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Abstract. We study an extension of the well-known Abadi-Rogaway
logic with hashes. Previously, we have given a sound computational in-
terpretation of this extension using Canetti’s oracle hashing. This paper
extends Micciancio and Warinschi’s completeness result for the original
logic to this setting.

1 Introduction

The analysis of security protocols is being carried out mainly by means of two
different techniques. On the one hand, there is the logic approach, which sees
messages as algebraic objects defined using some formal language. In this view,
cryptographic operations are algebraic operations which are unbreakable. At-
tackers are typically modelled as so-called Dolev-Yao attackers [DY83], having
total control over the network, having no computational limitations, and being
only (but absolutely) incapable of breaking cryptographic operations. This view
is appealing, because it is relatively easy to use and captures most mistakes
commonly made in security protocols.

On the other hand, there is the complexity-based approach. Here messages
are bit strings and cryptographic operations are functions on bit strings satisfy-
ing certain security properties [Gol01]. Common security notions like secrecy, au-
thenticity, and integrity are formulated ‘in terms of the probability that someone
can mount a successful attack. An attacker here is a resource bounded probabilis-
tic algorithm, limited by running time and/or memory, but capable of breaking
cryptographic operations, if that is computationally feasible. The complexity
based methods are more general and more realistic, but also more complex to
use.

In the last few years much research has been done to relate these two per-
spectives [AR02,AJ01,MW04,Her05]. Such a relation takes the form of a func-
tion mapping algebraic messages m to (distributions over) bit strings [[m]]. This
map then should relate messages that are observationally equivalent in the alge-
braic world (meaning that a Dolev-Yao attacker can see no difference between
them) to indistinguishable distributions over bit strings (meaning that a com-
putationally bounded adversary can only with negligible probability distinguish
the distributions). Such a map allows one to use algebraic methods, possibly



even automated, to reason about security properties of protocols and have those
reasonings be valid also in the computational world.

Recently, some study has been made on extending the Abadi-Rogaway logic
and the mapping to the computational world with hashes [GR06]. In fact, in the
conclusions of [MW04], Micciancio and Warinschi briefly but explicitly ques-
tion if this logical approach can be extended to, among other things, collision
resistant hashes. Backes, Pfitzmann, and Waidner [BPW06] show that in their
simulatability framework [PW00] a sound interpretation of hashes cannot exist,
but that it is possible to give a sound interpretation of formal hashes in the
simulatability framework using random oracles.

The problem with hashes is that in the algebraic world h(m) and h(m′) are
indistinguishable for a Dolev-Yao attacker if the attacker does not know m and
m′. In the computational world, however, the standard security definition — it
must be computationally infeasible to compute any pre-image of a hash value
or a hash collision [RS04] — does not guarantee that the hash function hides all
partial information about the message; hence there is no guarantee that [[h(m)]]
and [[h(m′)]] are computationally indistinguishable.

In [GR06], the present authors give a sound interpretation of formal hashes
using the notion of perfectly one-way functions (a.k.a. oracle hashing) from
Canetti and others [Can97,CMR98]. These functions are probabilistic hashes
that hide all partial information.

Completeness. Although soundness results allow us to port proofs of secrecy
properties from the algebraic world to the computation world, it does not permit
to port, for instance, authenticity and integrity results. For hashes, this limits
the usefulness of a soundness result. For example, consider a protocol in which
an agent A chooses a nonce n and commits to this nonce by sending h(n) to
another agent B. Later in the protocol, A will reveal the nonce n by sending
n itself to B. Security in this setting means that A cannot change her choice
after sending h(n). In the algebraic world, this is guaranteed by the fact that
the message h(n)n (the concatenation of the relevant messages in the protocol
run) is observationally distinct from h(n)n′, with n′ 6= n. We would like to be
able to conclude from this algebraic property that [[h(n)n]] is computationally
distinct from [[h(n)n′]], since that is needed to guarantee the security in the
computational world.

What is needed here is completeness: computational equivalence of [[m]] and
[[m′]] should imply observational equivalence of m and m′. For the original Abadi-
Rogaway logic, completeness under appropriate conditions on the encryption
scheme was proven by Micciancio and Warinschi [MW04]. In this paper we ex-
tend this completeness proof to our version with hashes.

Overview. Section 2 introduces the message algebra from [GR06], including
the probabilistic encryption and probabilistic hash operators. It also defines the
observational equivalence relation on messages. Section 3 then introduces the
computational world, giving the security definitions for encryption and hashes.



In Section 4 the semantic interpretation [[−]] is defined and the soundness result
of [GR06] is recalled. Section 5 proves the completeness of the interpretation.
The proof presented here proceeds along the lines of [MW04], reusing results
from that paper for simplicity whenever feasible.

2 The algebraic setting

This section describes the message space and the observational equivalence from
[GR06] extending the well known Abadi-Rogaway logic [AR02] of algebraic mes-
sages with hashes. These messages are used to describe cryptographic protocols
and the observational equivalence tells whether or not two protocol runs are
indistinguishable for a global eavesdropper. This setting is exactly the same as
in [GR06], so here we only give a brief summary.

Definition 2.1. Messages are constructed using algebraic encryption, hashing,
and pairing operations from keys (k ∈ Key), nonces (n ∈ Nonce), randomness
labels (r ∈ Random), and constants (c ∈ Const):

Msg 3 m := c | k | n | {|m|}r
k | hr(m) | 〈m, m〉 | ¤r | £r .

There is one special key called k¤ and for every randomness label r there is
a special nonce called nr

£; these are only used when interpreting the special
symbols (¤r and £r) as bit string and do not otherwise form a part of the
message algebra.

The closure of a set U of messages is the set of all messages that can be
constructed from U using tupling, detupling, and decryption. It represents the
information an adversary could deduce knowing U .

Definition 2.2 (Closure). The closure of a set U of messages, denoted by U ,
is the smallest set of messages satisfying: 1. Const ⊆ U ; 2. U ⊆ U ; 3. m,m′ ∈
U =⇒ 〈m,m′〉 ∈ U ; 4. {|m|}r

k, k ∈ U =⇒ m ∈ U ; 5. 〈m, m′〉 ∈ U =⇒ m,m′ ∈
U . For the singleton set {m}, we write m instead of {m}.

The function pattern : Msg → Msg from [GR06] is a straightforward extension
from the same function in Abadi-Rogaway [AR02] which takes a message m and
reduces it to a pattern. Intuitively, this is the pattern that an attacker sees in a
message given that she knows the messages in U .

pattern(m) = pattern(m,m)
pattern(〈m1,m2〉, U) = 〈pattern(m1, U), pattern(m2, U)〉

pattern({|m|}r
k, U) =

{{|pattern(m,U)|}r
k, if k ∈ U ;

¤R({|m|}r
k), otherwise.

pattern(hr(m), U) =
{

hr(pattern(m,U)), if m ∈ U ;
£R(hr(m)), otherwise.

pattern(m,U) = m in any other case.



HereR : Enc∪Hash ↪→ Random is an injective function that takes an encryption
or a hash value and outputs a tag that identifies its randomness. This tagging
function is needed to make sure that the function pattern is injective: distinct
undecryptable messages should be replaced by distinct boxes and similarly for
hashes.

Example 2.3. Consider the message

m = 〈{|{|1|}r′
k′ ,h

r̃(n)|}r
k, hr̂(k), k〉.

pattern(m) = 〈{| ¤s , £t |}r
k, hr̂(k), k〉, because k′, n are not in m,Then

where t = R(hr̃(n)) and s = R({|1|}r′
k′).

Definition 2.4 (Renaming). Two messages m and m′ are said to be equivalent
up to renaming, notation m ≡ m′, if there is a type preserving permutation σ of
Key∪Nonce∪Box∪Random such that m = m′σ. Here m′σ denotes simultaneous
substitution of x by σ(x) in m′, for all x ∈ Key ∪Nonce ∪ Box ∪ Random.

Definition 2.5 (Observational equivalence). Two messages m and m′ are
said to be observationally equivalent, denoted by m ∼= m′, if pattern(m) ≡
pattern(m′).

From the original setting in [AR02] we inherit the requirement that messages
must be acyclic.

Definition 2.6 (Acyclicity). Let m be a message and k, k′ two keys. The key
k is said to encrypt k′ in m if m has a sub-message of the form {|m′|}r

k with
k′ being a sub-message of m′. A message is said to be acyclic if there is no
sequence k1, k2, . . . , kn, kn+1 = k1 of keys such that ki encrypts ki+1 in m for all
i ∈ {1, . . . , n}.

3 The computational setting

This section gives a brief overview of the concepts used in the complexity the-
oretic approach to security protocols. Much of this is standard; the reader is
referred to [GB01,BDJR97] for a thorough treatment of the basic concepts, to
[AR02] for the notion of type-0 security for encryption schemes (see Section 3.1
below), and to [Can97] for the notion of oracle hashing (see Section 3.2 be-
low). This section follows the same lines as [GR06]; here we also focus on the
extra requirements needed to achieve completeness: confusion freeness for en-
cryption schemes (Definition 3.3) and collision resistance for hash schemes (Def-
inition 3.5).

In the computational world, messages are elements of Str := {0, 1}∗. Crypto-
graphic algorithms and adversaries are probabilistic polynomial-time algorithms.
When analyzing cryptographic primitives, it is customary to consider proba-
bilistic algorithms that take an element in Param := {1}∗ as input, whose



length scales with the security parameter. By making the security parameter
large enough, the system should become arbitrarily hard to break.

This idea is formalized in the security notions of the cryptographic opera-
tions. The basic one, which is what is used to define the notion of semantically
equivalent messages, is that of computational indistinguishability of probability
ensembles over Str. Here a probability ensemble over Str is a sequence {Aη}η∈N
of probability distributions over Str indexed by the security parameter.

Definition 3.1 (Computational indistinguishability). Two probability en-
sembles {Aη}η and {Bη}η are computationally indistinguishable if for every prob-
abilistic polynomial-time algorithm A,

P[x $← Aη; A(1η, x) = 1]− P[x $← Bη; A(1η, x) = 1]

is a negligible function of η.

Recall that a function f : N→ N is called negligible if for all positive polyno-
mials p, f(η) ≤ 1

p(η) for large enough η. We now give the formal definition of an
encryption scheme and its security notion in Section 3.1 and of oracle hashing
in Section 3.2.

3.1 Encryption scheme

For each security parameter η ∈ N we let Plaintextη ⊆ Str be a non-empty set of
plaintexts, satisfying that for each η ∈ N : Plaintextη ⊆ Plaintextη+1 as in Gold-
wasser and Bellare [GB01]. Let us define Plaintext =

⋃
η Plaintextη. There is a

set Keys ⊆ Str of keys and also a set Ciphertext ⊆ Str of ciphertexts. Further-
more, there is a special bit string ⊥ not appearing in Plaintext or Ciphertext.
An encryption scheme Π consists of three algorithms:
1. a (probabilistic) key generation algorithm K : Param → Keys that outputs,

given a unary sequence of length η, a randomly chosen element of Keys;
2. a (probabilistic) encryption algorithm E : Keys×Str → Ciphertext∪{⊥} that

outputs, given a key and a bit string, a possibly randomly chosen element
from Ciphertext or ⊥;

3. a (deterministic) decryption algorithm D : Keys × Str → Plaintext ∪ {⊥}
that outputs, given a key and a ciphertext, an element from Plaintext or ⊥.

These algorithms must satisfy that the decryption (with the correct key) of a
ciphertext returns the original plaintext.

Now we define type-0 security of an encryption scheme as in [AR02], which
is a variant of the standard semantic security definition, enhanced with some
extra properties. In particular a type-0 secure encryption scheme is which-key
concealing, repetition concealing and length hiding. We refer to the original
paper for motivation and explanations on how to achieve such an encryption
scheme.

Definition 3.2. An adversary (for type-0 security) is a probabilistic polyno-
mial-time algorithm AF(−),G(−) : Param → {0, 1} having access to two prob-
abilistic oracles F ,G : Str → Str. The advantage of such an adversary is the



function AdvA : N→ R defined by

AdvA(η) = P[κ, κ′ $← K(1η); AE(κ,−),E(κ′,−)(1η) = 1]−
P[κ $← K(1η); AE(κ,0),E(κ,0)(1η) = 1].

Here the probabilities are taken over the choice of κ and κ′ by the key generation
algorithm, over the choices of the oracles, and over the internal choices of A. An
encryption scheme 〈K, E ,D〉 is called type-0 secure if for all polynomial-time
adversaries A as above, the advantage AdvA is a negligible function of η.

For completeness it is needed that the decryption algorithm returns reject
whenever it is called with a key that does was not used to encrypt the message
in the first place. The special bit string ⊥ is used to indicate failure of decryption.
This property is called confusion freeness. See [MW04], where the completeness
for the original Abadi-Rogaway logic is proven.

Definition 3.3 (Confusion freeness). Let Π = 〈K, E ,D〉 be an encryption
scheme indexed by the security parameter η. Π is said to be confusion free if for
all bit strings µ the probability

P[κ1, κ2
$← K(η) : Dκ1 (Eκ2(µ)) 6= ⊥]

is a negligible function of η.

3.2 Oracle hashing

In [GR06], Canetti’s notion of oracle hashing [Can97] is used as the computa-
tional counterpart to the algebraic hash operation. A hash scheme consists of
two algorithms H and V. The probabilistic algorithm H : Param × Str → Str
takes a unary sequence and a message and outputs a hash value; the verifica-
tion algorithm V : Str× Str → {0, 1} that given two messages x and c correctly
decides whether c is a hash of x or not.

Canetti gives essentially two security notions for such a hash scheme. The first
one, oracle indistinguishability, guarantees that an adversary can gain no infor-
mation at all about a bit string, given its hash value (or rather, with sufficiently
small probability). This property is used in [GR06] to prove the soundness of
the interpretation. The second one is an appropriate form of collision resistance.
It guarantees that an adversary cannot (or rather, again, with sufficiently small
probability) compute two distinct messages that successfully pass the verifica-
tion test with the same hash value. This property will be used in this paper to
prove completeness.

Definition 3.4 (Oracle indistinguishability). A hash scheme 〈H,V〉 is said
to be oracle indistinguishable if for every family of probabilistic polynomial-time
predicates {Dη : Str → {0, 1}}η∈N and every positive polynomial p there is a



polynomial size family {Lη}η∈N of subsets of Str such that for all large enough
η and all x, y ∈ Str \ Lη:

P[Dη(H(1η, x)) = 1]− P[Dη(H(1η, y)) = 1] <
1

p(η)
.

Here the probabilities are taken over the choices made by H and the choices
made by Dη.

Definition 3.5 (Collision resistance). A hash scheme 〈H,V〉 is said to be
collision resistant if for every probabilistic polynomial time adversary A, the
probability

P[〈c, x, y〉 $← A(1η); x 6= y ∧ V(x, c) = V(y, c) = 1]

is a negligible function of η.

As an example we reproduce here a hash scheme proposed in [Can97] that sat-
isfies both security notions. Let p be a large (i.e., scaling with η) safe prime. Take
H(x) = 〈r2, r2·h(x) mod p〉, where r is a randomly chosen element in Z∗p and h is
any collision resistant hash function. The verification algorithm V(x, 〈a, b〉) just
checks whether b = ah(x) mod p.

4 Interpretation

Section 2 describes a setting where messages are algebraic terms generated by
some grammar. In Section 3 messages are bit strings and operations are given by
probabilistic algorithms operating on bit strings. This section shows how to map
algebraic messages to (distributions over) bit strings. This interpretation is very
much standard. We refer to [AR02,AJ01,MW04] for a thorough explanation. We
follow the notation from [GR06].

Tagged representation. Throughout this paper we assume that it is always
possible to recover the type information of a message from its bit string represen-
tation. This can be easily achieved by adding the necessary type tags to the bit
string representation. We will abstract from this representation by overloading
the notation. We use Greek letters for bitstrings and µ represents a bit string of
a generic type. We write µ1µ2 for a pair of bit strings (in [AR02] this would be
written as 〈(µ1, µ2), “pair”〉); ε for a ciphertext; κ for a key; ψ for a hash value;
ν for a nonce and ς for a constant.

Definition 4.1. For every message m we define the set R(m) ⊆ Msg of random
messages in m as follows:

R(c) = ∅ R({|m|}r
k) = R(m) ∪ {k, {|m|}r

k}
R(n) = {n} R(hr(m)) = R(m) ∪ {hr(m)}
R(k) = {k} R(〈m1,m2〉) = R(m1) ∪ R(m2)

R(¤r) = {k¤, ¤r} R(£r) = {nr
£, £r}.



When interpreting a message m as (ensembles of distributions over) bit strings
(Definition 4.3 below), we will first choose a sequence of coin flips for all elements
of R(m) and use these sequences as source of randomness for the appropriate
interpretation algorithms.

Definition 4.2. Coins is the set {0, 1}ω, the set of all infinite sequences of 0’s
and 1’s. We equip Coins with the probability distribution obtained by flipping
a fair coin for each element in the sequence. For every finite set X we define
Coins(X) as {τ : X → Coins} and equip it with the induced product probability
distribution. Furthermore, for every message m we write Coins(m) instead of
Coins(R(m)).

An element of τ of Coins(m) gives, for every sub-message m′ of m that requires
random choices when interpreting this sub-message as a bit string, an infinite
sequence τ(m′) of coin flips that will be used to resolve the randomness.

Now we are ready to give semantic to our message algebra. We use E to
interpret encryptions, K to interpret key symbols, and H to interpret hashes.
We let C : Const → Str be a function that (deterministically) assigns a constant
bit string to each constant identifier. We let N : Param → Str be the nonce
generation function that, given a unary sequence of length η, chooses uniformly
and randomly a bit string from {0, 1}η.

Definition 4.3. For a message m, a value of the security parameter η ∈ N, a
finite set U of messages containing R(m), and for a choice τ ∈ Coins(U) of (at
least) all the randomness in m, we can (deterministically) create a bit string
[[m]]τη ∈ Str as follows:

[[c]]τη = C(c) [[{|m|}r
k]]τη = E([[k]]τη , [[m]]τη , τ({|m|}r

k))

[[k]]τη = K(1η, τ(k)) [[hr(m)]]τη = H(1η, [[m]]τη , τ(hr(m)))

[[n]]τη = N (1η, τ(n)) [[¤r]]τη = E([[k¤]]τη , C(0), τ(¤r))

[[〈m1,m2〉]]τη = [[m1]]
τ
η [[m2]]

τ
η [[£r]]τη = H(1η, [[nr

£]]τη , τ(£r)).

Note that [[m]]τη = [[m]]τ |R(m)
η . For a fixed message m and η ∈ N, choosing τ from

the probability distribution Coins(R(m)) creates a probability distribution [[m]]η
over Str:

[[m]]η := [τ $← Coins(m); [[m]]τη ].

Note that although the codomain of τ ∈ Coins(m) is Coins, the set of infinite
bit strings, when interpreting a fixed message m at a fixed value of the security
parameter η, only a predetermined finite initial segment of each sequence of coin
flips will be used by K, N , E , and H. Letting η range over N creates an ensemble
of probability distributions [[m]] over Str, namely [[m]] := {[[m]]η}η∈N. Moreover,
we overload the semantic function [[−]]τη : Msg → Str to sets of messages U , in
the natural manner:

[[U ]]τη :=
⋃

m∈U

[[m]]τη .



Throughout this paper, when it does not cause confusion, we write [[−]]τ instead
of [[−]]τη to simplify notation.

In [GR06], the following result is proven. Well-spreadness here is a mild
condition on the encryption and hash schemes, meaning that no ciphertext or
hash value is exceptionally likely to occur as the encryption or hash value of a
particular message. See [GR06] for more details. This notion plays no role in the
remainder of this paper.

Theorem 4.4 (Soundness) Assume that the encryption scheme 〈K, E ,D〉 is
type-0 secure, that the hash scheme 〈H,V〉 is oracle indistinguishable, and that
both are well-spread. Let m and m′ be acyclic messages. Then m ∼= m′ =⇒
[[m]] ≡ [[m′]]. ut

The next section will prove the converse of this under appropriate conditions.

5 Completeness

This section shows that the interpretation proposed in the previous section
is complete. Throughout this section we assume that the encryption scheme
〈K, E ,D〉 is type-0 secure, that the probabilistic hash scheme 〈H,V〉 is collision
resistant and oracle indistinguishable, and that both are well-spread.

Throughout the completeness proof we follow the steps of Micciancio–Wa-
rinschi and their notation when possible. We recall here some of their results as
there are used in our proof.

In the original Abadi-Rogaway logic, the useful information for an adversary
is determined by the set of keys she can learn. We define the function recoverable
and its computational counterpart Crecoverable as in [MW04]. These functions
extract the set of keys observable by an adversary from an algebraic message
and a bit string respectively.

recoverable(m) = recoverable(m, |m|, ∅)
recoverable(m, d + 1, U) = Fkr(m, recoverable(m, d, U))

recoverable(m, 0, U) = ∅

Fkr(〈m1,m2〉, U) = Fkr(m1, U) ∪ Fkr(m2, U)
Fkr(k, U) = {k} ∪ U

Fkr({|m|}r
k, U) = Fkr(m, U), if k ∈ U ;

Fkr(m, U) = U, in any other case.



algorithm Crecoverable(µ) :
Gets all the keys in the bit
string µ with high probability.
U ′ := ∅
do:

U := U ′

U ′ := Ckr(µ,U)
until U = U ′

return U

Ckr(κ,U) = {κ} ∪ U

Ckr(µ1µ2, U) = Ckr(µ1, U) ∪ Ckr(µ2, U)
Ckr(ε, U) = Ckr(µ,U), if ∃!κ ∈ U s.t.

D(ε, κ) = µ 6= ⊥;
Ckr(µ,U) = U, otherwise.

The following lemma also from [MW04] shows the relation between these two
functions.

Lemma 5.1 Let Π = 〈K, E ,D〉 be a confusion free encryption scheme and let
m ∈ Msg. Then

P[τ $← Coins(m);Crecoverable([[m]]τ ) 6= [[recoverable(m)]]τ ]

is a negligible function of η.

Proof. We refer the reader to the original paper for a complete proof of this
lemma. The hashes that appear in our logic have no influence at all. ut

In our extended logic, due to the hashes, it is not true any more that the only
useful information for an adversary are the keys. Any message an adversary
can learn might be the pre-image of a certain hash value. Therefore, we need
to be able to compute the complete closure of a given message (or bit string).
The function aclosure below computes the messages in the algebraic closure
of a message, up to a certain size. The function bclosure is its computational
counterpart. Next we show that the proposed functions behave similarly with
high probability.

aclosure(m, d) = aclosure(m, d, recoverable(m))
aclosure(m, d, U) = asynth(aanalz(m,U), d)

aanalz(〈m1,m2〉, U) = aanalz(m1, U) ∪ aanalz(m2, U)
aanalz({|m|}r

k, U) = {{|m|}r
k} ∪ aanalz(m,U), if k ∈ U ;

aanalz(m, U) = {m}, in any other case.

bclosure(µ, d) = bclosure(µ, d,Crecoverable(µ))
bclosure(µ, d, U) = bsynth(banalz(µ,U), d)
banalz(µ1µ2, U) = banalz(µ1, U) ∪ banalz(µ2, U)

banalz(ε, U) = {ε} ∪ banalz(µ,U), if ∃!κ ∈ Us.t.D(ε, κ) = µ 6= ⊥;
banalz(µ,U) = {µ}, in any other case.



algorithm asynth(U, d) :
Generates all possible vectors of
messages in U of size up to d.
U1 = U
for i = 2 to d

Ui := ∅
for each m ∈ U

for each v ∈ Ui−1

Ui := Ui ∪ {〈m, v〉}
return Ud

algorithm bsynth(U, d) :
Generates all possible vectors of
bit strings in U of size up to d.
U1 = U
for i = 2 to d

Ui := ∅
for each µ ∈ U

for each ω ∈ Ui−1

Ui := Ui ∪ {µω}
return Ud

Lemma 5.2 Let m ∈ Msg, τ ∈ Coins(m), and T ⊆ Keys. Then the probability

P
[
τ

$← Coins(m); banalz([[m]]τ , [[T ]]τ ) 6= [[aanalz(m,T )]]τ
]

is a negligible function of η.

Proof. The proof follows by induction on the structure of m. The only non-trivial
case is m = {|m1|}r

k.
• If k ∈ T , then [[k]]τ ∈ [[T ]]τ . Next

P[banalz([[m]]τ , [[T ]]τ ) = [[{m} ∪ aanalz(m1, T )]]τ ]

≥ P[[[m]]τ ∪ banalz([[m1]]
τ
, [[T ]]τ ) = [[{m} ∪ aanalz(m1, T )]]τ

∧∀κ ∈ [[T \ k]]τ : D([[m]], κ) = ⊥]

≥ P[banalz([[m1]]
τ
, [[T ]]τ ) = [[aanalz(m1, T )]]τ

∧∀κ ∈ [[T \ k]]τ : D([[m]]τ , κ) = ⊥]

≥ 1− (P[banalz([[m1]]
τ
, [[T ]]τ ) 6= [[aanalz(m1, T )]]τ

∨∃κ ∈ [[T \ k]]τ : D([[m]]τ , κ) 6= ⊥])

≥ 1− (P[banalz([[m1]]
τ
, [[T ]]τ ) 6= [[aanalz(m1, T )]]τ ]

+P[∃κ ∈ [[T \ k]]τ : D([[m]]τ , κ) 6= ⊥])

≥ 1− (ε1(η) +
∑

κ∈[[T\k]]τ

P[D([[m]]τ , κ) 6= ⊥])

≥ 1− (ε1(η) + ε2(η) · (|T | − 1)) ,

where ε1, ε2 are the negligible functions from the induction hypothesis and con-
fusion freeness respectively.
• If k 6∈ T , then [[k]]τ 6∈ [[T ]]τ . Next

P[banalz([[m]]τ , [[T ]]τ ) = [[{m}]]τ ]
≥ P [[[m]]τ = [[{m}]]τ ∧ ∀κ ∈ [[T ]]τ : D([[m]]τ , κ) = ⊥]
= 1− P [∃κ ∈ [[T ]]τ : D([[m]]τ , κ) = ⊥]

≥ 1−
∑

κ∈[[T ]]

P [D([[m]]τ , κ) = ⊥]

≥ 1− ε(η) · |T | ,



where ε is a negligible function due to confusion freeness. ut
The following is an extended version of the function psp from [MW04], which is
the computational counterpart of pattern. This function takes a bit string as an
argument and tries to recover the pattern associated to it. This means that given
as input a sample from [[m]], the function outputs (a renaming of) pattern(m)
with high probability. As in [MW04] we let f be an arbitrary (but fixed) injective
function that associates an identifier (i.e., an element of Nonce ∪ Key ∪ Const)
to each bit string of primitive type (i.e., ν, κ, ς).

psp(µ1µ2, U) = 〈psp(µ1, U), psp(µ2, U)〉

psp(ε, U) =

{
{|psp(D(ε), U)|}R(ε)

f(κ) , if ∃!κ ∈ U s.t. D(ε, κ) 6= ⊥;
¤R(ε), otherwise.

psp(ψ,U) =
{

hR(ψ)(psp(µ,U)), if ∃!µ ∈ U s.t. V(µ, ψ) = 1;
£R(ψ), otherwise.

psp(µ,U) = f(µ) in any other case.

Theorem 5.3 Let m ∈ Msg, τ ∈ Coins(m), and U ⊆ Msg. Then the probability

P
[
τ

$← Coins(m); psp([[m]]τ , [[U ]]τ ) 6≡ pattern(m,U)
]

is a negligible function of η.

Proof. The proof follows by induction on the structure of m. We only show here
the case m = hr(m1). For the remaining cases, the proof follows similarly to the
one in the original Micciancio-Warinschi [MW04] paper and therefore we refer
the reader to it.
• If m1 ∈ U then

P[τ $← Coins(m); psp([[m]]τ , [[U ]]τ ) ≡ pattern(m,U)]

≥ P[psp([[m1]]
τ
, [[U ]]τ ) ≡ pattern(m1, U)

∧∀µ ∈ [[U \ {m1}]]τ : V(µ, [[m]]τ ) = 0]

= 1− P[psp([[m1]]
τ
, [[U ]]τ ) 6≡ pattern(m1, U)

∨∃µ ∈ [[U \ {m1}]]τ : V(µ, [[m]]τ ) = 1]

≥ 1− (P [psp([[m1]]
τ
, [[U ]]τ ) 6≡ pattern(m1, U)]

+P [∃µ ∈ [[U \ {m1}]]τ : V(µ, [[m]]τ ) = 1])

≥ 1− (ε1(η) + ε2(η)) ,

where ε1, ε2 are the negligible functions from the induction hypothesis and col-
lision resistance respectively.
• If m1 6∈ U then

P[τ $← Coins(m);psp([[m]]τ , [[U ]]τ ) ≡ pattern(m, U)]
= P[psp([[m]]τ , [[U ]]τ ) ≡ £r] = P[∀µ ∈ [[U ]]τ : V(µ, [[m]]τ ) = 0]



therefore

P[τ $← Coins(m);psp([[m]]τ , [[U ]]τ ) 6≡ pattern(m, U)]
= P[∃µ ∈ [[U ]]τ : V(µ, [[m]]τ ) = 1] ≤ ε(η) ,

where ε is a negligible function due to collision resistance. ut

Lemma 5.4 Let m ∈ Msg and d ∈ N. Then the probability

P
[
µ

$← [[m]]; psp(µ, bclosure(µ, d)) 6≡ pattern(m, aclosure(m, d))
]

is a negligible function of η.

Proof.

P
[
µ

$← [[m]]; psp(µ, bclosure(µ, d)) ≡ pattern(m, aclosure(m, d))
]

≥ P[µ $← [[m]]; psp(µ, bclosure(µ, d)) ≡ pattern(m, aclosure(m, d))

∧ bclosure(µ, d) ≡ aclosure(m, d)
]

≥ 1−
(
P
[
µ

$← [[m]]; psp(µ, bclosure(µ, d)) 6≡ pattern(m, aclosure(m, d))
]

+P
[
µ

$← [[m]]; bclosure(µ, d) 6≡ aclosure(m, d)
])

≥ 1− (ε1(η) + ε2(η)) ,

where ε1, ε2 are negligible functions due to Theorem 5.3 and Lemma 5.2 respec-
tively. ut

Theorem 5.5 (Completeness) Let m1 and m2 be acyclic messages. Then
[[m1]] ≡ [[m2]] =⇒ m1

∼= m2.

Proof. Let us assume that m1 6∼= m2. Now we show that [[m1]] 6≡ [[m2]] by building
a distinguisher D.

algorithm D(µ) :
d := max(|m1|, |m2|)
if psp(µ, bclosure(µ, d)) ≡ pattern(m1)

return 1
else

return 0

Next we show that AdvD(η) = |P[µ $← [[m1]];D(µ) = 1]−P[µ $← [[m2]];D(µ) = 1]|
is not negligible. On the one hand

P[µ $← [[m1]];D(µ) = 1] = P[µ $← [[m1]]; psp(µ, bclosure(µ, d)) ≡ pattern(m1)]

= 1− P[µ $← [[m1]]; psp(µ, bclosure(µ, d)) 6≡ pattern(m1)]
≥ 1− ε1(η) ,



where ε1 is the negligible function from Lemma 5.4. Note that pattern(m1) =
pattern(m1, aclosure(m1, |m1|)). On the other hand

P[µ $← [[m2]];D(µ) = 1] = P[µ $← [[m2]]; psp(µ, bclosure(µ, d)) ≡ pattern(m1)]

≤ P[µ $← [[m2]]; psp(µ, bclosure(µ, d)) 6≡ pattern(m2)]
≤ ε2(η) ,

where ε2 is the negligible function from Lemma 5.4. Therefore, AdvD(η) =
1− ε1(η)− ε2(η), which is not negligible. ut

6 Conclusions

In this paper we have studied an extension of the Abadi-Rogaway logic with
hashes. Together with the results from [GR06] we have shown that it is possible
to create a sound and complete interpretation of formal hashes in the computa-
tional world. Under standard assumptions on hashes (pre-image resistance and
collision resistance), the algebraic world does not perfectly match the computa-
tional world. However, our results show that it is still possible to achieve this
perfect match using Canetti’s oracle hashing.
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