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Abstract. Grain and Trivium are two hardware oriented synchronous stream 
ciphers proposed as the simplest candidates to the ECRYPT Stream Cipher Pro-
ject, both dealing with 80-bit secret keys. In this paper we apply the linear se-
quential circuit approximation method to evaluate the strength of these stream 
ciphers against distinguishing attack. In this approximation method which was 
initially introduced by Golic in 1994, linear models are effectively determined 
for autonomous finite-state machines. We derive linear functions of consecutive 
key-stream bits which are held with correlation coefficient of about 2-63.7 and    
2-126 for Grain and Trivium ciphers, respectively. Then using the concept of so-
called generating function, we turn them into linear functions with correlation 
coefficient of 2-29 for Grain and 2-72 for Trivium. It shows that the Grain output 
sequence can be distinguished from a purely random sequence, using about 258 
bits of the output sequence with the same time complexity. However, our at-
tempt fails to find a successful distinguisher for Trivium.  
Keywords. Stream Cipher, Distinguishing Attack, Linear Sequential Circuit 
Approximation, Grain, Trivium, ECRYPT, Security Evaluation. 

1   Introduction 

Stream ciphers are widely used for fast encryption of sensitive data. Lots of old 
stream ciphers that have been formerly used can no longer be considered secure, be-
cause of their vulnerability to newly developed cryptanalysis techniques. In particular, 
the NESSIE project [9] did not select any of the proposed stream ciphers for its port-
folio, as it was felt that none of the submissions was sufficiently strong. In order to 
create a portfolio of secure stream ciphers, the ECRYPT project [3] made a call for 
designs of new stream ciphers which led to submission of 34 proposals to the project 
by April 2005. Grain [6] and Trivium [1] are two of these proposals which were de-
signed for hardware applications (constrained environments) and are structurally sim-
pler than other ones. Both of them use 80-bit keys and public IV’s. 

One of the generic attacks on stream ciphers is distinguishing attack whose aim is 
to distinguish the output sequence of a given stream cipher from a purely random se-
quence, with small error probability, faster than exhaustive search of the key space. In 
this paper, we use the linear sequential circuit approximation method to evaluate the 
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strength of these two stream ciphers against distinguishing attack. This approximation 
method was firstly introduced in [4, 5] as an effective method for the linear model de-
termination based on linear sequential circuit approximation of autonomous finite-
state machines. 

Key-stream generators for stream cipher applications can generally be realized as 
autonomous finite-state machines whose initial state and possibly the structure depend 
on a secret key. Regarding this issue and utilizing the linear sequential circuit ap-
proximation method, we first derive a linear function of consecutive output bits for 
each of Grain and Trivium stream ciphers. These functions are held with correlation 
coefficient of about 2-63.7 and 2-126 for Grain and Trivium, respectively. Then using the 
generating function concept, we turn them into linear functions with correlation coef-
ficient of about 2-29 for Grain and 2-72 for Trivium.  

For Grain, a chi-square test could be applied to distinguish its output sequence 
from a purely random sequence. The required time and data complexity is O(258) for 
detecting this bias. A preprocessing phase for computing a trinomial multiple of a cer-
tain primitive polynomial with degree 80 is needed which can be performed using 
time and memory complexities of O(240). A key-recovery attack which requires 243 
computations and 238 key-stream bits has also been mounted on Grain in [10]. 

However, for Trivium with the correlation coefficient of 2-72, the time complexity 
for distinguishing its output sequence form a purely random sequence is O(2144). It 
seems impossible to find a linear function of consecutive output bits with correlation 
coefficient greater than 2-40 to provide a successful distinguishing attack. A similar re-
sult has been mentioned in the Trivium specification [1] but not explained in details. 
However, the Trivium designers derived it in a slightly different way in [2] which was 
published after this work had been done. We decided to bring our results in this paper 
because of the straightforward and systematic application of linear sequential circuit 
approximation to both Grain and Trivium. 

The paper is organized as follows. In Sections 2 a brief description of Grain and 
Trivium stream ciphers is given. The linear sequential circuit approximation method 
is shortly described in Section 3 and the results of applying this method to Grain and 
Trivium stream ciphers are presented in Sections 4 and 5 respectively. The paper is 
concluded in Section 6.  

2   Outline of the Analyzed Ciphers 

In this section we present a brief description of the key generator algorithms of Grain 
and Trivium which we are going to evaluate. We ignore their key set up process be-
cause the attack is independent of them. 

2.1   Description of Grain 

Grain [6] is a very simple hardware oriented synchronous stream cipher proposed as a 
candidate to the ECRYPT Stream Cipher Project [3]. Grain consists of an LFSR and 
an NFSR of length 80 and generates its key-stream from an 80-bit secret key and a 
64-bit initial value (IV). The proposed design uses an 11-input Boolean function g as 
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the feedback function of the NFSR, and a 5-input Boolean function h to filter the con-
tents of five fixed cells of LFSR and NFSR. The output of the feedback function is 
masked with the output bit of the LFSR to update the NFSR and the output of the fil-
ter function is masked with the output bit from the NFSR to produce the key-stream 
zt. The initial state of LFSR and NFSR denoted by (s0, s1,…, s79) and (b0, b1,…, b79) 
are determined through a certain key-IV setup procedure. A complete description of 
the cipher can be given by the following pseudo-code for producing N bits of the key-
stream: 

for t = 1 to N do 
ts ← s0 + s13 + s23 + s38 + s51 + s62 
tb ← s0 + g(b63, b60, b52, b45, b37, b33, b28, b21, b15, b9, b0) 
zt ← b0 + h(b63, s64, s46, s25, s3) 
(s0, s1, …, s79) ← (s1, s2, …, s79, ts) 
(b0, b1, …, b79) ← (b1, b2, …, b79, tb) 

end for. 

The g and h functions are as follows: 
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The feedback polynomial of the LFSR is primitive and given by 1 + x18 + x29 + x42 
+ x57 + x67 + x80, in accordance with the first line of the pseudo-code and ensures that 
the period of the output sequence is at least 280-1. A graphical representation of the 
key-stream generation process of Grain can be found in Fig. 1. 

 
Fig. 1. Schematic of Grain. 
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2.2   Description of Trivium 

Trivium [1] is another simple hardware oriented synchronous stream cipher proposed 
as a candidate to the ECRYPT Stream Cipher Project [3]. Trivium generates up to 264 
bits of key-stream from an 80-bit secret key and an 80-bit initial value (IV). The pro-
posed design contains a 288-bit internal state denoted by (s1,…, s288). The key-stream 
generation consists of an iterative process which extracts the values of 15 specific 
state bits and uses them both to update 3 bits of the state and to compute 1 bit of key-
stream zt. The state bits are then rotated and the process repeats itself until the re-
quested N ≤ 264 bits of key-stream have been generated. A complete description is 
given by the following pseudo-code: 

for t = 1 to N do 
t1 ← s66 + s93 
t2 ← s162 + s177 
t3 ← s243 + s288 
zt ← t1 + t2 + t3 
t1 ← t1 + s91 . s92 + s171 
t2 ← t2 + s175 . s176 + s264 
t3 ← t3 + s286 . s287 + s69 
(s1, s2,…, s93) ← (t3, s1,…, s92) 
(s94, s95, …, s177) ← (t1, s94, …, s176) 
(s178, s179, …, s288) ← (t2, s178, …, s287) 

end for. 

The most negative point about Trivium is the period of its output sequence which 
is not well conceived. A graphical representation of the key-stream generation process 
of Trivium is given in Fig. 2. 

 

 
Fig. 2. Schematic of Trivium 
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3   Introduction to the Linear Sequential Circuit Approximation 

Golic [4, 5] has shown that for a binary key-stream generator with M bits of memory 
whose initial state is chosen uniformly at random, there exists a linear function of at 
most M + 1 consecutive output bits which is an unbalanced function of the initial state 
variables. He also developed an effective method for the linear model determination 
based on linear sequential circuit approximation of autonomous finite-state machines. 
The linear function of consecutive output bits produces an unbalanced sequence to 
which one can apply the standard chi-square frequency statistical test. The test is suc-
cessful if the length of the sequence is chosen to be inversely proportional to the 
square of the correlation coefficient. The correlation coefficient- also sometimes 
called bias- of the random variable x is defined as ε = 1 – 2Pr{x = 1}. 

Key-stream generators for stream cipher applications can generally be realized as 
autonomous finite-state machines whose initial state and possibly the structure depend 
on a secret key. A binary autonomous finite-state machine is defined by  

)( 1−= tt SFS ,  1≥t  (3) 

)( tt Sfz = ,    1≥t  (4) 

where F: GF(2)M → GF(2)M is the next-state vector Boolean function, f: GF(2)M → 
GF(2) is the output Boolean function, St = (st,1, st,2, …, st,M)T is the state vector at time 
t, S0 = (s0,1, s0,2, …, s0,M)T is the initial state, and {zt} is the output key-stream se-
quence (the superscript T denotes the matrix transposition operation). 

It can be shown that for the general finite-state-machine defined by (3) and (4) 
there exists a linear function of at most M + 1 consecutive output bits 

)  ,  ,  ,( 1 Mttt zzzL ++ L which is an unbalanced function of the initial state variables [4, 
5]. Moreover, its probability distribution is independent of time t if the next state 
function is balanced. This statement has been proposed as a Theorem in [4, 5], which 
is mentioned in the following. 

Theorem 1. Let the next-state function of a binary autonomous finite state machine 
with T M Tbits of memory be balanced. Then there exists a linear function L of at mostT M 
T+ 1 consecutive output bits )  ,  ,  ,( 1 Mttt zzzL ++ L which is an unbalanced function of 
the initial state variables for each 1≥t . Moreover, the correlation coefficient of 

)  ,  ,  ,( 1 Mttt zzzL ++ L  is the same for each t. 

The linear function L of consecutive output bits produces an unbalanced sequence 
to which one can apply the standard chi-square frequency statistical test to make a 
distinguishing attack. If the correlation coefficient of L is equal to ε, we need ap-
proximately 2/1 ε  bits of the output sequence to detect this bias 2. If the key length is 
k, the distinguishing attack is effective if ε >2-k/2. 

                                                            
2 This amount of of the output sequence does not provide reasonably negligible error probabil-

ity for the distinguisher. The better choice would be 10/ε2 whose error probability is less than 
10-3. However, for convenience of dealing with powers of 2, we discard the coefficient 10.   
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Under the condition that the key merely controls the initial state, and therefore, 
next state function and output function are known, an efficient procedure has also 
been developed in [4,5] for finding unbalanced linear functions of the output which is 
based on the linear sequential circuit approximation approach. In this procedure, the 
output Boolean function and each of the Boolean functions in the next-state function 
of the key-stream generator are first decomposed into the sum of linear functions and 
an unbalanced Boolean function. Then, by virtue of the obtained linear approxima-
tions, the basic equations (3) and (4) are put into the following form 

)( 11 −− Δ+= ttt SASS , 1≥t  (5) 

)( ttt SBSz γ+= , 1≥t  (6) 

where St is considered as an M-bit binary column vector, A and B are respectively 
M×M binary matrix and M-bit binary row vector, and γ  and all components of 

T
M ) , ,( 1 δδ L=Δ  are unbalanced Boolean functions called the noise functions. 

Finally, considering the sequences )}({ tSγ  and )}({ 1−tj Sδ , Mj ≤≤1 , as the in-
put sequences to (5) and (6) it is shown that  
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Equation (7) is an unbalanced linear function of at most M + 1 consecutive output 
bits which is expressed as the sum of unbalanced functions of the initial state vari-
ables [4, 5]. In general, the sum of unbalanced Boolean functions can be balanced. 
However, it has been proved that if the functions are picked independently at random, 
then with high probability their sum is unbalanced with the correlation coefficient 
very close to the product of the individual correlation coefficients [4, 5]. We refer to 
(7) as basic linear sequential circuit approximation of autonomous finite-state ma-
chine defined by (3) and (4) corresponding to decompositions A and B.  

Every linear function of a given sequence can be defined as a polynomial in the 
generating function domain. Let {at} be an arbitrary binary sequence, and {bt} a lin-

ear function of {at} defined by ∑
=
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r
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0
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Moreover, in this domain, the relation (7) can be rewritten in the following way 
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For both Grain and Trivium stream ciphers, the next state function and the output 
function are independent of the secret key. Also, the balance condition of next state 
function is well satisfied for these two ciphers since their next sate functions are in-
vertible. Thus, their linear sequential models can be investigated.  

4   Linear Sequential Circuit Approximation of Grain 

In this section, we derive the linear sequential circuit approximation of Grain stream 
cipher and show that this cipher is vulnerable to distinguishing attack. 

4.1   Basic Linear Sequential Circuit Approximation 

For Grain stream cipher we have M = 160. Let St be a 160-bit binary column vector 
which contains the state of LFSR and NFSR of Grain at time t, that is (s0, s1,…, s79, 
b0, b1,…, b79)T in the pseudo-code introduced in Section 2.1. The function g is the 
only nonlinear part of the next-state function. The filter function h is also nonlinear.  
We utilize the linear approximation 001010010, ),,( xwxwxxL wg ++= LL  for the 
feedback function g and linear function 004404, ),,( xvxvxxL vh ++= LL  for the fil-
ter function h. Using these decompositions of g and h functions, the linear approxima-
tions (5) and (6) for Grain can be written as follows  

tt-t HδASS += 1 , 1≥t  (9) 

ttt BSz γ+= , 1≥t . (10) 

Here H = [hi] is a 160-bit binary column vector with all entries equal to zero except 
h160, )( 181 −= tt Sδδ  and )( tt Sγγ =  are respectively the scalar noise terms correspond-
ing to the linear approximation Lg,w of  g and Lh,v of  h; and A and B are as follows 

 

30251462643143480 eveveveveveB +++++= , (11) 
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where ei (0≤ i ≤159) denotes the (i+1)th row of the 160×160 identity matrix and  
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Using the general relation (7), the basic linear sequential circuit approximation of 
Grain corresponding to the decompositions A and B can be expressed by  
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or equivalently in the generating function domain by  

tttt DcDzDu δγϕϕ )()()( +== , (15) 
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Note that the coefficients iϕ ( mi ≤≤0 ) just depend on the coefficients wi 
( 100 ≤≤ i ) but the coefficients ci ( mi ≤≤0 ) depend on both the coefficients wi 
( 100 ≤≤ i ) and vj ( 40 ≤≤ j ). 

4.2   Correlation Coefficient Analysis 

As it was explained in Section 3, the relation (15) produces an unbalanced sequence  

∑
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ϕ if the errors of both linear approximations Lg,w and Lh,v of g and h have 

non-zero correlation coefficients.  
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The weight of a given polynomial k(x), denoted by hw(k), is defined as the number 
of its non-zero coefficients. Let wg ,ε  and vh,ε  denote the correlation coefficients of 

tδ  and tγ - the noise terms corresponding to the linear approximation Lg,w of  g and 
Lh,v of  h. Under the independence assumption of the noise terms in (15), the correla-
tion coefficient of ut denoted by vw,ε is equal to )(

,
)(

,,
chw

wg
hw

vhvw εεε ϕ= .  
We carried out exhaustive search over all of the 211×25 possible choices for w and v 

to find the one with the greatest correlation coefficient which resulted to the following 
choice for w and v, 

]100[][ 010 LL == www  (17) 

]01010[][ 04 == vvv L  (18) 

in accordance with the linear approximations Lg,w(x10, …, x0) = x0 and Lh,v(x4, …, x0) = 
x3 + x1 for g and h respectively. The correlation coefficient of noise terms correspond-
ing to these linear approximations are 256/5, =wgε  and 4/1, =vhε . The correspond-
ing )(xϕ and )(xc  are as follows 

ϕ(x) = 1 + x13 + x23 + x38 + x51 + x62 + x93 + x103 + x118 + x131 + x142 + x160 (19) 

c(x) = x + x14 + x24 + x39 + x52 + x63 + x81. (20) 

Since hw(ϕ) = 12 and hw(c) = 7,  the corresponding correlation coefficient of ut is 
equal to 7.63712

, 2)256/5()4/1( −≈=vwε . The standard chi-square frequency statistical 
test can then be applied to {ut} to distinguish this sequence from a purely random bi-
nary sequence. The distinguishing attack is successful if the segment length is about 

4.1272
, 2/1 ≈vwε . The computational complexity of processing this amount of key-

stream is O(2127.4) which is beyond that of exhaustive key search O(280). In the next 
Section we explain how to achieve a sequence with correlation coefficient greater 
than 2-40. 

4.3   Linear Equation with Greater Correlation Coefficient  

Given a linear equation of consecutive output bits of the form (15), linear equations 
with greater correlation coefficients may be found using the generating function con-
cept. The clue is that if we have tt p(D)ab = , then for an arbitrary polynomial k(x) we 
have tt aDpDkbDk )()()( = . Therefore, we must multiply both sides of (15) by an ap-
propriate polynomial k(D) to obtain 

,)()()()(
)()()(

 

*

tt

ttt
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+=
==

Δ

 (21) 
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such that the correlation coefficient of }{ *
tu  is greater than that of {ut}. The less 

hw(kϕ) and hw(kc) are, the greater the correlation coefficient of }{ *
tu  will be. In gen-

eral, it is not easy to manage to keep both hw(kϕ) and hw(kc) low. However, for the 
aforementioned values of w and v in (17) and (18), the corresponding polynomials 

)(xϕ and )(xc  in (19) and (20) have very special forms and can be factorized in the 
following way, which facilitates finding the desired k(x). 

ϕ(x) = (1 + x80)(1 + x13 + x23 + x38 + x51 + x62 + x80) (22) 

c(x) = x(1 + x13 + x23 + x38 + x51 + x62 + x80) (23) 

In order to find k(x), suppose that )1(  ,1)(* tbxxxp tb <≤++= , is a trinomial 
multiple of p(x) where  

p(x) = 1 + x13 + x23 + x38 + x51 + x62 + x80. (24) 

Then choosing )(/)()( * xpxpxk =  leads to 

⋅++=

+==
Δ

tt

ttt

DDpDpD

zDpDuDku

 
**80

*80*

)()()1(

)()1()(

δγ
 (25) 

If b = 80 then 4))()1(( *80 =+ xpxhw , otherwise 6))()1(( *80 =+ xpxhw . In the 

worst case, that is b ≠ 80 which is more probable, the correlation coefficient of }{ *
tu  

is equal to 2936
, 2)256/5()4/1( −≈=vwε . Thus, the required output length and 

computational time complexity for distinguishing the Grain output sequence from a 
purely random sequence is about 582 2/1 ≈ε . 

Remark 1. The problem of finding a low weight multiple of a randomly chosen irre-
ducible polynomial of degree n has been well considered in [7] and [8]. In short, a tri-
nomial multiple of degree about 2n/2 can be found using O(2n/2) time and space. There-
fore, we expect that the required trinomial multiple )(* xp  of the primitive 
polynomial )(xp  be found using time and memory complexities of O(240). 

5   Linear Sequential Circuit Approximation of Trivium 

In this section, we discuss the linear sequential circuit approximation of Trivium 
stream cipher and show that this approximation is not successful in distinguishing the 
Trivium output sequence from a purely random one. 

For Trivium stream cipher we have M = 288. Let St be a 288-bit binary column 
vector which contains the state of Trivium at time t, that is (s1, s2,…, s288)T in the 
pseudo-code introduced in Section 2.2. Since the output function and all components 
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of the next-state function, except three of them, are linear for Trivium stream cipher, 
decomposition of these functions is performed easily. It is sufficient to consider the 
linear approximations of the 1st, 94th and 178th component of the next-state function 
given in the following 

6928728628824311 t,t,t,t,t,,t  s  . s s  s  s s +++=+  (26) 

171929193,66941 t,t,t,tt,,t  s  . s s  s  s s +++=+  (27) 

⋅+++=+ 2641761751771621781 t,t,t,t,t,,t  s  . s s  s  s s  (28) 

The absolute value of the correlation coefficient of all four possible linear ap-
proximations of the Boolean function yx ⋅  is equal to ½. Replacing each of the quad-
ratic terms of the above functions with one of the four possible linear approximations 
leads to 43 = 64 different decompositions for the next state function. In this section we 
merely give the details of linear sequential circuit approximation for the decomposi-
tion which eliminates the quadratic terms in accordance with approximating the Boo-
lean function yx ⋅  with constant zero function. The results of the remaining 63 de-
compositions are given in Section 5.4. 

5.1   Basic Linear Sequential Circuit Approximation 

Eliminating the quadratic terms from equations (26)  to (28), the linear approxima-
tions (5) and (6) for Trivium can be written as follows 

tt-t HASS Δ1 += , 1≥t   (29) 

tt BSz = , 1≥t . (30) 

Here H = [hi,j] is a 288×3 binary matrix whose all entries are zero, except h1,1, h94,2 
and h178,3, T

ttt
T

tttt SSSδδδ ])()()([][Δ 117819411 ,3 ,2 ,1 −−−== δδδ is the 3-bit col-
umn noise vector corresponding to the 1st, 94th and 178th component of the next-state 
function, and A and B are as follows 

 

2882431771629366 eeeeeeB +++++= , (31) 
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(32) 

where ei (1≤ i ≤288) denotes the ith row of the 288×288 identity matrix. 
Using the general relation (7), the basic linear sequential circuit approximation of 

Trivium corresponding to the decompositions A and B can be expressed by 
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or equivalently in the generating function domain by  

ttttt DcDcDczDu  ,33 ,22 ,11 )()()()( δδδϕ ++== , (34) 
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(35) 

The polynomials )( and )( ),( ),( 321 xxcxcxc ϕ  are as follows 

ϕ(x) = 1 + x6 + x12 + x15 + x18 + x21 + x24 + x30 + x36 + x45 + x51 + x54 + x57 
+ x63 + x69 + x72 + x75 + x78 + x81 + x84 + x90 + x96 + x102 + x108 + x114 
+ x120 + x123 + x126 + x129 + x135 + x201 + x207 + x210 + x213 + x216 + 
x222 + x228 + x234 + x240 + x246 + x252 + x258 + x264 + x270 + x276 + x282, 

 

(36) 

c1(x) = x + x7 + x13 + x16 + x19 + x22 + x31 + x37 + x40 + x52 + x61 + x73 + x79 
+ x85 + x88 + x91 + x94 + x97 + x100 + x103 + x106 + x118 + x124 + x127 + 
x130 + x133 + x145 + x151 + x154 + x157 + x160 + x163 + x166 + x169 + x172 
+ x175 + x178 + x181 + x184 + x187 + x190 + x193 + x199 + x205 + x211 + 
x217, 

 

(37) 

c2(x) = x + x7 + x13 + x16 + x19 + x22 + x40 + x43 + x61 + x64 + x67 + x85 + x88 
+ x91 + x97 + x103 + x118 + x124 + x130 + x133 + x151 + x154 + x157 + x160 
+ x163 + x166 + x169 + x172 + x175 + x178 + x181 + x184 + x187 + x190 + 

 

(38) 
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x193 + x196 + x199 + x202 + x208 + x214, 

c3(x) = x + x16 + x22 + x31 + x34 + x37 + x40 + x52 + x58 + x61 + x64 + x67 + 
x70 + x79 + x88 + x94 + x109 + x112 + x115 + x118 + x121 + x124 + x127 + 
x133 + x139 + x154 + x157 + x160 + x163 + x166 + x169 + x172 + x175 + x181 
+ x187 + x193 + x199 + x205 + x211 + x217. 

 

(39) 

5.2   Correlation Coefficient Analysis 

As it was explained in Section 3, the sum of unbalanced Boolean functions is also un-
balanced with the correlation coefficient very close to the product of the individual 
correlation coefficients, provided that the functions are picked independently at ran-
dom [4, 5]. All noise terms ti  ,δ  ( 3 ,2 ,1=i  and 1≥t ) arises from the product of two 
(almost independent random) binary terms, and therefore have correlation coefficient 
equal to ½. While the noise terms ti  ,δ  and tj ′ ,δ  can be considered (approximately) 
independent for ji ≠  and tt ′≠ , the independence assumption is not satisfied for ti  ,δ  
and 1 , +tiδ  ( 3 ,2 ,1=i  and 1≥t ); because they are the product of two terms which one 
term is in common, see the equations (26) to (28). 

However, all the blocks3 in the polynomials c1, c2 and c3 have length one and thus 
there is no concern about the independence of the sum of noise terms in (33), see (37) 
to (39). The total number of blocks in c1, c2 and c3 is 126 which shows that the corre-
lation coefficient of {ut} is ε = 2-126. 

Remark 2. If there were some blocks in c1, c2 and c3 with length n ≥ 2, we must have 
grouped the noise functions into suitable categories such that the required independ-
ence assumption is satisfied. In other words, we must have included the total effect of 
the noise terms corresponding to each run as one independent noise term. The some of 
n adjacent noise terms, that is 1 ,1 , , −++ +++ ntititi δδδ L  ( 3 ,2 ,1=i  and 1≥t ), can be 
expressed by the Bent function 13221 ++++ nnxxxxxx L  which has correlation coeffi-

cient equal to ⎣ ⎦2)1(2 /n+− . Therefore, if we denote the total number of runs with length 
n (n ≥ 1) in all the polynomials c1(x), c2(x) and c3(x) by kn, the correlation coefficient 
of {ut} is ⎣ ⎦∏

≥

+−=
1

2)1(2
n

/nknε  in general. 

                                                            
3 A consecutive subsequence of ones in a sequence (or in its equivalent polynomial) which are 

followed immediately after and before by a zero (if there are such bits) is called a block. For 
example the sequence [1 0 1 1 0 0 111 0 1 0 0 11 0] (equivalent to the polynomial 1 + x2 + x3 
+ x6 + x7 + x8 + x10 + x13 + x14) has two blocks of length one, two blocks of length two and 
one block of length three. 
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5.3   Linear Equation with Greater Correlation Coefficient  

As it was explained in Section 4.3, linear equations with correlation coefficients 
greater than 2-126 may be found using the generating function concept. To this end, we 
must multiply both sides of (34) by an appropriate polynomial k(D) to obtain 

,)()()()()()(
)()()(

 ,33 ,22 ,11

*

ttt

ttt

DcDkDcDkDcDk
zDDkuDku

δδδ
ϕ

++=

==
Δ

 (40) 

so that the correlation coefficient of }{ *
tu  is greater than that of {ut}. Note that in 

computing the correlation coefficient of }{ *
tu , the Remark 2 must be taken into ac-

count. It seems too hard to make }{ *
tu  have greater correlation coefficient. We carried 

out thorough search over all polynomials k(x) with non-zero constant term and degree 
up to 24. The maximum correlation coefficient, among all those polynomials, is 
achieved by the following two independent choices for k(x) which is equal to 2-72 

k1(x) = 1 + x6 (41) 

k2(x) = (1+x)(1 + x6). (42) 

For k1(x), all of the polynomials k1(x)c1(x), k1(x)c2(x) and k1(x)c3(x) have exactly 
just 24 runs of length one, while in case of k2(x) all of them have exactly just 24 runs 
of length two. According to the Remark 2, both of them are corresponding to correla-
tion coefficient equal to 2-72. 

Looking into the polynomials c1(x), c2(x) and c3(x), it is obvious that they are all 
multiplications of some polynomials in x3 and the polynomial x (ϕ(x) is also a poly-
nomial in x3). One may think that linear functions with greater correlation coefficients 
could be found by considering k(x) as a polynomial in x3. We also carried out thor-
ough search over all polynomials k(x) = k′(x3) which k′(x) had non-zero constant term 
and degree up to 24. In this case, the maximum correlation coefficient among all 
those polynomials is again 2-72 achieved by k′(x) = 1 + x2 which is in accordance with 
k1(x) = 1 + x6. 

5.4   Results of Other Decompositions 

As we discussed at the beginning of Section 5, there are 64 linear sequential circuit 
approximations for Trivium. In Sections 5.1 to 5.3 we presented the details of just one 
of them, i.e. the one which approximates the Boolean function yx ⋅  with the constant 
zero function. The other linear sequential models can easily be derived. The only im-
portant point which must be taken into account is the correlation coefficient of the 
categorized noise terms, i.e. 1 ,1 , , −++ +++ ntititi δδδ L , pointed out on Remark 2. It can 
be shown that for the linear approximation yx βα +  of yx ⋅ , the correlation coeffi-

cient of the categorized noise terms 1 ,1 , , −++ +++ ntititi δδδ L  is equal to ⎣ ⎦2)1(2 /n
nn sr +−  

where 
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⎣ ⎦

⎩
⎨
⎧ ==≠

=

⎩
⎨
⎧ =−

=
+

otherwise0
1) (1, ) ,(or  0) (0, ) ,(or  4) mod 2  ( if1

otherwise1
0) (1, ) ,( if)1( 4)2(

βαβα

βα

n
s

r

n

/n

n

. (43) 

In the special case )0,0(),( =βα , in accordance with Remark 2, we have 
1== nn sr  for all 1≥n .  

To summarize the results, having implemented linear sequential circuit approxima-
tion method for other decompositions, we could not find any linear relation with cor-
relation coefficient greater than 2-72, however, we found many relations with correla-
tion coefficient of exactly 2-72. The value 2-72 of the best correlation coefficient which 
we found shows that the time complexity for distinguishing the output sequence of 
Trivium from a truly random generator is O(2144). It seems impossible to manage to 
find a linear function of consecutive output bits with correlation coefficient more than 
2-40 in order to provide a successful distinguishing attack. 

6   Conclusion 

In this paper using the linear sequential circuit approximation method, we evaluated 
the strength of two candidates of ECRYPT Stream Cipher Project, Grain and Trivium, 
against distinguishing attack. We showed that on Grain, a distinguishing attack can be 
mounted which needs about 258 bits of the key-stream and a preprocessing phase for 
computing a trinomial multiple of a certain primitive polynomial with degree 80 
which can be performed using O(240) time and space. This result shows that the feed-
back functions of NFSR, the output filter function and maybe the feedback polyno-
mial of LFSR have been poorly chosen for Grain. In [10], a key-recovery attack 
which requires 243 computations and 238 key-stream bits has also been mounted on 
Grain; moreover, some criteria for choosing Grain parameters have been introduced. 

For Trivium, we extracted the linear sequential circuit approximation and derived a 
linear function of consecutive output bits which is held with correlation coefficient of 
about 2-72. It seems very hard to find a linear function of consecutive output bits with 
correlation coefficient greater than 2-40 to have a successful distinguishing attack. In 
spite of the linearity of the output function and all of the components of the next-state 
function of Trivium- except three of them which also have very near distances from 
some linear functions- this general method fails. This arises from a novel view of 
stream cipher design [2] which we were unaware of till its publication and is worth to 
be mentioned here.  

Typical design method of key-stream generators is based on providing a sufficient 
amount of period first, and then imposing additional requirements. Grain has been de-
signed in this view. The new idea used in Trivium design is based on first keeping the 
largest correlations with linear functions below safe bounds. This method considers 
other important properties, such as a sufficiently long period afterwards. Refer to [2] 
for more details.  



 16

 

Acknowledgment. The authors would like to thank the anonymous referees of 
FSE'06 for their useful comments on this paper.  

References 

1. De Canniere C. and Preneel B.: Trivium Specifications. eSTREAM, ECRYPT 
Stream Cipher Project Report 2005/030  (2005) 
http://www.ecrypt.eu.org/stream/. 

2. De Canniere C. and Preneel B.: Trivium A Stream Cipher Construction Inspired by 
Block Cipher Design Principles. eSTREAM, ECRYPT Stream Cipher Project Report 
2006/021  (2006) http://www.ecrypt.eu.org/stream/. 

3. eSTREAM, the ECRYPT Stream Cipher Project (2005). 
http://www.ecrypt.eu.org/stream/ 

4. Golic J. Dj.: Intrinsic statistical weakness of keystream generators. Advances in 
Cryptology - ASIACRYPT '94, Lecture Notes in Computer Science, vol. 917, pp. 91-
103 (1995). 

5. Golic J. Dj.: Linear models for keystream generators. IEEE Transaction on Com-
puters, vol. 45 No. 1, pp. 41-49, Jan. (1996). 

6. Hell M., Johansson T. and Meier W.: Grain - A Stream Cipher for Constrained Envi-
ronments. eSTREAM, ECRYPT Stream Cipher Project Report 2005/010 (2005), 
http://www.ecrypt.eu.org/stream/ 

7. Penzhorn W.T., Kühn G.J.: Computation of Low-Weight Parity Checks for Correla-
tion Attacks on Stream Ciphers. Cryptography and Coding, LNCS 1024, Springer, 
pp.74-83, (1995). 

8. Wagner D.: A generalized birthday problem. Advances in Cryptology CRYPTO 
2002, LNCS 2442, pp.288-304, Springer-Verlag (2002); extended abstract is avail-
able at: http://www.cs.berkeley.edu/~daw/papers/genbday.html 

9. NESSIE: New European Schemes for Signature, Integrity and Encryption, 
http://www.nessie.eu.org/nessie/. 

10. Berbain C., Gilbert G. and Maximov A.: Cryptanalysis of Grain. eSTREAM, 
ECRYPT Stream Cipher Project Report 2006/019  (2006) 
http://www.ecrypt.eu.org/stream/. 

11. Khazaei S. and Hassanzadeh M.: Linear Sequential Circuit Approximation of the 
Trivium Stream Cipher. eSTREAM, ECRYPT Stream Cipher Project Report 
2005/063  (2005) http://www.ecrypt.eu.org/stream/. 

12. Khazaei S., Hassanzadeh M. and Kiaei M.: Distinguishing attack on Grain. 
eSTREAM, ECRYPT Stream Cipher Project Report 2005/071  (2005) 
http://www.ecrypt.eu.org/stream/. 


