
Demonstrating data possession and uncheatable data transfer

Décio Luiz Gazzoni Filho, Paulo Śergio Licciardi Messeder Barreto

1Departamento de Engenharia de Computação e Sistemas Digitais (PCS)
Escola Polit́ecnica

Universidade de S̃ao Paulo
Av. Prof. Luciano Gualberto trav. 3 n. 158

05508-900 – S̃ao Paulo – SP

decio@decpp.net,pbarreto@larc.usp.br

Abstract. We observe that a certain RSA-based secure hash function ishomo-
morphic. We describe a protocol based on this hash function which prevents
‘cheating’ in a data transfer transaction, while placing little burden on the
trusted third party that oversees the protocol. We also describe a cryptographic
protocol based on similar principles, through which a prover can demonstrate
possession of an arbitrary set of data known to the verifier. The verifier isn’t
required to have this data at hand during the protocol execution, but rather only
a small hash of it. The protocol is also provably as secure as integer factoring.

1. Introduction
The combined computational power of Internet-connected PCs has long been known and
applied to the solution of otherwise insurmountable computational problems, spawning
the field of distributed computation. Around the turn of the century, peer-to-peer file shar-
ing networks started to appear, showcasing the first application of harnessing the stor-
age space and idle bandwidth of Internet-connected PCs. Recently other applications
of this concept have appeared, such as distributed data storage networks with a focus on
anonymity [1] and reliable data backup [5]. Entertainment companies are looking to build
similar networks, as online hosting and bandwidth costs skyrocket with the introduction
of high-quality high-definition content1. Content distribution networks relying on users’
donated bandwidth and storage space will slash costs dramatically compared to traditional
setups.

However, this raises many concerns over the honesty of network users. More
explicitly, it is desirable to know, in a distributed data store network, whether users are
actually storing files they were assigned to store; and in a content distribution network
where users are rewarded for donating their idle bandwidth and charged for using other
users’ bandwidth, whether data transfers took place correctly and bandwidth credits for
the transaction can be exchanged. We cite some scenarios in Sections 3 and 4 where it
would make sense for a user to break network rules in exchange for some form of personal
gain (or plain vandalism). Hence it is desirable to keep tabs on the honesty of users, which
is the purpose of the protocols described in this paper.

It is interesting to note that a personal computer has three main resources which
may be exploited by a distributed network: processing time, network bandwidth and stor-
age. In each case a user may ‘cheat’ and not dedicate the resources as promised. For

1For instance, the recently introduced Blu-ray disc format for high-definition video provides storage of
up to 50 GB initially and 200 GB in the future[9].



the first, efficient techniques are known for certain classes of problems which detect with
arbitrarily high accuracy any attempt to shortcut computations [4]. In this paper, we pro-
vide limited (yet still useful) ways to prevent cheating when the latter two resources are
involved.

This paper is organized as follows: Section 2 describes an homomorphic hashing
scheme, with applications to network coding and more directly to the protocol of Section 3
which can resolve disputes concerning the integrity of data transfers in the face of cheating
users. In Section 4 we present a protocol to determine whether a user has a certain chunk
of data in storage, or has deleted it and is falsely claiming to still possess it. In Section
5 we analyze the performance of our proposed protocols, and provide some guidance
regarding parameter choice. We conclude the paper in Section 6.

1.1. Related work

The first display of a secure homomorphic hash function is due to Krohn, Freedman and
Mazires [6]. Their function is mostly satisfactory, despite performance issues (as is the
case with the function of Section 2). Our proposal has one main advantage: the same
parameter set can be applied to differently-sized messages. Just as a matter of choice, it
is interesting to know that a second construction exists, based on a different hard problem
(namely factoring), even if it sports the same characteristics and performance2.

The protocols of Sections 3 and 4 are related to the work of Golle, Jarecki and
Mironov [3]. The protocol of Section 3 seeks to solve a different problem than what
Golle, Jarecki and Mironov consider. Speaking in terms of uploaders and downloaders,
their work considers a trusted uploader and untrusted downloaders, while we consider
the case where neither uploaders nor downloaders are trusted; if the protocol fails, it is
possible to determine whether the failure was on the uploaders’ or the downloaders’ end.
As for the protocol of Section 4, it has similar goals as Golle, Jarecki and Mironov’s
proposal. Our protocol has one main advantage: public keys in their protocol are as large
as the data being protected, while our protocol’s public key is just an RSA modulus. Also,
we argue that our protocol is slightly more flexible, as it does not fix the message size for
a given parameter set, and is arguably simpler and more elegant. On the other hand,
their proposal may have better performance when elliptic curve groups are employed.
Regardless of feature set and performance differences, we argue that having a second
construction with similar properties, but based on a different hard problem, is good for
diversity.

2. An RSA-based homomorphic hash function

A functionH is homomorphic if, given two operations+ and×, we have

H(d + d′) = H(d)×H(d′).

An homomorphic hash function is, simply put, a hash function that is homomor-
phic. In many cases it is undesirable that a hash function be homomorphic, and most
known constructs of this type are weak. However, it is possible to build strong homomor-
phic hash functions based on public-key primitives, so long as the secret parameters are

2Actually, if elliptic curves are used instead of the group(Z/pZ)∗, one expects improved performance.



not disclosed; up until now, the only known example was the work of Krohn, Freedman
and Mazires [6], based on discrete logarithms. We now describe a different homomorphic
hash function, based on principles similar to RSA, and which is slightly more flexible than
Krohn-Freedman-Mazires’s function. This function isn’t novel; see e.g. [10]. However,
we believe nobody has yet called to attention its homomorphic property.

Let n be an RSA modulus (i.e.n = pq wherep andq are primes), and letφ(n) =
(p− 1)(q − 1) be the order of(Z/nZ)∗. The public data for the hash function isn and a
randomly-chosen integerb. To hash a chunk of datad of arbitrary size, one just computes

H(d) = bd mod n. (1)

This scheme is homomorphic under integer addition:H(d + d′) ≡ bd+d′ ≡ bdbd′ ≡
H(d)H(d′) (mod n).

Finding a collision for this hash involves finding messagesd, d′ such thatH(d) =
H(d′). That is,bd ≡ bd′

(mod n), so thatbd−d′ ≡ 1 (mod n). By a theorem of Fermat
and Euler,d − d′ must be a multiple ofφ(n). Hence, the problem is reduced to finding
congruent integers moduloφ(n). This is trivial if φ(n) (or the factorization ofn) is known,
but believed to be difficult otherwise.

The main advantage of our function over Krohn-Freedman-Mazires’ function is
that the message being hashed can be of arbitrary size, whereas each instance of Krohn-
Freedman-Mazires’ function fixes the message size.

3. Uncheatable data transfer

We consider a ‘pay-for-bandwidth’ content distribution network. Suppose that Alice has
previously downloaded a piece of data which Bob new wants. Bob would then request
this data from Alice in exchange for a virtual (perhaps even real) currency. This could be
an attractive model for the distribution of large content such as DVDs and high definition
video – users could exchange their idle bandwidth for free content and relieve the network
operators from bandwidth charges.

It is natural to assume that some users will attempt to illicitly obtain or avoid
parting with bandwidth credits. Two scenarios easily come to mind:

1. Alice has lots of idle bandwidth but not enough interesting data to fully employ
this idle bandwidth. Hence she may claim to possess a piece of highly desired
data, but when it is requested, she sends unrelated or random data instead.

2. Bob doesn’t want to part with his bandwidth credits, so upon successful receipt of
data, he will nonetheless claim that the data was corrupt and refuse to hand over
the credits.

We remark that the first scenario could be avoided by the use of our novel data
possession proving techniques, described in Section 4. However, even users known to
possess the correct data may send incorrect data out of malice, hence we might as well
directly address the problem.

In order to counter this threat, an hypothetical protocol designer might propose
the following schemes:



1. A central server keeps track of hashes for each piece of data in the network. Upon
data delivery, Bob hashes the received data, which is compared with the server-
kept hash value. If the values don’t match, the transfer was corrupted and no
credits are exchanged. This scheme is secure against scenario 1 but not 2, since
the server has to trust Bob to correctly hash the data.

2. Alice encrypts the data before sending to Bob. Upon data delivery, Bob hashes
the received data, which is compared with Alice’s hash of the encrypted data. If it
matches, Alice supplies the decryption key to Bob. This scheme is secure against
scenario 2 but not 1, since Alice might have encrypted random or unrequested
data. This could be combined with the first protocol by hashing the decrypted
data, however the scheme would again be insecure against scenario 2.

3. The second protocol could be extended by requiring Alice to provide the decryp-
tion key to the central server. This scheme is secure against both scenarios, how-
ever the server must keep a valid copy of the data to verify the hash of Alice’s
encrypted data.

Protocol 3 is fairly secure, but rather burdensome for the server, requiring it to
store a valid copy of every piece of data being traded in the network. We now show how
homomorphic hashing and stream ciphers can be employed to remove this requirement.

Let d be the data of interest andf(k) be a stream cipher; that is, it produces a
bitstrings of arbitrary length which depends onk. For our purposes, this bitstring is trun-
cated to match the size ofd. Typicallyd ands would be combined by the XOR operation;
however, since we have a hashH which is homomorphic under integer addition, we will
interpret bothd ands as binary integers, and definec = s + d as the ciphertext, where+
is integer addition.

The central server must generate an RSA modulusn = pq, wherep, q are large
primes andφ(n) = (p−1)(q−1). The modulusn is public, butp, q, φ(n) are kept secret.
Each piece of datad is hashed ash(d) = d mod φ(n) and this value is stored by the
server. Alice sends data to Bob according to the following protocol:
Protocol 3.1(Data transfer).

1. Alice chooses a keyk at random for the stream cipherf(k), and computes the
bitstrings and the ciphertextc = s + d using this key;

2. Alice sendss andrA = H(c) to Bob;
3. Bob locally computesrB = H(c);
4. If rA = rB, Bob requests the decryption keyk from Alice;
5. Bob decrypts the data by computing the bitstrings andd = c − s, and checks

the integrity ofd by conventional means (e.g. a traditional hash function or cyclic
redundancy check).

Whenever a dispute arises concerning the integrity of a data transfer, the following
protocol is executed:
Protocol 3.2(Data transfer verification).

1. Alice or Bob supplyk andr to the central server;
2. The server computes the bitstrings and its hashH(s);
3. The server computesrS = H(c) = H(s)h(d);
4. If r = rS, the server declares that Alice correctly sent the data.



The only step that may require clarification is Step 3 of Protocol 3.2. Recall
thatφ(n) is the order of(Z/nZ)∗ (the group over which arithmetic takes place), and by
definitionh(d) ≡ d (mod φ(n)), so thatbh(d) ≡ bd (mod n). SinceH(d) = bd mod n,
we have thatH(c) = H(s + d) = H(s)H(d) = H(s)h(d) using the homomorphic
property ofH.

We remark that the server can shortcut the computation ofH(s) by computing
H(s mod φ(n)) instead; nevertheless, we posit that performance is not an issue since this
protocol will be executed very infrequently, as a rational cheater would steer away from
networks implementing this protocol.

The attractiveness of this protocol relies on the fact that the server can hash the
encrypted version ofd without having a copy ofd itself, but only its hashh(d). It is
otherwise functionally equivalent to the third protocol proposed in the beginning of this
section. Moreover, the protocol is secure, since our homomorphic hash has the desired
security properties of a conventional hash, as long as the secret RSA parameters are not
revealed. Only the central server can compromise the hash function’s security, but this
isn’t a problem since the central server doesn’t produce any hashes under the protocol.

An issue that must not be overlooked is the commitment ofrA andrB in Protocol
3.1. If this value is not committed, the cheater (whether it be Alice or Bob) may provide
a different value ofr to the central server during execution of Protocol 3.2, and the server
has no way of telling which of the two is being honest. For instance, Alice may choose
a keyk′ and compute the corresponding bitstrings′, producing a different hashr′A =
H(s′ + d) which is consistent with the keyk′. The protocol would execute successfully
and the dispute would be incorrectly resolved in favor of Alice. This commitment might
be in the form of sendingrA to the central server as well in Step 2 of Protocol 3.1, or by
having Alice signrA with her public key before sending it to Bob, and then having Bob
sign it as well before Alice supplies the decryption key.

4. Demonstrating data possession
In the previous section, one of the contemplated cheating scenarios concerned a user with
idle bandwidth but no files of interest, which might be tempted to claim possession of
data which he doesn’t have, in order to maximize his bandwidth output. This is prevented
by the use of our data possession proving protocol.

Another particularly useful application of this protocol is in distributed data store
systems. Consider for instance the Freenet network [1], or a distributed backup system
such as Allmydata (formerly HiveCache) [5]. Such systems rely not only on the idle
bandwidth of users, but free hard drive storage as well. There is extra reason to cheat
under such a scheme, as storage space has real monetary cost attached to it (unlike idle
bandwidth). Moreover, in a distributed backup system, a user that donatesx gigabytes of
space towards storing other users’ backup data is usually given backx gigabytes of space
somewhere in the network for his own backup, so that a user may cheat in order to obtain
better redundancy for his own data. Finally, users will only place trust on such a system
as long as the storage can be consistently relied upon, which is difficult in the face of
massive cheating, even if network coding is employed. It is then desirable to verify that
users are actually storing what they claim to be.

To that end, we consider a setup involving an RSA modulusn = pq, with



p, q, φ(n) as in Section 3. Suppose Bob has uploaded a piece of arbitrary datad to Alice,
which has agreed to store it in her computer’s hard drive. Bob may even delete the data
d, so long as he keeps a hashh(d) = d mod φ(n). Later on, Bob wishes to ascertain that
Alice hasn’t deletedd yet, and so executes the following protocol:
Protocol 4.1(Demonstrating data possession).

1. Bob chooses an integer1 < b < n− 1 at random, and sends it to Alice;
2. Alice computesr = bd mod n and sends it to Bob;
3. Bob computesr′ = bh(d) mod n;
4. If r = r′, Bob is convinced that Alice hasn’t deletedd.

The correctness of Protocol 4.1 follows from the same argument for the correct-
ness of Protocol 3.2.

Given the similarities with the homomorphic hash function of Section 2, it isn’t
surprising that the homomorphic property is valid for Protocol 4.1. That is, ifc = s + d
(+ being integer addition), thenrc ≡ bc ≡ bs+d ≡ bsbd ≡ rsrd (mod n). This is
particularly advantageous when data is erasure encoded using a parity check code, such
as tornado codes [7], online codes [8], etc., as long as these codes are modified to use
integer addition instead of XOR to combine basic blocks into encoded blocks. Instead of
storing the hashh(d) for every encoded block that’s been uploaded to the network, it is
possible to store the hash of basic blocks only, and combine them using the homomorphic
property to form the hashes of the encoded blocks being sought.

4.1. Security and limitations

The choice of baseb is crucial for security and performance. Clearlyb should be prime;
for if b is composite, a cheater may build a factor base. For instance, it is possible to
successfully complete the protocol forb = 6 without knowingd, as long as the results for
b = 2 andb = 3 are known. Ifd is sufficiently large and only a small number of bases
were used, including composite values, it might make sense to precompute the results of
the protocol for many admissibleb’s. A less obvious possibility is: given a set of primes
p1, . . . , pk, is it possible thatpi =

∏
j∈S pj (mod n) for some subsetS of p1, . . . , pk?

Clearly the answer is negative over the integers, due to the Fundamental Theorem Of
Arithmetic, but we have no idea whether it is valid modulon, leaving this as an open
question. For performance reasons, it is desirable to employ small basesb, as discussed
in Section 5.

The applicability of this protocol is restricted if the same data is stored by multi-
ple network users, a common scenario in current peer-to-peer networks. These users may
collude so that only one of them stores the data; that way, each user in a collusion ofn
users, each with a storage space ofg bytes, will be able to claim a storage space ofng
bytes. Whenever a request for protocol execution is made to one of the members of the
collusion, it is forwarded to the member who is actually storing the data. However, this
isn’t a weakness of the protocol itself, but rather a statement about the class of protocols
with the same purpose: network users can always collude and forward protocol verifica-
tions to others. Nevertheless, in a content distribution network employing digital rights
management, where content is encrypted and the key is not explicitly given to the user,
this protocol may be applicable as each member of the collusion would actually be storing
different data (the plaintext may be the same, but encrypted under different keys).



5. Performance

Performance of the protocols presented here is low, mostly due to the requirement of
1-2 modular multiplications per bit. It is an important open problem to find more effi-
cient primitives with the desired properties, hopefully leading to an asymptotic reduction
in multiplication count, as in e.g. VSH [2]. Failing that, even a constant factor im-
provement through the use of elliptic curves would be very welcome3 We remark that
Krohn-Freedman-Mazires’ homomorphic hash function can be trivially adopted to use
elliptic curve arithmetic, and is a suitable hash function for use with Protocols 3.1 and
3.2 (although key management is necessarily less flexible, since a different set of param-
eters for Krohn-Freedman-Mazires’ function is as long as the data itself, while the hash
function of Section 2 requires the storage of a single RSA key, typically 512-1024 bits.)
Golle, Jarecki and Mironov’s protocol [3] for demonstrating data possession is a suitable
replacement for Protocol 4.1 if extra performance is required, and one does not require
the slight extra flexibility afforded by our protocol.

Nevertheless, the protocols presented here have some rather unique features which
are desirable in certain applications, and it may be that their low performance is acceptable
since the alternatives (if any) are even less efficient. Thus, we shall consider the problem
of efficiently selecting parameters and implementing our protocols.

The most gain can be made from selecting small key sizes. We shall argue that, for
the present, a key size of 512 bits is perfectly sufficient for the applications outlined here
(content distribution networks and distributed data stores). Consider what cheaters have to
gain from breaking this scheme: they’ll avoid using some bandwidth or hard drive storage
space, both of which are fairly cheap resources compared to those involved in cracking
512-bit or larger RSA keys. In fact, the authors are not aware of a single factorization of
a 512-bit or larger RSA modulus performed by a single individual with a small network
of PCs. Hence, unless key management is done very poorly (using the same key for many
gigabytes or terabytes of data, or perhaps even a master key for the whole network), it
makes no economic sense to break these keys; cheaters would be better off buying larger
hard drives or a faster Internet connection instead of the computational resources required
for key-breaking.

A second improvement is in the choice of baseb, either for the hash function of
Section 2 or Protocol 4.1. Consider one of the simplest exponentiation algorithms, which
is left-right exponentiation; the algorithm loops over the number of bits of the exponent,
performing a squaring and, in case the current exponent bit is 1, a multiplication byb. If
b is small, a multiplication can be replaced by an addition chain (in exactly the same way
as an exponentiation is replaced by a multiplication chain). In the simplest case,b = 2, a
multiplication is replaced by a single addition. However, one must heed the warnings of
Section 4.1 regarding the unknown security of a scheme using small bases. Also, if some-
what larger bases are used, the cost of multiplications is no longer negligible compared
to the cost of squarings, and the fairly large amount of multiplications involved in a left-
right algorithm must be weighed against more efficient exponentiation algorithms, such
ask-ary or sliding window exponentiation, which require full-precision multiplications

3Note that this is a constant factor improvement only if key sizes are fixed; for varying key sizes,
obviously elliptic curves are an asymptotic improvement over RSA and(Z/pZ)∗ discrete logarithm based
schemes.



Client/Prover Server/Verifier
Data size\ Key size 512 bits 768 bits 1024 bits 512 bits 768 bits 1024 bits

4 KB 21.7 ms 41.6 ms 68.4 ms 1.10 ms 2.84 ms 5.96 ms
64 KB 333 ms 644 ms 1.05 s 1.46 ms 3.28 ms 6.44 ms

1024 KB 5.20 s 10.0 s 16.4 s 8.56 ms 12.5 ms 17.9 ms

Table 1. Timings on a PowerPC G4 1.42 GHz processor.

Client/Prover Server/Verifier
Data size\ Key size 512 bits 768 bits 1024 bits 512 bits 768 bits 1024 bits

4 KB 9.96 ms 10.8 ms 28.3 ms 0.402 ms 0.684 ms 2.73 ms
64 KB 152 ms 164 ms 436 s 0.670 ms 0.979 ms 3.22 ms

1024 KB 2.41 s 2.61 s 6.99 s 5.53 ms 6.35 ms 9.80 ms

Table 2. Timings on a Pentium 4 3.0 GHz processor.

but not as many of them.

To gauge the real-world performance of our protocols, we implemented the hash
function of Section 2 using the GNU MP library. There were two distinct code paths:

• the client/prover code path, which is just a straightforward implementation of Eq.
(1);

• the server/verifier code path, which requires knowledge of the prime factors of the
RSA modulusn, implementing the Chinese Remainder Theorem method for faster
computation modulon and the shortcut discussed in Section 3, which consists of
reducing the exponent moduloφ(n).

We used key sizes of 512, 768 and 1024 bits, and data sizes of 4 KB, 64 KB and
1024 KB. Bases were chosen at random with the same bit size as the respective keys,
and exponentiation was performed using GMP’smpz powmfunction, which implements
sliding-window exponentiation. Each test was re-run five times with the same random
data and the results were averaged. Two processors were benchmarked: a PowerPC G4
1.42 GHz (Table 1) and an Intel Pentium 4 3.0 GHz (Table 2), both of them 32-bit pro-
cessors. The benchmark was linked against GMP version 4.1.4 for the G4 processor and
4.2.0 for the Pentium 4 processor.

Results for the client/prover case are clear, with a processing rate of barely more
than 400 KB/s for a midrange processor and less than 200 KB/s for a low end processor,
using the lowest security level. It is not uncommon to see Internet connectivity speeds
surpassing these values, rendering the protocols unsuitable for real time processing of
data. It is hard to argue for even smaller keys; perhaps 384 bits if keys are temporary,
and even then performance would barely double. System designers must work around
this limitation by avoiding protocol executions unless there’s a proven need for them, e.g.
when there have been repeated cheating reports about a specific user.

For the server/verifier case, performance is reasonable and scales better. For in-
stance, at the lowest security level, a Pentium 4 3.0 GHz serving users which execute the
protocol once a minute to check on 1024 KB of data could support in excess of 10,000
users.



6. Conclusions

We presented new protocols to aid the task of eliminating cheaters/freeriders from con-
tent distribution and distributed data store networks. Although they are very flexible and
simple to implement, low performance may prevent their widespread adoption. Hence
we urge further research in this area, specifically in trying to adapt these protocols to use
elliptic curve cryptographic, which may provide the required performance boost to render
these techniques mostly practical.

References

[1] Ian Clarke. Freenet – the free network project.http://freenetproject.org .

[2] Scott Contini, Arjen K. Lenstra, and Ron Steinfeld. VSH, an efficient and provable colli-
sion resistant hash function.http://eprint.iacr.org/2005/193 , 2005.

[3] Philippe Golle, Stanislaw Jarecki, and Ilya Mironov. Cryptographic primitives enforcing
communication and storage complexity. InFinancial Cryptography, volume 2357
of Lecture Notes in Computer Science, 2002.

[4] Philippe Golle and Ilya Mironov. Uncheatable distributed computations.Lecture Notes
in Computer Science, 2020:425+, 2001.

[5] Allmydata Inc. Allmydata.http://allmydata.com .

[6] Maxwell Krohn, Michael Freedman, and David Mazières. On-the-fly verification of rate-
less erasure codes for efficient content distribution. InProc. IEEE Symposium on
Security and Privacy, pages 226–240, Oakland, CA, 2004.

[7] Michael G. Luby, Michael Mitzenmacher, M. Amin Shokrollahi, Daniel A. Spielman, and
Volker Stemann. Practical loss-resilient codes. InProc. 29th Symposyum on Theory
of Computing, pages 150–159, 1997.

[8] Petar Maymounkov. Online codes. Technical Report TR2002-833, New York University,
October 2002.

[9] Blu ray Disc Association. Blu-ray disc format.http://www.blu-raydisc.com/ .

[10] Adi Shamir and Yael Tauman. Improved online/offline signature schemes. InAdvances
in Cryptology – CRYPTO 01, volume 2139 ofLecture Notes in Computer Science,
pages 355–357, 2001.


