
An efficient way to access an array

at a secret index

Timothy Atkinson Marius C. Silaghi

Abstract

We propose cryptographic primitives for reading and assigning the
(shared) secret found at a secret index in a vector of secrets. The problem
can also be solved in constant round with existing general techniques based
on arithmetic circuits and the “equality test” in [4]. However the proposed
technique requires to exchange less bits. The proposed primitives require a
number of rounds that is independent of the size N of the vector, and only
depends (linearly) on the number t of computing servers. A previously
known primitive for reading a vector at a secret index works only for 2-
party computations. Our primitives work for any number of computing
participants/servers.

The proposed techniques are secure against passive attackers, and zero
knowledge proofs are provided to show that exactly one index of the ar-
ray is read/written. The techniques work both with multiparty compu-
tations based on secret sharing and with multiparty computations based
on threshold homomorphic encryption.

1 Introduction

In many general multi-party computation (MPC) frameworks, secrets s from a
ring F are distributed among participants using sharing schemes. In a sharing
scheme, each participant Ai gets a share denoted [s]Fi , and at least t participants
are required to reconstruct the secret from their shares. Arithmetic circuits can
then be evaluated securely over these shares [2, 12, 7, 6]. The proposed prim-
itives also work with MPC schemes where secrets are encrypted with a homo-
morphic public key cypher E allowing additions of plaintext by operations on
ciphertexts [3], and whose secret key is distributed among t servers/participants.

Cryptographic Primitives on Shared Secrets Examples of known prim-
itives working on secret shares in a number of rounds that is independent on
the possible values of the secrets are:

• bits(x). Transform the shared secret x (with ℓ bits) into a vector [x]B

of ℓ shared secrets, [x]B = b0, b1, ..., bℓ, with possible values {0,1} and
representing the corresponding bits of x [4].

1

• EXP (x, [y]B). This primitive computes raises x at exponent y where y is
shared on bits [5].

• +,−, ∗, =, ==, &&, ||, <. These constant round primitives are equivalent
to the corresponding “C” operators but work on shared secrets [2, 4].

• unbounded fan-in multiplications (e.g., [1]).

• SHUFFLE(a). Applies a secret random permutation on vector a [11].

• UNSHUFFLE(b). Applies on vector b the inverse of the secret permuta-
tion applied on vector a [11].

We now introduce the following primitives:

• y = a[x]. Reads in y the item at secret index x in the array a containing
N shared secrets.
Note that it could be implemented with arithmetic circuits using N equal-
ity tests, y =

∑N−1

i=0
((x == i) ∗ a[i]).

[9, 10] gave an efficient version for 2-party computations. We propose
next an algorithm for this operation in t rounds for computations with
threshold t.
We propose next an algorithm with less bits exchange and t rounds for
this operation.

• a[x] = y. Writes y at index x in the array of N shared secrets a.
Note that this primitive could also be implemented in constant number
of rounds with arithmetic circuits using N equality tests, a[i] = (x ==
i) ∗ (y − a[i]) + a[i], i = [0..(N − 1)].

We also describe a primitive for changing the moduli of the shares of a secret,
by passing throught shares in Z (see Section 4).

2 Accessing arrays at secret indices

As mentioned before, this can be done with other primitives in constant round,
but requiring N executions of the equality test operator in [4], and which requires
more bits exchanges than our methods.

2.1 Bit-based Access

A fast method we propose is based on bit decomposition and exponentiation
with secret index [4, 5]. It works for accessing arrays with size N < ℓ where
ℓ = log

2
(|F |). Given the shared secret index x for a vector of length N , first

compute
d0, d1, ..., dℓ = bits(EXP (2, [x]B))

2

by first running the bits algorithm [4] followed by the secret exponentiation
of [5], and followed again by the bits algorithm of [4].

Now one can do array read with

N∑

i=0

(di ∗ a[i]).

One can write y the array a at index x with

a[i] = a[i] + (y − a[i]) ∗ di, ∀i ∈ [0..N].

This version is much faster than the ones above since it needs only two
expensive bits primitives instead on N of them.

2.2 Mixnet-based secret index access

We show how to achieve the result in t rounds, where t is the number of supposed
trusted servers/participants. First, we assume that x ∈ [0..(N−1)] and is shared
among t participants using an additive sharing with shares either from the set
of integers Z or from ZN . Transformations from any sharing to a sharing of this
form was described in [8, 3], and a version is described in Section 4.

Read at secret index To perform the operation y = a[x] where a is an
array of N shared secrets, one can use a mixnet related to the one we proposed
in [11]. Each participant Aj encrypts his shares [a1]j , .., [aN]j of a using a
homomorphic encryption scheme Ej for which it holds the secret key and which
allows for applying addition in F on its plaintexts via some operation ⊘ on
ciphertexts [11]. All shares are then passed through a mixnet formed by the
t participants holding shares of x. Each Ai generates a vector z of N random
sharings of zero, and then for each input:

Ij,i = |Ej([a1]j), ..., Ej([aN]j)|

computes the output

Oj,i = |Ej([a1]j) ⊘ Ej([z1]j), ..., Ej([aN]j) ⊘ Ej([zN]j)| <<< [x]i

where [x]i is Ai’s share of x and “<<< [x]i” denotes rotational shift with [x]i
positions.

Ai can prove that he shifted the arrays and did not simply replaced them
with new arrays, by generating an interractive zero knowledge proof. The zero
knowledge proof is based on generating a set of K additional claims, consisting
of vectors obtained with different z and different shifts.

Cj,k = |Ej([a1]j) ⊘ Ej([z
k
1
]j), ..., Ej([aN]j) ⊘ Ej([z

k
N]j)| <<< sk, k = [1..K]

The verifiers specify a challenge bit ck for each k. For bits ck = 0, the prover
reveals sk and all shares of zk, showing that the claims C∗,k are a rotation of

3

the input. For bits ck = 1, the prover reveals sk − [x]i and all shares of z − zk,
showing that the claim is a rotation of the output.

At the end of the mix-net, the last agent in the chain broadcasts all encryptes
shares in O∗,t[1] and each participant decrypts its shares obtaining a[x].

In the case of MPCs based on homomorphic threshold encryption E, the
mixnet is run on ciphertexts (operations remain the same but without involving
shares):

Oi = |E(a1) ⊘ Ej(0), ..., E(aN) ⊘ Ej(0)| <<< [x]i

and the claims in the ZK proof are:

Ck = |E([a1]) ⊘ E([zk
1
]), ..., E([aN]) ⊘ E([zk

N])| <<< sk, k = [1..K]

Write at a secret index To perform the operation a[x] = y where a is
an array of N shared secrets, one can use a bidirectional mixnet related to
the one proposed in [11]. In Phase 1, each participant Aj encrypts his shares
[a1]j , .., [aN]j of a using a homomorphic encryption scheme Ej for which it holds
the secret key and which allows for applying addition in F on its plaintext via
some operation ⊘ on ciphertexts [11]. All shares are then passed through a
mixnet formed by the t participants holding shares of x. Each Ai generates a
vector z of N random sharings of zero, and then for each input:

Ii,j = |Ej([a1]j), ..., Ej([aN]j)|

computes the output

Oi,j = |Ej([a1]j) ⊘ Ej([z1]j), ..., Ej([aN]j) ⊘ Ej([zN]j)| <<< [x]i

where [x]i is Ai’s share of x and <<< [x]i denotes rotational shift with [x]i
positions towards the left.

At the end of the mix-net, the tth participant in the chain obtains as O∗,t[1]
the encrypted shares of a[x]. Now each participant Aj sends to At its share of
y encrypted with Ej , and At replaces Oj,t[1] with Ej([y]j).

In Phase 2, the mix-net is now run in the reverse direction with O∗,t as
input. Each Ai generates a vector z′ of N random sharings of zero, and then
for each input:

I ′j,i = |Ej([a1]j), ..., Ej([aN]j)|

computes the output

O′

j,i = |Ej([a1]j) ⊘ Ej([z
′

1
]j), ..., Ej([aN]j) ⊘ Ej([z

′

N]j)| >>> [x]i

where [x]i is Ai’s share of x and >>> [x]i denotes rotational shift with [x]i
positions towards the right. The result O′

∗,i is the result vector a.
Ai can prove that he shifted the arrays and did not simply replaced them

with new arrays, by generating an interractive zero knowledge proof. This
proof also shows that the rotation is with the same number of positions and in

4

the reverse direction as the first phase. The zero knowledge proof is based on
generating, besides a set of K claims for Phase 1 as at the previous technique:

Cj,k = |Ej([a1]j) ⊘ Ej([z
k
1
]j), ..., Ej([aN]j) ⊘ Ej([z

k
N]j)| <<< sk, k = [1..K]

a set of K additional claims, consisting of vectors obtained with different z′ and
the shifts of the corresponding claims of the first phase.

C′

j,k = |Ej([a1]k) ⊘ Ej([z
′k
1

]j), ..., Ej([aN]j) ⊘ Ej([z
′k
N]j)| >>> sk, k = [1..K]

The verifiers specify a challenge bit ck for each k in [1..K]. For bits ck = 0, the
prover reveals sk and all shares of z and z′k, showing that at both phases the
claims Cj,∗ and C′

j,∗ are a rotation of their inputs. For bits ck = 1, the prover

reveals sk− [x]i and all shares of z−zk and z′−z′k, showing that at both phases
the claims Cj,∗ and C′

j,∗ are rotations of the output.
At the end of the mix-net, the last agent in the chain broadcasts all encrypted

shares in O′

∗,t and each participant decrypts its shares obtaining the result vector
a.

As for the read operation, in the case of MPCs based on homomorphic
threshold encryption E, the mixnet is run on ciphertexts (operations remain
the same but without involving shares). At Phase 1:

Oi = |E(a1) ⊘ Ej(0), ..., E(aN) ⊘ Ej(0)| <<< [x]i

and the claims in the ZK proof are:

Ck = |E([a1]) ⊘ E([zk
1
]), ..., E([aN]) ⊘ E([zk

N])| <<< sk, k = [1..K]

at Phase 2:

O′

i = |E(a1) ⊘ Ej(0), ..., E(aN) ⊘ Ej(0)| >>> [x]i

and the claims in the ZK proof are:

C′

k = |E([a1]) ⊘ E([zk
1
]), ..., E([aN]) ⊘ E([zk

N])| >>> sk, k = [1..K]

A similar ZK proof as above is performed simultaneously with the claims of
both phases.

3 Analysis

The array read requires t+1 rounds in the passive attacker model (without
the ZK proofs which add Kt messages). The number of exchanged bits is
(t+1) ∗ t ∗ ℓ ∗ N = O(t2ℓN) for secret sharing and (t+1) ∗ ℓ ∗ N = O(tℓN) for
MPC with homomorphic threshold encryption when |F | = ℓ. The array write
requires two times this number of operations.

With the y =
∑N−1

i=0
((x == i) ∗ a[i]) implementation of array read, the

number of exchanged bits is O(N ∗ t2ℓlog(ℓ)) for secret sharing.

5

4 Changing moduli of a shared secret

Transformations between any sharings was described in [8, 3]. Here we describe
a method for transforming from a sharing with shares mod p to shares mod q

(via shares that are integers in Z).
Sometimes, it is necessary to take a number a which is currently in Zp and

switch it to Zq. This may be necessary for something as simple as trying to add
a with a number b which is currently Zq (but also for getting a representation
of indices that enables mixnets for accessing arrays as shown above).

As typically a sharing of a with shares mod p is denoted [a]p. To convert a
sharing [a]p to [a]q:

1. First generate a random number, r, on bits: [r1]
Z , [r2]

Z , ..., [rℓ]
Z where

0 ≤ [ri]
Z ≤ 1, 0 ≤ i ≤ ℓ, 0 ≤ r < p and ℓ is the number of bits necessary

to represent p.

2. calculate [r]Z = [r1]
Z ∗ 20 + [r2]

Z ∗ 21 + ... + [rℓ]
Z ∗ 2ℓ−1.

3. convert [r]Z to [r]p by the following formula [r]pi = [r]Zi mod(p).

4. calculate [b]p = [a]p − [r]p.

5. reveal b.

6. convert b to bits [b1]
Z , [b2]

Z , ..., [bℓ]
Z .

7. compute [ai]
Z = [bi]

Z + [ri]
Z .

8. if [ai]
Z > p then subtract p from a (as done in [4])

9. construct [a] by calculating: [a]Z = [a1]
Z ∗20 +[a2]

Z ∗21 + ..+[aℓ]
Z ∗2ℓ−1.

10. convert [a]Z to [a]q by [a]qi = [a]Zi mod(q).

Generating a random number r, 0 ≤ r < p, (p havig ℓ bits) is possible as in
step 1. Namely one generates ℓ random bits, that can be compared with a bit
representation of p as described in [4]. If the result is too large, then the process
is repeated. A sharing of r can then be obtained as in step 2.

References

[1] J. Bar-Ilan and D. Beaver. Non-cryptographic fault-tolerant computing in
a constant number of rounds interaction. In 8th ACM Symposium Annual

on Principles of Distributed Computing, pages 201–209, August 1989.

[2] M. Ben-Or, S. Goldwasser, and A. Widgerson. Completeness theorems for
non-cryptographic fault-tolerant distributed computating. In STOC, pages
1–10, 1988.

6

[3] R. Cramer, I. Damgøard, and J.B. Nielsen. Multiparty computation from
threshold homomorphic encryption. In BRICS RS-00-14, 2000.

[4] I. Damg̊ard, M. Fitzi, J. B. Nielsen, and T. Toft. How to split a shared
number into bits in constant round and unconditionally secure. Cryptology
ePrint Archive, Report 2005/140, 2005. http://eprint.iacr.org.

[5] Yevgeniy Dodis, Aleksandr Yampolskiy, and Moti Yung. Threshold and
proactive pseudo-random permutations. Cryptology ePrint Archive, Report
2006/017, 2006. http://eprint.iacr.org/.

[6] O. Goldreich. Foundations of Cryptography, volume 2. Cambridge, 2004.

[7] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game
— a completeness theorem for protocols with honest majority. In STOC,
pages 218–229, 1987.

[8] E. Kiltz. Unconditionally secure constant round multi-party computa-
tion for equality, comparison, bits and exponentiation. Cryptology ePrint
Archive, Report 2005/066, 2005. http://eprint.iacr.org.

[9] M. Naor and K. Nissim. Communication complexity and secure function
evaluation. In ECCC - Electronic Colloquium on Computational Complex-

ity, Report TR01-062, 2001.

[10] K. Nissim and R. Zivan. Secure discsp protocols - from centralized towards
distributed solutions. In DCR05 Workshop, 2005.

[11] M.-C. Silaghi. Zero-knowledge proofs for mix-nets of secret shares and
a version of ElGamal with modular homomorphism. Cryptology ePrint
Archive, Report 2005/079, 2005. http://eprint.iacr.org.

[12] A. Yao. Protocols for secure computations. In FOCS, pages 160–164, 1982.

7

