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Abstract. Cache based side-channel attacks have recently been attracted
significant attention due to the new developments in the field. In this
paper, we present efficient trace-driven cache attacks on a widely used
implementation of the AES cryptosystem. We also evaluate the cost of
the proposed attacks in detail under the assumption of a noiseless envi-
ronment. We develop an accurate mathematical model that we use in the
cost analysis of our attacks. We use two different metrics, specifically, the
expected number of necessary traces and the cost of the analysis phase,
for the cost evaluation purposes. Each of these metrics represents the
cost of a different phase of the attack.
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1 Introduction

Implementations of cryptosystems may leak information through side
channels due to the properties and physical requirements of the device,
e.g., power consumption, electromagnetic emanation and/or execution
time. In side-channel attacks, the information obtained from one or more
side channels is used to reveal the key of a cryptographic algorithm.
Power, electromagnetic, and timing attacks are well-known side-channel
attacks studied in the past [14, 12, 15, 4]. In this paper, we focus on a type
of side-channel cryptanalysis that takes advantage of the information that
leaks through the cache architecture of a CPU.

There are various cache based side-channel attacks in the literature,
which are discussed in detail in the next section. Trace-driven attacks are
one of the three types of cache based attacks that had been distinguished
so far. We present different trace-driven cache based attacks on AES in
this paper. There are already two trace-driven attacks on AES in the



literature [7, 16]. However, our attacks require significantly less number
of measurements (e.g. only 5 measurements in some cases) and are much
more efficient than the previous attacks. We show that trace-driven at-
tacks have indeed much more power than what was stated in the previous
studies.

Furthermore, we present a robust computational model for trace-
driven attacks that allows one to evaluate the cost of such attacks on a
given implementation and platform. Although, we only apply our model
to the attacks on AES, it can also be used for other symmetric ciphers
like DES. The main contribution of our model to the field is that it can be
used to quantitatively analyze the cost of trace-driven attacks on different
implementations of a cipher. Therefore, we can analyze the effectiveness
of various mitigations that can be used against such attacks. Thus, a de-
signer can use our model to determine which mitigations she needs to
implement against trace-driven attacks to achieve a predetermined secu-
rity level.

2 Background and Previous Work

The feasibility of the cache based side-channel attacks, abbreviated to
“cache attacks” from here on, was first mentioned by Kocher and then
Kelsey et al. in [13, 14]. D. Page described and simulated a theoretical
cache attack on DES [23]. Actual cache based timing attacks were imple-
mented by Tsunoo et al. [27, 28]. The original attack on MISTY1 proposed
in [28] has recently been improved in [29].

The topic of cache based side-channel attacks has been very popular
since early 2005. Although, cache side-channel threat had been known
for a couple of years, the first efficient and realistic attacks were not
developed until 2005. Bernstein showed the vulnerability of AES software
implementations on various platforms [5]. There was a common belief that
Bernstein’s attack is a realistic remote attack and it can recover an entire
AES key. However, Neve et al. showed in [17] that this is only a fallacy.
They described the circumstances in which the attack might work and
also the limitations of the Bernstein attack. The details of this analysis
can also be found in [19].

Simultaneously, but independently of Bernstein’s efforts, a research
team that consists of Acıiçmez, Schindler, and Koç developed a realistic
remote attack on the AES. Although there is not any publicly available
report of their work, they presented the basics of the attack in several
occasions [2].



Osvik et al. described various local cache attack variants first in [21]
in 2005, then they presented their results at CT-RSA in early 2006 [22].
They made use of a local array and exploited the collisions between the
table lookups and the access operations to this array. Neve et al. improved
the attacks in [22] by taking the last AES round into consideration [18].
The same idea of exploiting collisions between two different processes
was also used by Colin Percival in [26]. He made use of simultaneous-
multithreading feature of the modern processors and developed a cache
attack on RSA.

Similar to external collisions between different processes, the internal
collisions inside a cipher can also be taken advantage of. Internal cache
collisions were first used in [27] and [28]. The remote attack of Acıiçmez
et al. and Lauradoux’s attack are also based on internal collisions [2,
16]. A recent manuscript that summarizes cache collision attacks on AES
will be presented at CHES’06 [6]. Several hardware and software based
countermeasures were proposed to prevent cache attacks in [24, 25, 21, 5,
8].

There are three different types of cache attacks, namely time-driven,
trace-driven, and access-driven. Time-driven and trace-driven attacks were
first described by Page in [23]. Access-driven attacks are relatively new
and first seen in [21, 22]. The difference between these attack types are
the capabilities of the adversary.

The adversary is assumed to be able to capture the profile of the cache
activity during an encryption in trace-driven attacks. This profile includes
the outcomes of every memory access the cipher issues in terms of cache
hits and misses. Therefore, the adversary has the ability to observe if a
particular access to a lookup table yields a hit and can infer information
about the lookup indices, which are key dependent. This ability gives an
adversary the opportunity to make inferences about the secret key.

Time-driven attacks, on the other hand, are less restrictive because
they do not rely on the ability of capturing the outcomes of individual
memory accesses. Adversary is assumed to be able to observe the aggre-
gate profile, i.e., total numbers of cache hits and misses or at least a value
that can be used to approximate these numbers. For example, the total
execution time of the cipher can be measured and used to make inferences
about the number of cache misses in a time-driven cache attack.

In access-driven attacks, the adversary can determine the cache sets
that the cipher process modifies. Therefore, she can understand which
elements of the lookup tables or S-boxes are accessed by the cipher. Then,



the wrong key assumptions that would cause an access to unaccessed parts
of the tables can be eliminated.

2.1 Overview of Trace-Driven Cache Attacks

Trace-driven attacks on AES were first presented in [16] and [7]. We
describe much more efficient attacks in this paper. Our two-round attack
is a known-plaintext attack and exploits the collisions among the first
two rounds of AES. A more efficient version, which we call the last round
attack, considers last round accesses and is a known-ciphertext attack.

In trace-driven cache attacks, the adversary obtains the traces of cache
hits and misses for a sample of encryptions and recovers the secret key of
a cryptosystem using this data. We define a trace as a sequence of cache
hits and misses. For example,

MHHM,HMHM,MMHM,HHMH, MMMM, HHHH

are examples of a trace of length 4. Here H and M represents a cache
hit and miss respectively. The first one in the first example is a miss,
second one is a hit, and so on. If an adversary captures such traces, she
can determine whether a particular access during an encryption is a hit
or miss.

The trace of an encryption can be captured by the use of power con-
sumption measurements as done in [7]. It is still a question if these traces
can be obtained more easily using more sophisticated methods like ex-
ploiting processor specific features, e.g., by making use of performance
counters. In this paper, we do not get into the details of how to capture
cache traces.

We analyze trace-driven attacks on AES under the assumption that
the adversary can capture the traces of AES encryption. This assumption
corresponds to clean measurements in a noiseless environment. In reality,
an adversary may have noise in the measurements in some circumstances,
in which case the cost of the attack increases depending on the amplitude
of the noise. However, an analysis under the above assumption results a
more clear understanding of the attack cost. Assumption of a noiseless
environment also enables us to make more reliable comparison of different
attacks. Comparison of different attacks on a specific platform is not very
reliable, because the cost of any side-channel attack depends on the noise
in the measurements and the amplitude of the noise significantly differs
between different platforms.

In a side-channel attack, there are essentially two different phases:



– Online Phase: consists of the collection of side-channel information of
the target cipher. This phase is also known as the sampling phase of
the attack. The adversary encrypts or decrypts different input values
and measures the side-channel information, e.g., power consumption
or execution time of the device.

– Offline Phase: is also known as the analysis phase. In this phase, the
adversary processes the data collected in the online phase and makes
predictions and verifications regarding the secret value of the cipher.

An adversary usually performs the former phase completely before the
latter one. However, in some cases, especially in adaptive chosen-text
attacks (e.g. [9, 1]), these two phases may overlap and may be performed
simultaneously.

We use two different metrics to evaluate the cost of our attacks pre-
sented in this paper. The first metric is the expected number of traces that
we need to capture to narrow the search space of the AES key down to a
certain degree. The second metric is the average number of operations we
need to perform to analyze the captured traces and eliminate the wrong
key assumptions. These metrics basically represent the cost of the online
and offline phases of our attacks. In other words, the first metric gives the
cost of the online phase and the second gives that of the offline phase. As
the reader can clearly see in this paper, there is a trade-off between the
costs of these two phases.

3 Trace-Driven Cache Attacks on the AES

In this paper, we present trace-driven attacks on the most widely used
implementation of AES [3], and estimate their costs. We assume that the
cache does not contain any AES data prior to each encryption, because the
captured traces cannot be accurate otherwise. Therefore, the adversary is
assumed to clean the cache (e.g., by loading some garbage data as done
in [28, 27, 22, 26]) before the encryption process starts.

Another assumption we make is that the data in AES lookup tables
cannot be evicted from the cache during the encryption once they are
loaded into the cache. This assumption means that each lookup table
can only be stored in a different non-overlapping location of the cache
and there is no context-switch during an encryption or any other process
that runs simultaneously with the cipher and evicts the AES data. These
assumptions hold if the cache is large enough, which is the case for most of
the current processors. An adversary can also discard a trace if a context-
switch occurs during the measurement.
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Fig. 1. The round computations in the AES

We also assume that each measurement is composed of the cache trace
of a single message block encryption. In this paper, we only consider AES
with 128-bit key and block sizes. Our attacks can easily be adapted to
longer key and block sizes; however we omit these cases for the sake of
simplicity.

The implementation we analyze is described in [11] and it is suitable
for 32-bit architectures. It employs 4 different lookup tables in the first
9 rounds and a different one in the last round. In this implementation,
all of the component functions, except AddRoundKey, are combined into
four different tables and the rounds turn to be composed of table lookups
and bitwise exclusive-or operations as shown in Figure 1.

In each round, except the last one, it makes 4 references to each of
the first 4 tables. The S-box lookups in the final round are implemented
as table lookups to another 1KB-large table , called T4, with 256 many
32-bit elements. There are 16 accesses to T4 in that round. The indices
of these accesses are S10

i , where St
i is the byte i of intermediate state

value that becomes the input of round t and i ∈ {0, .., 15}. Let C be the
ciphertext, i.e. the output of the last round, and represented as an array



of 16 bytes, C = (c0, c1, ..., c15). Individual bytes of C are computed as:

ci = Sbox[S10
w ]⊕RK10

i ,

where RK10
i is the ith byte of the last round key and Sbox[S10

w ] is the
S-box output for the input S10

w for a known w ∈ {0, 1, ..., 15}. The S-box
in AES implements a permutation, and therefore its inverse, i.e. Sbox−1,
exists.

In this paper, we present our attacks under the assumption that the
AES memory accesses are issued by the processor in the certain order
given in Figure 1, i.e., first T0[Sr

0 ], second T1[Sr
5 ], etc. However, the actual

order is implementation specific and may differ from our assumption. Our
attacks can easily be adapted to any given order without any performance
loss.

3.1 Overview of an Ideal Two-Round Attack

The access indices in the first round are in the form Pi ⊕ Ki, where Pi

and Ki are the ith bytes of the plaintext and the cipherkey respectively
and i ∈ {0, 1, ..., 15}. The indices of the first 4 references to the first table,
T0, are:

P0 ⊕K0, P4 ⊕K4, P8 ⊕K8, P12 ⊕K12 .

The outcome of the second access to T0, i.e. the one with the index
P4 ⊕K4, gives information about K0 and K4. For example, if the second
access results a cache hit, we can directly conclude that the index P4⊕K4

has to be equal to the index of the first access, i.e., P0 ⊕ K0. If it is a
cache miss, then the inequality of these values becomes true. We can use
this fact to find the correct key byte difference K0 ⊕K4.

P0 ⊕K0 = P4 ⊕K4 => K0 ⊕K4 = P0 ⊕ P4

P0 ⊕K0 6= P4 ⊕K4 => K0 ⊕K4 6= P0 ⊕ P4

In other words, if we capture a cache trace during the first round of
AES and the second access to T0 results in a cache hit, then we can
directly conclude that K0 ⊕ K4 = P0 ⊕ P4. Recall that the plaintext is
assumed to be known to an attacker and the cache is clean prior to the
first table lookup so that the first access to a table always results in a
cache miss.

On the other hand, if we see a miss, then K0 ⊕ K4 cannot be equal
to P0 ⊕ P4 and we can eliminate this wrong value. If we collect a sample



of traces, we can find the correct value of K0 ⊕K4 by either eliminating
all possible wrong values or directly finding the correct value when we
realize a cache hit in the second access in any of the sampled traces.

We can also find the other key byte differences Ki ⊕Kj , where i,j ∈
{0,4,8,12}, using the same idea. We can further reduce the search space by
considering the accesses to other three tables. In general, we can obtain
Ki ⊕ K4∗j+i, where i,j ∈ {0,1,2,3}, and it is enough to find the entire
128-bit key by searching only 32 bits.

A final search space of 32 bits is only a theoretical lower bound in the
first round attack due to the complications explained in Subsection 3.3.
We also have to consider second round accesses to really reduce the search
space to 32 bits. The first round attack only reveals some of the bits of
Ki ⊕Kj . However, when we examine the collisions between the first and
second round accesses in the same way, i.e., in a “two-round attack”, we
can reveal the entire AES key.

3.2 Overview of an Ideal Last Round Attack

Another way to find the cipherkey is to exploit the collisions between the
last round accesses. The outcomes of the last round accesses to T4 leaks
information about the values of the last round key bytes, i.e., RK10

i where
i ∈ {0, .., 15}.

For example, if the second access to T4 results in a cache hit, we can
conclude that the indices S10

0 and S10
1 are equal. If it is a cache miss, then

the inequality of these values becomes true. We can use this fact to find
the correct round key bytes RK10

0 and RK10
1 as the following.

We can write the value of S10
w in terms of RK10

i and ci:

S10
w = Sbox−1[ci ⊕RK10

i ] ,

If S10
0 and S10

5 are equal, so are Sbox−1[c0⊕RK10
0 ] and Sbox−1[c1⊕RK10

1 ],
which also mandates the equality of c0 ⊕ RK10

0 and c1 ⊕ RK10
1 . This

equality can also be written as

c0 ⊕RK10
0 = c1 ⊕RK10

1 ⇒ c0 ⊕ c1 = RK10
0 ⊕RK10

1

Since the value of C is known to the attacker, RK10
0 ⊕ RK10

1 can
directly be computed from the values of c0 and c1 if the second access
to T4 results in a cache hit. In case of a cache miss, we can replace the
= sign in the above equations with 6= and we can use the inequalities to
eliminate the values that cannot be the correct value of RK10

0 ⊕RK10
1 .



The value of RK10
2 relative to RK10

0 can also be determined by analyz-
ing the first three accesses to T4 after the correct value of RK10

0 ⊕RK10
1

is found. Similarly, if we extend our focus to the first four accesses, we
can find RK10

3 . Then we can find RK10
4 and so on.

In general, we can find all of the round key byte differences RK10
i ⊕

RK10
j , where i, j ∈ {0, 1, ..., 15}. The value of any single byte RK10

i can be
searched exhaustively to determine the entire round key. After revealing
the entire round key, it becomes trivial to compute the actual secret key,
because the key expansion of the AES cipher is a reversible function.

3.3 Complications in Reality and Actual Attack Scenarios

In a real environment, even if the index of the second access to a certain
lookup table is different than the index of the first access, a cache hit
may still occur. Any cache miss results in the transfer of an entire cache
line, not only one element, from the main memory. Therefore, if the for-
mer access retrieves an element, which lies in the same cache line of the
previously accessed data, a cache hit will occur.

Let δ be the number of bytes in a cache line and assume that each
element of the table is k bytes long. Under this situation, there are δ/k
elements in each line, which means any access to a specific element will
map to the same line with (δ/k−1) different other accesses. If two different
accesses to the same array read the same cache line, the most significant
parts of their indices, i.e., all of the bits except the last ` = log2(δ/k)
bits, must be identical. Using this fact, we can find the difference of the
most significant part of the key bytes using the equation:

〈P0〉 ⊕ 〈P4〉 = 〈K0〉 ⊕ 〈K4〉 ,

where 〈A〉 stands for the most significant part of A.
Therefore, we can only reveal 〈Ki ⊕ K4∗j+i〉, where i,j ∈ {0,1,2,3},

using the collisions in the first round. Notice that (8 − `) is the size of
the most significant part of a table entry in terms of the number of bits,
where ` = log2(δ/k). First round attack allows us to reduce the search
space by 12 ∗ (8− `) bits. In theory ` can be as low as zero bits, in which
case the search space becomes only 32 bits. The most common values of
δ are 32 and 64 in widely used processors. For δ = 64 the search space
is reduced by 48 bits yielding an 80 bit final search space. This is the
reason why we need to consider the second round indices along with the
first round to achieve full key disclosure.



This complication does affect the last round attack too. We observe a
cache hit in the second access to T4 whenever

〈S10
0 〉 = 〈S10

5 〉 ,

and so
〈Sbox−1[c0 ⊕RK10

0 ]〉 = 〈Sbox−1[c1 ⊕RK10
1 ]〉 .

However due to the nonlinearity of the AES S-box, only the correct RK10
0

and RK10
1 values obey the above equation for every ciphertext sample.

Therefore, we need to find the correct RK10
0 and RK10

1 values instead
of their difference. This increases the search space of this initial guessing
problem from 8 bits to 16 bits. However, once we find these round key
bytes, we only need to search through 8 bits to find each of the remaining
round key bytes.

3.4 Further Details of Our Attacks

In this subsection we explain some details of our attacks that are not men-
tioned above. To be more precise, we explain the overall attack strategy
and how to exploit second round accesses.

We call all possible values that can be the correct value of a key byte
(round key byte, respectively) as the hypothesis of that particular key byte
(round key byte, resp.) or shortly key byte hypothesis (round key byte
hypothesis, resp.). Incorrect values are called wrong hypothesis. Initially
all of the 256 values, i.e. from 0x00 to 0xff, are considered as the key byte
hypothesis for a particular key byte. During the course of the attack,
we distinguish some of these values as wrong key byte hypothesis; thus
decrease the number of hypothesis and increase that of wrong hypothesis.

In our attacks, we consider each access to a lookup table separately,
starting from the second one. The first access is always a miss because of
the cache cleaning and the assumptions explained above. We want to use
the last round attack as an example to explain the overall attack strategy.

Outcome of the second access to T4 allows us to eliminate the wrong
key hypothesis for RK0 and RK1. After we find the correct values for
these bytes, we extend our attack considering the third access to find
RK2, then fourth access to find RK3 and so on. Therefore, there are
different steps in the attack and each further step considers one more
access than the number of accesses considered in the previous step. Each
step has a different set of wrong key hypothesis. It decreases the overall
attack cost if we eliminate as many wrong key hypothesis in a step as
possible before proceeding with the next attack step.



For example, the first step of the last round attack examines the out-
comes of the first two accesses to T4 in each captured trace in the sample
and eliminates all of the possible RK0 and RK1 values that are deter-
mined to be wrong. The second step considers the third access to T4
and the remaining hypothesis of RK0 and RK1 and eliminates all of the
(RK0, RK1, RK2) triples that cannot generate the captured traces. The
attack continues with the later steps and only those key hypothesis that
can generate the captured traces remain at the end. If we can capture a
large enough sample then we end up with only the correct key. If we have
less number of traces, then more than one hypothesis remain at the end
of the attack and we need to have an exhaustive search on this reduced
key set.

Eliminating as many wrong key hypothesis as possible in earlier steps
reduces the cost of the later ones and therefore the total cost of this attack.
We eliminate all of the key hypothesis that do not obey the captured
trace in each step. In this sense, our decision strategy is optimal, because
it eliminates maximum possible number of hypothesis.

The two round attack is slightly different than this scheme. There are
four different lookup tables used in the first two rounds of AES. Therefore
a single step of the two-round attack considers four more accesses than
the previous step, i.e., the next unexamined access to each of the four
tables. For example, the first step considers the first 8 accesses in the first
round. These 8 accesses consist of two accesses to each of the four tables.
The next step considers the first 12 accesses and so on.

We also want to give more details of the two-round attack, especially
the second round attack, in this subsection. Using the guesses from the
first round, a similar guessing procedure can be derived in the second
round in order to obtain further key bits. We describe a possible attack
that uses only accesses to T1, i.e., the second table. Recall that AES
implementation we work on uses 5 different tables with 256 entries in
each.

Let ∆i represent Pi ⊕ Ki. The index of the first access to T1 in the
second round is:

Sbox(∆4)⊕2•Sbox(∆9)⊕3•Sbox(∆14)⊕Sbox(∆3)⊕Sbox(K14)⊕K1⊕K5 .

Here Sbox(x) stands for the result of AES S-box lookup with the input
value x and • is the finite field multiplication used in AES.

Using only the first 5 accesses to T1, i.e., up to fourth step of the
two-round attack, and searching through K3, K4, K9, and K14, we can



recover these four bytes. This guessing problem has a key space of 232.
Notice that we can already recover 〈K1 ⊕K5〉 in the first round attack.

The indices of the first accesses to each of the lookup tables in the
second round are functions of different key bytes and these functions span
each of the 16 key bytes. Hence, we can recover the entire key by analyzing
only the outcomes of the first 5 accesses to each of the four tables, i.e., a
total of 20 accesses.

Although knowing only the outcomes of the first 5 accesses is sufficient
to recover the key, extending the attack by taking advantage of further
accesses reduces the number of required traces. We want to mention that
only the accesses of the first two rounds can be used in such a known-
plaintext attack. The reason is the full avalanche effect. Starting from the
third round, the indices become functions of the entire key, making an
exhaustive search as efficient as our attack.

4 Analysis of the Attacks

In this section we estimate the number of traces need to be capture to
recover the secret key. In other words, we determine the cost of the attacks
presented above.

In the following subsections, we first present a computational model
that allows us to determine the cost of trace-driven attacks and then we
use this model to perform the cost analysis of the proposed attacks. The
accuracy of our model has been verified experimentally.

4.1 Our Model

Let m be 2(8−`), i.e. the number of blocks in a table. A block of elements
of a lookup table that are stored together in a single cache line is defined
as a block of this table. The cost of a trace-driven attack is a function of
m. The two most common values of m are 16 and 32 today and thus we
evaluate the cost of the attacks for these two values of m.

In order to calculate the expected number of traces, first we need
to find an equation that gives us the expected number of table blocks
that are loaded into the cache after the first k accesses. We denote this
expected number as #k.

The probability of being a single table block not loaded into the cache
after k accesses to this table is (m−1

m )k. The expected number of blocks
that are not loaded becomes m ∗ (m−1

m )k. Therefore,

#k = m−m ∗ (
m− 1

m
)k .



Let Rk
expected be the expected fraction of the wrong key hypothesis

that obeys the captured trace in kth step of the attack. In other words,
a wrong key hypothesis that generated the same trace with the correct
key in the first k accesses of an encryption has a chance of generating
the captured outcome in the next step with a probability of Rk

expected.
Therefore, if the adversary captures the outcomes of the first (k + 1)
accesses (1 ≤ k ≤ 15) to T4 during a single encryption, she can eliminate
(1−Rk

expected) fraction of the wrong key hypothesis in the kth step of the
attack, where

Rk
expected =

#k

m
∗ #k

m
+ (1− #k

m
) ∗ (1− #k

m
) , 1 ≤ k ≤ 15 .

Notice that Rk
expected is not the kth power of a constant Rexpected here, but

it is defined as a variable that is specified by the parameter k. The left
(right) side of the above summation is the product of the probability of
a cache hit (miss, resp.) and the expected ratio of the wrong hypothesis
that remains after eliminating the ones that does not cause a hit (miss,
resp.).

The following figure shows the approximations of Rk
expected and #k

for different values of k and m. We want to mention again that these
values are experimentally verified. The differences between the calculated
and empirical values of Rk

expected are less than 0.2% in average. We can
use these values to find the expected number of remaining wrong key hy-
pothesis after t measurements or the expected number of measurements
to reduce the key space down to a specific number or in any such calcu-
lations.

4.2 Trade-off Between Online and Offline Cost

There is an obvious trade-off between online and offline cost of the attacks.
If an adversary can capture a higher number of traces, it becomes easier
to find the key. Eliminating more wrong hypothesis in early steps reduces
the cost of the later steps. The change in the offline cost of the attacks
with the number of captured traces can be seen in the following figures.

As shown in Figure 4, the last round attack requires only 5 measure-
ments to reduce the computational effort of breaking the entire 128-bit
key below the recommended minimum security levels (c.f. [10]). NSA and
NIST recommends a minimum key length of 80 bits for symmetric ciphers
so that the computational effort of an exhaustive search should not be
lower than 280.



k m=32 m=16
Rexpected #k Rexpected #k

1 0.939453 1.000000 0.882813 1.000000
2 0.884523 1.968750 0.787140 1.937500
3 0.834806 2.907227 0.709919 2.816406
4 0.789923 3.816376 0.648487 3.640381
5 0.749522 4.697114 0.600528 4.412857
6 0.713273 5.550329 0.564035 5.137053
7 0.680868 6.376881 0.537265 5.815988
8 0.652021 7.177604 0.518709 6.452488
9 0.626464 7.953304 0.507063 7.049208

10 0.603946 8.704763 0.501197 7.608632
11 0.584236 9.432739 0.500138 8.133093
12 0.567116 10.137966 0.503050 8.624775
13 0.552384 10.821155 0.509209 9.085726
14 0.539850 11.482994 0.517999 9.517868
15 0.529340 12.124150 0.528890 9.923002

Fig. 2. The calculated values of #k and Rexpected for different values of m.

m=16 m=32
Number of traces Cost ≈ Number of traces Cost ≈

15 248.43 30 236.83

20 239.09 35 235.27

25 234.74 40 234.61

30 233.68 45 234.36

35 233.53 50 234.28

≥40 < 233.50 ≥55 < 234.26

Fig. 3. The cost analysis results of the two-round attack.

m=16 m=32
Number of traces Cost ≈ Number of traces Cost ≈

1 2117.68 1 2120.93

5 274.51 5 290.76

10 235.12 10 256.16

20 224.22 20 233.97

30 221.36 30 227.77

40 220.08 40 224.88

50 219.46 50 223.25

75 219.13 75 221.22

100 219.12 100 220.39

Fig. 4. The cost analysis results of the last round attack.



5 Experimental Details

We performed experiments to test the validity of the values we have pre-
sented above. The results show a very close correlation between our mod-
els and empirical results that confirms the validness of the models and
calculations.

Bertoni et al. showed that the cache traces could be captured by
measuring power consumption [7]. In our experimental setup, we did not
measure the power consumption, instead we assumed the correctness of
their argument.

We simply modified the AES source code of OpenSSL[20], which is
arguably the most widely used open source cryptographic library. The
purpose of our modifications was not to alter the execution flow of the
cipher, but to store the values of the access indices. These index values
were then used to generate the cache traces. This process allowes us to
capture the traces and obtain the empirical results. The average difference
between the empirical and calculated values of Rk

expected, i.e, the error rate,
is less than 0.2%. We believe this shows enough accuracy to validate our
model.

We generated one million randomly chosen cipherkeys and encrypted
100 random plaintext under each of these keys. In other words, we per-
formed the last round attack steps with 100 random plaintext. After each
encryption, we determined the ratio of the number of remaining wrong
key hypothesis to the number of wrong key hypothesis that were present
before the encryption. We call this ratio the reduction ratio, which is de-
noted as Rk

expected. We calculated the average of these measured values.
Our results show very close correlation between the measured and calcu-
lated values. The calculated Rk

expected values are given in Subsection 4.1.

6 Conclusion

We have presented trace-driven cache attacks on the most widely used
software implementation of AES cryptosystem. We have also developed
a mathematical model, accuracy of which is experimentally verified, to
evaluate the cost of the proposed attacks. We have analyzed the cost using
two different metrics, each of which represents the cost of a different phase
of the attack.

Our analysis shows that such trace-driven attacks are very efficient
and require very low number of encryptions to reveal the secret key of
the cipher. To be more specific, an adversary can reduce the strength of



128-bit AES cipher below the recommended minimum security level by
capturing the traces of only 5 encrpytions. Having more traces reduces the
total cost of the attack significantly. Our results also show this trade-off
between the online and offline cost of the attack in detail.
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Springer-Verlag, LNCS Nr. 2779, 2003.

28. Y. Tsunoo, E. Tsujihara, K. Minematsu, and H. Miyauchi. Cryptanalysis of Block
Ciphers Implemented on Computers with Cache. ISITA 2002, 2002.

29. Y. Tsunoo, E. Tsujihara, M. Shigeri, H. Kubo, and K. Minematsu. Improving
cache attacks by considering cipher structure. International Journal of Information
Security, February 2006.


