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Abstract. Pairings on elliptic curves are fast coming of age as crypto-
graphic primitives for deployment in new security applications, partic-
ularly in the context of implementations of Identity-Based Encryption
(IBE). In this paper we describe the implementation of various pair-
ings on a contemporary 32-bit smart-card, the Philips HiPerSmartTM,
an instantiation of the MIPS-32 based SmartMIPSTMarchitecture. Three
types of pairing are considered, first the standard Tate pairing on a non-
supersingular curve E(Fp), second the Ate pairing, also on a nonsuper-
singular curve E(Fp), and finally the ηT pairing on a supersingular curve
E(F2m). We demonstrate that pairings can be calculated as efficiently as
classic cryptographic primitives on this architecture, with a calculation
time of as little as 0.15 seconds.
Keywords: Elliptic curves, pairing-based cryptosystems, Fast imple-
mentations

1 Introduction

The appreciation that the Weil and Tate pairings can be used for constructive
cryptographic application has caused a minor revolution in cryptography. After
a flurry of research results involving new protocols based on new but plausible
security assumptions, it is time for the first commercial applications to start
appearing. The final, and perhaps most demanding, niche for the implementation
of many cryptographic protocols is in the smart-card, a constrained computing
environment in which private keys can be adequately protected. It is the purpose
of this paper to demonstrate that such implementations are perfectly feasible.

In the beginning it was original research by Menezes, Okamoto and Vanstone
[27], and by Frey et al. [16], which pointed out that the Weil and Tate pairings
could be used for cryptanalytic purposes, undermining the security of certain
types of elliptic curves, some of which had been suggested as suitable vehicles
for the implementation of Elliptic Curve Cryptography (ECC). However this
was followed by a prolonged hiatus before Sakai, Ohgishi and Kasahara [33]
and Joux [23] independently observed that these very same condemned elliptic
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curves had in fact useful cryptographic properties. Almost immediately Boneh
and Franklin famously came up with a very simple solution to the problem of
Identity-Based Encryption [10], an open problem in cryptography since the idea
was first mooted by Shamir [37].

Since then there has been a veritable flood of ideas, of new protocols for
identity-based encryption [10], [32], short signatures [11] and identity-based sign-
cryption [26] to mention but a few. We do not attempt to provide a complete
history here, but instead refer the interested reader to the pairing-based crypto
lounge [2].

There have been two previous reported implementations of pairings on smart-
cards, the first in the form of an announcement by Gemplus [17], and the second
in a paper by Bertoni et al. [8]. There have also been proposals for implementa-
tions, such as that by Granger et al. [18], which would require special supporting
hardware. Bertoni et al. report a timing of 752 milliseconds on a 33MHz ST22
32-bit smartcard [8].

2 Pairing-friendly elliptic curves

When it comes to the selection of elliptic curves suitable for pairing-based cryp-
tography, one is currently limited to either the supersingular curves or certain
special non-supersingular curves of prime characteristic. A basic requirement is
that the selected elliptic curve should have a small embedding degree, or security
multiplier, denoted as k. In this paper it will be assumed that k is even.

So for cryptographic purposes a pairing-friendly elliptic curve over a finite
field consists of the finite set of points (including a point at infinity) on a curve
which can be described by one of

E(Fpm) : y2 = x3 + Ax + B

E(F2m) : y2 + y = x3 + x + b

E(F3m) : y2 = x3 − x + b

In the first case the curve can be either supersingular, with an embedding
degree of k = 2, or nonsupersingular with m = 1 and any finite embedding
degree [9]. In the second case the curve is supersingular and has a maximum
embedding degree of k = 4, where b = 0, 1. In the third case the curve is also
supersingular with a maximum embedding degree of k = 6, and where b = ±1.

As is common in elliptic curve cryptography over E(Fq), one wants to work
with a group of points of prime order r, where r | q + 1 − t the total number
of points on the curve (denoted #E), and where t is the trace of the Frobenius,
with |t| 6 2

√
q (the Hasse condition) [27]. These points then form a prime order

cyclic abelian group. This group size needs to be large enough to avoid various
generic attacks on the elliptic curve discrete logarithm problem, and therefore
at a minimum r should be 160-bits. The embedding degree k is related to this
group of points on the elliptic curve by the condition that k is the smallest
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positive integer such that r | (qk − 1). A further security requirement for these
elliptic curves is that Fqk , where q = p, 2m or 3m, should be an extension field
of sufficient size to prevent an index calculus attack on the discrete logarithm
problem in that field. So at a minimum k. lg(q) should be 1024 bits.

So we have the interesting constraints that r can at most be about as big as
q (due to the Hasse condition), with lg(r) a minimum of 160, and that k. lg(q)
should then be at least 1024. One obvious feasible solution would be to choose
lg(r) ≈ 170, r = q + 1 − t, and k = 6 so that 6. lg(q) ≈ 1024. This explains
the early popularity of curves of characteristic 3 with k = 6. This also has the
advantage of keeping the size of the elliptic curve as small as those required for
standard ECC while still attaining the minimum levels of index calculus security.
However another valid and popular choice would be to use a supersingular [10]
or non-supersingular curve [34] over Fp, with lg(r) = 160, lg(p) = 512 and k = 2.

In the case of fields of low characteristic the security situation is rather un-
clear. As first pointed out by Coppersmith [14], the discrete logarithm problem
in F2m is somewhat easier than it is over a prime characteristic field. According
to the current record holder [38], who was able to calculate discrete logarithms
for m = 607, it would require m ≈ 1200 to obtain a greater level of security
than 1024-bit RSA. Interpolating into the tables provided by Lenstra [24] would
suggest that 1300 bits would be sufficient. Page, Smart and Vercauten [31] have
observed that since the record for prime field discrete logarithms is 398 bits [25],
607/298 = 1.53. So perhaps 50% more bits for characteristic 2 might be about
right. We believe that our choice of m = 379 bits and hence 4m = 1516 bits, is
an appropriately conservative one.

A pairing is denoted as e(P, Q), where P is taken as a point of order r,
usually on E(Fq), and Q is a point on E(Fqk) linearly independent of P . The
pairing evaluates naturally as an element of order r in Fpk . Its most important
cryptographic property is its bilinearity

e(aP, bQ) = e(P,Q)ab

If Q should be linearly dependent on P , then the pairing is degenerate and
e(P, Q) = 1, and so for example e(P, P ) = 1. On a supersingular curve it is
usual to exploit the existence of a distortion map ψ(.), which maps a point
from E(Fq) to a linearly independent point on E(Fqk). Now both P and Q can
be linearly dependent points from the same group of order r on E(Fq), and the
distorted pairing can be calculated as ê(P,Q) = e(P, ψ(Q)). This pairing has the
additional and sometimes useful property that ê(P, Q) = ê(Q,P ) which implies
that ê(P, P ) 6= 1. As our chosen smart-card has special support for multiprecision
arithmetic over Fp, and over F2m , we will restrict our attention here to these two
cases, although the field F3m has undoubted advantages (with its nice embedding
degree k = 6) and has received considerable attention in the context of pairing
based cryptography [18].
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3 The SmartMIPSTMarchitecture

The SmartMIPSTMspecification is of an instruction-set enhanced version of the
popular RISC MIPS32 architecture [1]. The enhancements are designed to im-
prove the performance of popular cryptographic algorithms, and are largely those
envisaged and described by Großschädl and Savas [19]. It is interesting to note
that this new generation of 32-bit smartcards do not employ a classic cryp-
tographic co-processor, with its restricted and specialised set of operations, but
rather use carefully selected instruction set enhancements, which when combined
with the improved overall performance of the 32-bit chip, permit standard cryp-
tographic algorithms to be executed with sufficient speed. It is also fortunately
flexible enough to efficiently support new algorithms that were not envisaged
when the processor was being designed.

The main idea is that an extended ACX|HI|LO triple of registers can be
used to accumulate the partial products that arise when employing the popu-
lar Comba/Montgomery technique for multi-precision multiplication [19]. This is
supported by a modified MADDU instruction which carries out an unsigned integer
multiplication and addition to the triple register. Another important addition to
the instruction set is the inclusion of a MADDP instruction which supports binary
polynomial multiplication, and which therefore supports field multiplication over
F2m . For many years algorithms over this field have been disadvantaged with re-
spect to the field Fp by the absence of such an instruction in standard processors.
The addition of this instruction finally “levels the playing field”, and allows the
full potential of fast arithmetic over the field F2m to be realised.

One disadvantage of the MIPS architecture for multi-precision integer arith-
metic is the lack of a carry flag, and specifically an add-with-carry ADC instruc-
tion. In fact it takes 5 instructions just to process one digit in a multi-precision
integer addition in order to handle the carry-in and carry-out correctly, not in-
cluding memory loads and stores. Note however that this is not an issue in F2m

as in this context addition is carry-free.
When considering the performance of any processor the CPU performance

equation [20] is relevant

CPU Time =
Number of Instructions× Average Clocks Per Instruction

Clock Speed in cycles per second

As instantiated by the Philips HiPerSmartTMour targeted processor is char-
acterised by

– A five stage pipeline
– Maximum clock speed of 36MHz
– 2k Instruction cache
– 256k Flash memory
– 16k RAM memory

One of the most significant attributes from a programming point of view is
the small size of the 2-way associative instruction cache. The MIPS processor as
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described in [20] is very much designed as a classic RISC processor, which can
benefit enormously from loop-unrolling as is indeed the default behaviour of GCC
-O3 compiler optimization. However this is entirely inappropriate with such a
small instruction cache. Cache misses are very expensive, and are the main rea-
son for increased CPI (Clocks-Per-Instruction), leading to poorer performance.
Ruthless loop unrolling can dramatically decrease overall instruction count, but
only at the cost of much poorer CPI.

While the majority of instructions can complete one pipeline stage per clock
tick, certain combinations of instructions will cause a stall in the pipeline. Most of
these stalls can be identified and avoided by instruction scheduling (re-ordering).
A typical cause for such a stall might be the latency of a multiply instruction
like MADDU. However as pointed out in [19] these potential performance hits can
be avoided if we use the right algorithm. While such pipeline stalls increase CPI,
they do so in a fashion which is independent of the clock speed. Cache capacity
misses must happen given the small size of the cache, and furthermore conflict
misses are inevitable give that the cache is only 2-way associative. These cache
misses exact a cost in wasted cycles which can increase dramatically with clock
speed, as the access time of main memory becomes much slower than the 1-cycle
access time of a cache hit.

4 Calculating the Pairing

We consider the scenario in which a smart-card is required to carry out IBE de-
cryption, using either the IBE method of Boneh and Franklin [10] or the method
of Sakai and Kasahara as described in [12]. In both cases the critical calculation
to recover the plaintext is of the pairing e(A,B), where A is the recipient’s pri-
vate and constant key, and B is a public and variable value associated with the
ciphertext. For provable chosen ciphertext security an additional point multipli-
cation is required in both cases, but this is multiplication of a constant point
and so fast methods can be used. We omit a formal description of either scheme
and instead refer the interested reader to the referenced material.

Much effort has been made to optimize the Tate pairing. In this work we
will describe an implementation of the pairing over a prime order finite field Fp

using the BKLS algorithm [4], as described by Scott [34], an implementation of
the recently discovered Ate pairing [21], and an implementation over the small
characteristic field F2m using the ηT pairing approach described in [3]. In all cases
we will exploit the setting in which the pairing is to be calculated to maximize
performance.

4.1 The BKLS pairing algorithm

All algorithms for calculating a pairing are elaborations and improvements of
the basic Miller algorithm [29]. This particular variation [4] has general appli-
cability to pairing-friendly elliptic curves E(Fp), either supersingular or non-
supersingular. In this case we choose to use an embedding degree of 2 with a
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non-supersingular curve, very much following the description given in [34]. We
use the same non-supersingular curve as described there, where p is a 512-bit
prime number and r is the low-hamming weight Solinas prime 2159+217+1. The
point Q is handled as a point on the twisted curve E′(Fp). Since p = 3 mod 4,
elements of the extension field Fp2 such as m can be described as mR + imI ,
where i is the “imaginary” square root of the quadratic non-residue -1.

The helper function g(.) calculates the line functions required by Miller’s
algorithm, and returns a value in Fp2 . This function in turn requires a func-
tion A.add(B) which adds the elliptic curve points A = A + B using standard
methods, and returns the slope of the line joining A and B.

Algorithm 1 Function g(.)
Input: A, B, Q
1: let A = (xi, yi), Q = (xQ, yQ)
2: λi = A.add(B)
3: return yi − λi(xQ + xi)− i.yQ

Algorithm 2 Computation of the Tate pairing e(P, Q) on E(Fp) : y2 = x3 +
Ax + B where P is a point of prime order r on E(Fp) and Q is a point on the
twisted curve E′(Fp)
Input: P, Q
1: m = 1
2: A = P
3: n = r − 1
4: for i ← blg(r)c − 1 downto 0 do
5: m = m2 · g(A, A, Q)
6: if ni = 1 then m = m · g(A, P, Q)
7: end for
8: m = m̄/m
9: return V(p+1)/r(mR)

After the Miller loop, the value of m needs to be subject to a final expo-
nentiation to the power of (p − 1)(p + 1)/r. This is done in two parts – first
we calculate mp−1 using a conjugation and a division, and then we use a Lucas
sequence to raise this value to the power of (p+1)/r. The returned value is thus
compressed to a single element in Fp [36].

Observe that the parameter P is in effect being multiplied by its group order
r using a standard double-and-add method. The points generated as a result of
this process (the xi and yi in the g(.) function), and the associated line slopes λi,
can be precalculated and stored if P is a constant, which it will be in the context
under consideration here – in fact its the IBE private key of the card-holder.
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Therefore we will precompute and store the points (xi, yi, λi) that arise in
the multiplication of P by r. This results in a much simplified algorithm, where
the expensive A.add(B) function is no longer required and curve points can be
represented using simple affine coordinates.

4.2 The Ate pairing algorithm

The Ate pairing [21] is calculated faster than the Tate pairing over non-
supersingular curves E(Fp) if lg(t)/ lg(r) is less than one, as it uses a truncated
Miller loop of length lg(t) instead of the lg(r) as required above. It was once
considered “natural” when implementing the Tate pairing on non-supersingular
curves with embedding degree k ≥ 4, that the first parameter P should be on
the the curve defined over the base field E(Fp) and that the second parameter
Q should be a point on a twist of the curve E′(Fpk/d), where d can always be 2
[6], but can be as high as 6 for certain curves, such as the BN curves [7]. The
authors of [21] however observed that, rather counter-intuitively, the Ate pairing
idea works best with P on E′(Fpk/d) and Q on E(Fp). In our application this
swapping of roles is not an important issue, as P will be fixed and its multiples
can be precalculated and stored as above. More important is the fact that we can
get away with a possibly much shorter Miller loop, and still calculate a viable
bilinear pairing.

To exploit the Ate pairing we first need a family of elliptic curves which
have the required properties. Not only must they be pairing-friendly, but to get
the full advantage we want lg(t) < lg(r). The best that can be hoped for is that
lg(t)/ lg(r) = 1/ deg(Φk(x)), where Φk(x) is the k-th cyclotomic polynomial [21].
So for a k = 12 curve such as that described in [5], the loop may be shortened
to as little as one-quarter size. However for our targeted level of security, k = 12
is too big. Consider instead the family of elliptic elliptic curves defined by

x = (Dz2 − 3)/4, t = x + 1, r = x2 + 1
p = (x3 + 13x2 + 26x + 13)/25, #E = ((x + 13)r)/25

It can easily be verified that these parameters define a family of pairing-
friendly elliptic curve with embedding degree k = 4, and with complex multipli-
cation by −D. Note that r = Φ4(x), and that lg(t)/ lg(r) = 0.5 which is optimal,
and so we can leverage the maximum advantage from the Ate pairing idea with a
half-length loop. The actual parameters of a curve in the form y2 = x3 +Ax+B
can then be found using the method of complex multiplication [22]. By choosing
random z such that p is prime and 256 bits in length, then we can easily find
a value for r which has a 160-bit prime divisor. In this way the conditions that
k. lg(p) = 1024 and lg(r) = 160 can be satisfied. For our particular curve (Ap-
pendix A), t−1 has a relatively low hamming weight of 31, and the discriminant
D = 259. The full algorithm can now be given

In this case the function g(.) returns a value in Fp4 and the Ate pairing returns
a compressed value in Fp2 . Since we choose p = 5 mod 8, -2 is a quadratic non-
residue in Fp and

√−2 is a quadratic non-residue in Fp2 , elements in Fp4 can be
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Algorithm 3 Function g(.)
Input: A, B, Q
1: let A = (xi, yi), Q = (xQ, yQ)
2: λi = A.add(B)
3: return i2yQ − i(i2yi/2 + λi(i

2xi/2 + xQ))

Algorithm 4 Computation of the Ate pairing a(P, Q) on E(Fp) : y2 = x3 +
Ax + B where P is a point of prime order r on the twisted curve E′(Fp2) and Q
is a point on the curve E(Fp)
Input: P, Q
1: m = 1
2: A = P
3: n = t− 1
4: for i ← blg(n)c − 1 downto 0 do
5: m = m2 · g(A, A, Q)
6: if ni = 1 then m = m · g(A, P, Q)
7: end for
8: m = m̄/m
9: return V(p2+1)/r(mR)

represented as a pair of elements in Fp2 , m = mR + imI with i = (−2)1/4 [30]. In
the function g(.), points on the twisted curve E′(Fp2) must first be converted to
coordinates on E(Fp4), which explains the apparent complexity of this function.
However given that these can all be precalculated, this is not an issue in practise.

4.3 The BGOhES pairing algorithm

On the supersingular curve

E(F2m) : y2 + y = x3 + x + 1

where m is prime and m = 3 mod 8, the number of points is 2m+2(m+1)/2+1
[3]. For our choice of m = 379, this value is a prime. A suitable irreducible
polynomial for the field F2379 is x379 +x315 +x301 +x287 +1. This supersingular
curve has an embedding degree of k = 4. To represent the quartic extension field
F24m , we use the irreducible polynomial X4 + X + 1.

Recall that in a characteristic 2 field with a polynomial basis, field squar-
ings are of linear complexity. Furthermore on this supersingular curve, point
doublings require only cheap field squarings (using affine coordinates - see Ap-
pendix B). Therefore we can anticipate that calculations on this curve will be
very efficient.

A distortion map for this particular supersingular curve is ψ(x, y) = (x +
s2.y + sx + t), where t = X and s = X + X2 [27]. A major insight from [3]
is that the Tate pairing can be calculated from the more primitive ηT pairing,
which requires a half-length loop compared to the Duursma-Lee method [15],
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with considerable computational savings. The algorithm as described benefits
from unrolling the loops times 2, in which case each iteration costs just seven
base field multiplications. The final exponentiation looks a little complex, but in
fact can be accomplished with only 4 extension field multiplications, (m + 1)/2
cheap extension field squarings and some nearly-free Frobenius operations.

Algorithm 5 Computation of ê(P, Q) on E(F2m) : y2 + y = x3 + x + b : m ≡ 3
(mod 8) case
Input: P, Q
Output: ê(P, Q)
1: let P = (xP , yP ), Q = (xQ, yQ)
2: u ← xP + 1
3: f ← u · (xP + xQ + 1) + yP + yQ + b + 1 + (u + xQ)s + t
4: for i ← 1 to (m + 1)/2 do
5: u ← xP , xP ← √

xP , yP ← √
yP

6: g ← u · (xP + xQ) + yP + yQ + xP + (u + xQ)s + t
7: f ← f · g
8: xQ ← x2

Q, yQ ← y2
Q

9: end for
10: return f (22m−1)(2m−2(m+1)/2)+1)(2(m+1)/2+1)

Since P will be fixed, all the square roots in this algorithm can be precalcu-
lated and stored with some savings. With this modification, our implementation
is largely the same as that described in [3].

5 Implementation Issues

Our implementation makes use of the MIRACL multiprecision library [35]. The
current version (5.01) of this library is fortunately friendly towards those at-
tempting implementations in a constrained environment, like a smartcard. Typ-
ically a big number library forces allocation of memory for big variables from the
heap. In a constrained environment however a heap is a luxury that often cannot
be afforded. Therefore allocation from the stack is appropriate, and is supported.
Header file definitions were used to cut down the amount of code required. This
was supplemented with some manual pruning of unwanted functionality.

For optimal performance MIRACL includes a mechanism for generat-
ing unrolled Comba code for modular multiplication, squaring, and reduc-
tion with respect to a fixed modulus, including specific support for the
SmartMIPSTMprocessor. However as pointed out above, fully unrolled code is in-
appropriate in an environment where the instruction cache is very small. There-
fore we found it necessary to take the automatically generated (and correct)
code, and to roll it up again into tight loops, much as described in [19]. Extra
manually written inline assembly code was provided to support fast squaring in
F2m using the MADDP instruction, and short unrolled assembly language code was
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provided for fast field addition in F2m . With these exceptions, the rest of the
code was written in standard C.

6 Results

We present our results in a series of tables. As well as the timings for the pair-
ings, we include timings for point multiplications and pairing exponentiations,
as these as often relevant to pairing based protocols. For each of the three imple-
mentations we assume projective coordinates are used for point multiplication,
as field inversions which are required for affine point addition are very slow on
the smartcard. The point multiplication is taken over the base field E(Fq) using
a random 160-bit multiplier. Field exponentiation is of the pairing value to a
random 160-bit exponent. For the E(Fp) cases we use Lucas exponentiation of
the compressed pairing, while for the E(F2379) case we use standard windowed
exponentiation, as we believe these to be the fastest methods in each case.

Our hardware emulator is only cycle accurate up to 20.57MHz, and so we
estimate the timings for the maximum supported speed of 36MHz, using linear
interpolation for CPI. For comparision purposes we include figures for 1024-
bit RSA decryption (using the Chinese Remainder Theorem), and timings on a
standard PC.

Table 1. Instructions required (% icache misses) - Philips HiPerSmartTM

E(F2379) ηT pairing E(Fp) Tate pairing E(Fp) Ate pairing

Pairing 3705344 (10.9%) 7753341 (7.3%) 8156645 (15.8%)

Point Mult. 2589569 (9.6%) 7418768 (6.1%) 2663217 (17.5%)

Field exp. 1551117 (11.4%) 1364124 (7.2%) 1614016 (15.7%)

RSA decryption 4372772 (3.4%)

Table 2. Clock cycles required/CPI/time in seconds @ 9 MHz

E(F2379) ηT pairing E(Fp) Tate pairing E(Fp) Ate pairing

Pairing 4311454/1.16/0.48 9104450/1.17/1.01 10860479/1.33/1.21

Point Mult. 3118344/1.20/0.35 8529176/1.15/0.95 3739596/1.40/0.42

Field exp. 1924596/1.24/0.21 1593313/1.17/0.18 2122221/1.31/0.24

RSA decryption 4740271/1.08/0.53
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Table 3. Clock cycles required/CPI/time in seconds @ 20.57 MHz

E(F2379) ηT pairing E(Fp) Tate pairing E(Fp) Ate pairing

Pairing 4590712/1.24/0.22 9755457/1.26/0.47 12207440/1.50/0.59

Point Mult. 3391127/1.31/0.16 9049457/1.22/0.44 4278858/1.61/0.21

Field exp. 2118707/1.37/0.10 1705365/1.25/0.08 2374885/1.47/0.12

RSA decryption 4880323/1.12/0.24

Table 4. Clock cycles required/CPI/time in seconds @ 36MHz (estimated)

E(F2379) ηT pairing E(Fp) Tate pairing E(Fp) Ate pairing

Pairing 4891054/1.32/0.14 10467010/1.35/0.29 13621597/1.67/0.38

Point Mult. 3677188/1.42/0.10 9570210/1.29/0.27 4847055/1.82/0.13

Field exp. 2326675/1.50/0.06 1814285/1.33/0.05 2630846/1.63/0.07

RSA decryption 5072415/1.16/0.14

Table 5. Timings in milliseconds on 3GHz Pentium IV

E(F2379) ηT pairing E(Fp) Tate pairing E(Fp) Ate pairing

Pairing 3.88 2.97 3.16

Point Mult. 1.82 3.08 1.17

Field exp. 1.14 0.54 0.62

RSA decryption 1.92

11



The most surprising and significant observation to be made is that the ηT

pairing can be calculated just about as quickly as a standard RSA decryption, for
approximately the same level of security. As expected CPI goes up as clock speed
increases, as we are punished more heavily for cache misses. This has less impact
on algorithms that spend more time in tight loops, and hence disadvantages the
ηT and Ate pairings with their more elaborate structures and higher extension
fields. Note that RSA, due to its simplicity, suffers least from increasing CPI.

7 Does pairing delegation make sense?

The idea of securely delegating the calculation of a pairing to the terminal was
considered in [13]. This was motivated by the assumption that the pairing calcu-
lation might be too resource consuming to be carried out on a smartcard. Here
we present a slightly modified version of the method described in section 6.2 of
[13]. In the context of IBE decryption the calculation of e(A, B) involves a con-
stant and private A (in fact the IBE private key), and a public B (in fact part
of the ciphertext). It is assumed that the smartcard also has stored a random
secret point Q and the value of e(A, Q).

– The card generates random x,y,and z, and queries the following pairings to
the terminal.

α1 = e(x−1A,B), α2 = e(yA, z(B + Q))

– The card computes

eAB = αx
1

– The card checks that

αr
1 = 1, αxyz mod r

1 = α2/e(A,Q)yz mod r

If successful the protocol outputs e(A,B) = eAB . Observe that two of the
point multiplications are of the fixed point A. These may be calculated offline,
or at the very least can benefit from fast methods for fixed-point multiplication.
Also e(A,Q)yz can be precalculated, or calculated using fixed-base exponentia-
tion [28]. So the major online cost will be of 3 exponentiations and one point
multiplication. From the tables above it is clear that the ηT pairing is so fast
that delegation is unlikely to be beneficial. The standard Tate pairing (k = 2)
implementation suffers badly as point multiplication is over a large 512-bit field.
However in the case of our Ate pairing implementation, with its smaller 256-bit
field size, it appears that delegation might be beneficial.
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8 Conclusions

We have demonstrated for the first time that cryptographic pairings can be im-
plemented just as quickly as classic public key cryptographic operations on a
standard smartcard, hence clearing the way for their more widespread adoption.
The issue of pairing delegation has been investigated, and it appears that de-
spite the efficiency of our implementations, it may be advantageous in certain
circumstances.
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A The Ate pairing non-supersingular k = 4 curve

The curve over Fp is described in the Weierstrass form as

E : y2 = x3 − 3x + B

The curve has p + 1 − t points on it, which is a number divisible by a large
prime r. For our chosen curve

B = 47757104637654076446719767983734023399018465557799879638758483211193582773900

p = 73190453176371233031922874717260488242507261313747586254294463297030724930453

r = 7039968169563831716203361508047454068025613140101

t = 122310802304306476153797569

B Point addition on the supersingular curve

For the supersingular curves over F2m of the form y2 +y = x3 +x+ b considered
in this paper, formulae for affine and projective point doubling and addition are
given here. Using affine coordinates the points (x1, y1) and (x2, y2) are added to
get (x3, y3). Using Jacobian coordinates, where (x, y) = (X/Z2, Y/Z3), we add
(X1, Y1, Z1) to (X2, Y2, Z2) to get (X3, Y3, Z3), without any inversions. Recall
that field squarings are much faster than field multiplications, which in turn
are much faster than field inversions. We ignore the cost of field additions. In
all cases we attempt to minimize the number of intermediate variables. In the
projective case some savings can be made if it is known that Z = 1.

B.1 Affine coordinates - point doubling

Note that Affine point doubling is inversion and multiplication free.
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x3 = x2
1

x3 = x2
3

y3 = y2
1

y3 = y2
3

y3 = y3 + x3

x3 = x3 + 1

This requires just 4 squarings.

B.2 Affine coordinates - point addition

t1 = y1 + y2

t2 = x1 + x2

t1 = t1/t2

t2 = t21 + x1 + x2

y3 = y1 + 1 + t1(t2 + x1)
x3 = t2

This requires 1 inversion, 2 multiplications and 1 squaring.

B.3 Projective coordinates - point doubling

X3 = X2
1

X3 = X2
3

Y3 = Y 2
1

Y3 = Y 2
3

Z3 = Z2
1

Z3 = Z2
3

T1 = Z3.X3

Y3 = Y3 + T1

T1 = Z2
3

X3 = X3 + T1

This requires 1 multiplication and 7 squarings
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B.4 Projective coordinates - point addition

T1 = Z2
1

T2 = T1.Z1

T3 = Z2
2

T4 = T3.Z2

T5 = T4.T2

T6 = Z1.Z2

T1 = T1.X2

T3 = T3.X1 + T1

T4 = T4.Y1

T2 = T2.Y2 + T4

Z3 = T6.T3

T6 = T 2
3

T3 = T6.T3

T6 = T2.T6

T7 = T 2
2

X3 = T7 + T3

T2 = T2.T7

T6 = T1.T6

T3 = (T5 + T4).T3

Y3 = T2 + T6 + T3

This requires 14 multiplications and 4 squarings.
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