3027,

pages 506-522, Springer-Verlag, 2004.

[2] B. Waters, D. Balfanz, G. Durfee, and D. Smetters. Building an Encrypted and Searchable Audit Log, In Network and Distributed System

Security Symposium (NDSS 2004), 2004.

[3] J. Baek, R. Safiavi-Naini, W. Susilo. Public Key Encryption with Keyword Search Revisited. Available on Cryptology ePrint Archive,

Report 2005/119.

[4] D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing. In J. Kilian, editor, Advances in Cryptology- CRYPTO 2001,

LNCS 2139, pp. 213-229. Springer-Verlag, 2001.

[5] D. Boneh, X. Boyen. Efficient Selective ID Secure Identity Based Encryption without Random Oracles. Advances In Cryptology-Eurocrypt

2004, LNCS 3027, pp. 223-238, Springer-Verlag, 2004.

[6] F. Zhang, R. Safavi-Naini, and W. Susilo. An efficient signature scheme from bilinear pairings and its applications. In PKC’2004, LNCS

2947, pages 277-290. Springer-Verlag, 2004.

[7] P. Barreto, H. Kim, B. Lynn, and M. Scott. Efficient algorithms for pairing-based cryptosystems. Advances in Cryptology-Crypto’2002,

LNCS 2442, pp. 354-368. Springer-Verlag, 2002.

[8] I. Duursma and H. Lee. Tate pairing implementation for hyperelliptic curvesy2 = xp + x + d. Advances in Cryptology-Asiacrypt’2003,

LNCS 2894, pp. 111-123. Springer-Verlag, 2003.

[9] Y. Sakai, K. Sakurai. Efficient Scalar Multiplications on Elliptic Curves without Repeated Doublings and Their Practical Performance.

ACISP 2000, LNCS 1841, pp. 59-73. Springer-Verlag 2000.

[10] R. Sakai and M. Kasahara. ID based cryptosystems with pairing on elliptic curve. Cryptology ePrint Archive, Report 2003/054.

[11] D. Dolev, C. Dwork, and M. Naor. Non-Malleable Cryptography. In SIAM Journal on Computing, 2000. Early version in proceedings of

STOC’91.

March 6, 2006 DRAFT

