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1 Introduction and Preliminaries

A secret sharing scheme starts with a secret and then derives from it certain shares
(shadows). The secret may be recovered only in the case of possessing a certain pre-
determined set of shares. The initial applications of secret sharing were safeguarding
cryptographic keys and providing shared access to strategical resources. Threshold
cryptography (see, for example, [10]) and some e-voting schemes (see, for example,
[9]) are more recent applications of the secret sharing schemes.

In the first secret sharing schemes only the cardinality of the sets of shares was
important for recovering the secret. Such schemes have been referred to as thresh-
old secret sharing schemes. We mention Shamir’s threshold secret sharing scheme
[30] based on polynomial interpolation, Blakley’s geometric threshold secret shar-
ing scheme [5], Mignotte’s threshold secret sharing scheme [22] and Asmuth-Bloom
threshold secret sharing scheme [1], both based on the Chinese remainder theorem.
Ito, Saito, and Nishizeki [21], Benaloh and Leichter [3] give constructions for more
general secret sharing schemes.

This paper extends the threshold schemes based on the Chinese remainder theo-
rem in order to address more general access structures and presents some interesting
capabilities of these schemes like verifiability, secret sharing homomorphisms and
multiplicative properties.

The paper is organized as follows. The rest of this section is dedicated to some
preliminaries on number theory, focusing on the Chinese remainder theorem, and
secret sharing schemes. We survey the threshold secret sharing schemes based on the
Chinese remainder theorem in Section 2 and the general secret sharing techniques in



Section 3. In Section 4 we extend the threshold secret schemes based on the Chinese
remainder theorem to more general access structures. In the next section we discuss
aspects like verifiability, secret sharing homomorphisms, and multiplicative properties
of our schemes. Our conclusions are presented in the last section.

In the rest of this section we present first some basic facts on number theory. For
more details, the reader is referred to [8].

Let a,b € Z, b # 0. The quotient of integer division of a by b will be denoted by
a div b and the remainder will be denoted by a mod b. In the case a mod b = 0 we
will say that b is a divisor of a and denote this by bla.

Let ai,...,a, € Z, a3 + --- + a2 # 0. The greatest common divisor (gcd) of
ai,...,a, will be denoted by (a1, ..., a,). It is well-known that there exist a1, ..., a, €
Z that satisfy aja; + -+ + ana, = (a1, ..., ay) (the linear form of the ged).

Let ay,...,a, € Z such that aj ---a, # 0. The least common multiple (lem) of
ai,...,a, will be denoted by [aq, ..., a,]. For a given sequence of integers my, ..., my,
and for a set A € P({1,...,n})!, the least common multiple of the elements m;, for
i € A, will be also denoted by [A].

Z,, is the set {0,1,...,m — 1}, Z stands for the set {a € Z,|(a,m) = 1} and
¢(m) denotes the cardinality of the set Z} , for all m > 2.

Let a,b,m € Z. We say that a and b are congruent modulo m, and we use the
notation a = b mod m, if m|(a —b). It is easy to see that a mod b = a mod m, for any
a,b,m € Z such that m|b.

For an element a € Z},, the order of a modulo m, i.e., the least non-zero positive
integer k such that a* = 1 mod m will be denoted by ord,,(a). It is well-known that
the relation a* = a/ mod m is equivalent with i = j mod ord,,(a), for any integers i
and j. A primitive root modulo m is an element a € Z}, such that ord,,(a) = ¢(m).

The Chinese remainder theorem has many applications in computer science (see,
for example, [13]). We only mention its applications to the RS A decryption algorithm
as proposed by Quisquater and Couvreur [27], the discrete logarithm algorithm as
proposed by Pohlig and Hellman [26], and the algorithm for recovering the secret
in the Mignotte’s threshold secret sharing scheme [22] or in its generalization [19],
or in the Asmuth-Bloom threshold secret sharing scheme [1]. Several versions of the
Chinese remainder theorem have been proposed. The next one is called the general
Chinese remainder theorem [24]:

Theorem 1. Letk > 2, m1,...,mi > 2, and by, ..., by € Z. The system of equations

x = by mod my

T = b, mod my,

has solutions in Z if and only if b; = b; mod (m;, m;) for all 1 <4, j < k. Moreover,
if the above system of equations has solutions in Z, then it has an unique solution in

Z[ml,...,mk}'

L P({1,2,...,n}) is the set of all subsets of the set {1,2,...,n}



When (m;,m;) = 1, for all 1 < i < j < k, one gets the standard version of the
Chinese remainder theorem. Garner [17] found an efficient algorithm for this case
and Fraenkel [16] extended it to the general case.

We present next some basic facts about secret sharing schemes. Let n be an
integer, n > 2 and A C P({1,2,...,n}). Informally, an A-secret sharing scheme is a
method of generating (S, (I1,...,I,)) such that

— for any A € A, the problem of finding the element S, given the set {I; | i € A} is
” easy” ;

— for any A € P({1,2,...,n})\ A, the problem of finding the element S, given the
set {I; | i € A} is intractable.

The set A will be referred to as the authorized access structure or simply as the
access structure, S will be referred to as the secret and I, ..., I, will be referred to
as the shares (or the shadows) of S. The elements of the set A will be referred to as
the authorized access sets of the scheme.

A natural® condition is that an access structure A is monotone, i.e.,

(VB e P({1,2,....n}))(3A€ A)(AC B) = B € A)

Any monotone access structure A is well specified by the set of the minimal authorized
access sets, i.e., the set Ap;, = {4 € A|(VB € A\ {A})(-B C A)}. Also, the
unauthorized access structure A, A = P({1,2,...,n}) \ A, is well specified by the
set of the maximal unauthorized access sets, i.e., the set A, = {A € A|(VB €
A\ {A})(~4 C B)}.

In our paper we consider only monotone access structures 4 that also satisfy the
condition (Vi € {1,2,...,n})(3A € Apin : @ € A) because, in case there is an ¢ such
that the mentioned property does not hold, we may consider the set {1,2,...,n}\{i}.
In this case, n will be referred to as the size of the access structure.

An important particular class of secret sharing schemes is that of the threshold
secret sharing schemes. In these schemes, only the cardinality of the sets of shares
is important for recovering the secret. More exactly, if the required threshold is k,
1 < k < n, the minimal access structure is An;n = {A € P({1,2,...,n}) | |4| =k}.
In this case, an A-secret sharing scheme will be referred to as a (k, n)-threshold secret
sharing scheme.

2 Threshold Secret Sharing Schemes Based on the Chinese
Remainder Theorem

We briefly present next the most important threshold secret sharing schemes based
on the Chinese remainder theorem.

2 There are papers (see, for example, [4] or [6]) that consider non-monotone access structures. More
exactly, in these schemes, there are positive and negative shares which lead to veto capabilities.
As Obana and Kurosawa have remarked in [23], the simplest solution for the veto feature is that
the opposing participants give a special ”veto” share in the secret reconstruction phase, leading
to an incorrect secret.



2.1 Mignotte’s Threshold Secret Sharing scheme

Mignotte’s threshold secret sharing scheme [22] uses special sequences of integers,
referred to as the Mignotte sequences.

Definition 1. Let n be an integer, n > 2, and 2 < k < n. An (k,n)-Mignotte
sequence is a sequence of positive integers m; < --- < my, such that (m;, m;) = 1, for
all1 <1< j<n,and my_gyo---my < mq---mg.

Given an (k,n)-Mignotte sequence, the scheme works as follows:

— The secret S is chosen as a random integer such that 8 < S < «, where a =
M-y and B = my_jya - my;
— The shares I; are chosen by I; = S mod m;, for all 1 <i < mn;

— Given k distinct shares I;,, ..., I;,, the secret S is recovered using the standard
Chinese remainder theorem, as the unique solution modulo m;, ---m;, of the
system

x = I;; mod my,

x = I;, mod my,

A generalization of Mignotte’s scheme by allowing modules that are not neces-
sarily pairwise coprime was proposed in [19], by introducing generalized Mignotte
sequences.

Definition 2. Let n be an integer, n > 2, and 2 < k < n. A generalized (k,n)-
Mignotte sequence is a sequence my, ..., m, of positive integers such that

max1§i1<...<ik71§n([{i1, . ,’L'kfl}]) < min1§i1<,..<ik§n([{i1, e ,Zk}])

It is easy to see that every (k,n)-Mignotte sequence is a generalized (k,n)-
Mignotte sequence. Moreover, if we multiply every element of an (k,n)-Mignotte
sequence by a fixed element § € Z, (§, my ---m,,) = 1, we obtain a generalized (k,n)-
Mignotte sequence. Generalized Mignotte’s scheme works like Mignotte’s scheme,
with o = min1§i1<...<ik§n([{i1, ey Zk}]) and ﬁ = max1§i1<...<ik_1§n([{i1, ce ,Z'kfl}]).
Moreover, in this case, the general Chinese remainder theorem must be used for re-
covering the secret.

2.2 Asmuth-Bloom Threshold Secret Sharing Scheme

This scheme, proposed by Asmuth and Bloom in [1], uses special sequences of integers.
More exactly, a sequence of pairwise coprime positive integers r,m; < --- < my, is
chosen such that r - my_gyo---my < mq---my.

Given such a sequence, the scheme works as follows:



— The secret S is chosen as a random element of the set Z,;

— The shares I; are chosen by I; = (S + v - 7) mod m;, for all 1 <i < n, where 7 is
an arbitrary integer such that S+ -7 € Z,,,..m,

— Given k distinct shares I;,, ..., I;, , the secret S can be obtained as S = xo mod 7,
where xg is obtained, using the standard Chinese remainder theorem, as the
unique solution modulo m;, - --m;, of the system

x = I;; mod my,

x = I;, mod my,

The sequences used in the Asmuth-Bloom scheme can be generalized by allowing
modules that are not necessarily pairwise coprime in an obvious manner. We can use
any sequence r,mi,- -, M, such that

r- max1§i1<...<ik71§n([{i1, ey ikfl}]) < min1§i1<...<ik§n([{i1, e ,’Lk}])

It is easy to see that if we multiply every element of an ordinary Asmuth-Bloom
sequence excepting r with a fixed element 6 € Z, (§,m;1---my) = 1, we obtain a
generalized Asmuth-Bloom sequence.

The application of the Chinese remainder theorem in threshold secret sharing has
been also discussed in [18] and a unitary point of view on the security of the threshold
secret sharing schemes based on the Chinese remainder theorem was presented in
[28]. Although the threshold secret sharing schemes based on the Chinese remainder
theorem are not perfect?, by choosing carefully the parameters, these schemes can

security
lead to a reasonable factor Si76 of shates -

3 General Secret Sharing Schemes

There are situations which require more complex access structures than the threshold
ones. Shamir [30] discussed the case of sharing a secret between the executives of a
company such that the secret can be recovered by any three executives, or by any
executive and any vice-president, or by the president alone. This is an example of
the so-called hierarchical secret sharing schemes. The Shamir’s solution for this case
is based on an ordinary (3, m)-threshold secret sharing scheme. Thus, the president
receives three shares, each vice-president receives two shares and, finally, every simple
executive receives a single share.

The above idea leads to the so-called weighted (or multiple shares based) threshold
secret sharing schemes. In these schemes, the shares are pairwise disjoint? sets of

3 In a perfect secret sharing scheme, the shares of any unauthorized group give no information (in
information-theoretical sense) about the secret.

4 In the sense that, if the shadows of the used threshold secret sharing scheme are s, ..., S, and
the shadows of the weighted threshold secret sharing scheme are I; = {s;|j € M}, for some
M; C{1,2,....m},1<i<n,then M;NM;=0forall 1 <j#I1<n.



shares provided by an ordinary threshold secret sharing scheme. Benaloh and Leichter
have proven in [3] that there are access structures that can not be realized using such
schemes. We present next their example that proves this.

Ezample 1. Let n = 4 and Ap,in = {{1,2}, {3,4}}. Suppose that this access structure
can be realized using a weighted threshold secret sharing scheme based on an ordinary
threshold secret sharing scheme with threshold &, and let a, b, ¢ and, respectively, d
be the numbers of shares used. So, a+b > k and c¢+d > k. If we sum these inequalities
we obtain a + b+ ¢ + d > 2k, and, further, 2 - maxz(a,b) + 2 - maz(c,d) > 2k which
leads to maz(a, b) +maz(c,d) > k. Thus, one of the sets {1,3}, {1,4}, {2,3} or {2,4}
is an authorized access set!

We present next the most important general secret sharing techniques.

3.1 Ito-Saito-Nishizeki Scheme

Ito, Saito, and Nishizeki [21] have introduced the so-called cumulative array technique
for monotone access structures.

Definition 3. Let A be a monotone authorized access structure of size n and let
Bi,..., B, be the corresponding maximal unauthorized access sets. The cumula-
tive array for the access structure A, denoted by C#, is the n x m matrix, C* =
(C;‘:]) 1<i<n Where
1<j<m

CA _ 0, ifie B
BT\ 1, if i ¢ B;
foralll <i<nand 1<j<m.

Let consider now an arbitrary (m,m)-threshold secret sharing scheme with the
secret S and the corresponding shadows s1, ..., Sy,. In the A-secret sharing scheme,
the shadows Iy, ..., I, corresponding to the secret S will be defined as

I = {s;|C;} = 1},
forall 1 <i<n.

Ezxample 2. Let n = 4 and A = {{1,2},{3,4}}. In this case, we obtain that
Aaz = {{1,3},{1,4},{2,3},{2,4}} and m = 4. The cumulative array for the access

structure A is CA = . In this case, I} = {s3, 54}, Io = {s1,52}, I3 = {s2,54}

M
=O~O
O+ HO

1
0
0
1

OO

and Iy = {s1,s3}, where s1, s2, 3,54 are the shadows of a (4,4)-threshold secret
sharing scheme with the secret S.



3.2 Benaloh-Leichter Scheme

Benaloh and Leichter [3] have represented the access structures using formulae. More
exactly, for a monotone authorized access structure A of size n, they defined the set
F4 as the set of formulae on a set of variables {vi,ve,...,v,} such that for every
F € F 4, the interpretation of F' with respect to an assignation of the variables is true
if and only if the true variables correspond to a set A € A. They have remarked that
such formulae can be used as templates for describing how a secret can be shared
with respect to the given access structure. Because the formulae can be expressed
using only A operators and V operators, it is sufficient to indicate how to ”split” the
secret across these operators.

Thus, we can inductively define the shares of a secret S with respect to a formulae
F as follows

(S,1), if F=uv;,1<i<n;
Shares(S, F) = { UF_ Shares(S, F;), if F=FVIEFyV---V Fy;
UF_Shares(s;, F;), if F=FAFyA--- A Fy,

where, for the case F' = Fy A Fo A --- A\ Fi, we can use any (k, k)-threshold secret
sharing scheme for deriving some shares s1, ..., s; corresponding to the secret S and,
finally, the shares as I; = {s|(s,i) € Shares(S, F)}, for all 1 < i < n, where F is an
arbitrary formula in the set F4.

Example 3. Let n = 3 and an authorized access structure A given by A =
{{1,2},{2,3}}. For example, the formula

F = (1}1 VAN UQ) vV (1}2 N 7)3)
is in the set F 4. In this case Shares(S, F), for some secret S, can be obtained as

Shares(S, F') = Shares(S,v1 A va) U Shares(S, vy A v3)
= Shares(si,v1) U Shares(sa 1,v2) U Shares(sz2,v2) U Shares(ss, v3)
- {(Slv 1)7 (82,17 2)7 (82,27 2)7 (837 3)}7

where s1, 52,1 and, respectively, s2 2,53 are shadows of the secret S with respect to
two arbitrary (2, 2)-threshold secret schemes. Thus, the shares corresponding to the
secret S with respect to the access structure A are I} = {s1}, Io = {521,522} and

12 = {83}.

Remark 1. A shadow I; may contain many sub-shadows, one sub-shadow for every
minimal access set to which ¢ belongs. Thus, an ordering of these sub-shadows is
required in order to select the correct sub-shadow corresponding to a certain access
set in the reconstruction phase.



Remark 2. Benaloh and Leichter also proposed using general thresholdy , operators®
in order to construct smaller formulae, reducing in this way the size of the shadows.
In this case, the definition of Shares(S,F) can be extended for these operators as

follows:
Shares(S, F) = U~ Shares(s;, F;),
if F' = thresholdy ,,(F1, ..., Fy), where s1,..., sy, are the shadows corresponding

to the secret S with respect to an arbitrary (k, m)-threshold secret sharing scheme.

Example 4. Let n = 4 and a monotone authorized access structure A given by Ain =
{{2,3},{1,2,4},{1,3,4}}. For example, the formula

FZ(1}2/\’1)3)\/(1}1/\’1}2/\’[)4)\/(1}1/\’1)3/\1)4)

is in the set F 4. Using the threshold operator, we can obtain a shorter formula,
namely, (va A v3) V thresholds 4(v1, v, v3,v4).

4 General Secret Sharing Based on the Chinese Remainder
Theorem

We indicate how we can extend the threshold secret schemes based on the Chinese
remainder theorem to more general access structures. For simplicity, we only deal
with the Mignotte’s scheme, but we must mention that this extension technique can
be also applied to Asmuth-Bloom scheme. We first extend the (generalized) threshold
Mignotte sequences in a natural manner.

Definition 4. Let n be a positive integer, n > 2 and A an authorized access struc-
ture. An A-Mignotte sequence is a sequence myq, . .., m, of positive integers such that

maz 4 4([A]) < minaea([A])

Remark 3. The above property is equivalent with

maz 4oz ([A]) < minaea,,, ([A])

Remark 4. If A is specified by A = {A € P({1,2,...,n}) | |A| = k} then any
A-Mignotte sequence is a generalized (k,n)-Mignotte sequence in sense of Definition
2. Moreover, for the same access structure, any ordered A-Mignotte sequence with
pairwise coprime elements is a (k,n)-Mignotte sequence in sense of Definition 1.

5 For m > 1,1 < k < m, thresholdy m(F1,..., ) denotes the formula
k
Vo AR
1<i) <ig<--<ip<m j=1

r,[‘hllS7 Vv FV -V F, = thresholdl,m(Fl,...,Fm) and It AN Fo A --- NF,, =
threshold,, m (F1, ..., Fn).



Ezample 5. Let A = {{1},{1,2},{1,3},{2,3},{1,2,3}}. In this case we have that
Amin = {{1},{2,3}}, A= {0,{2},{3}} and Aiaz = {{2}, {3}}. The sequence 18,3, 5

is an A-Mignotte sequence because 5 = max({mz, ms}) < min({mq, [ma, ms]}) = 15.

These sequences can be used for constructing secret sharing schemes for more
general access structures in an obvious way. More exactly, having an A-Mignotte
sequence, we may construct an A-Mignotte secret sharing scheme as follows:

— the secret S is an arbitrary integer in the interval [ + 1,a — 1], where a =

MinAe A, ([A]), B =maz, 7 ([A]);
— the shares Iy, ..., I, are chosen as follows: I; = .5 mod m;, for all 1 <i < n.

Having a set of shares {I; | i € A} with A € A, the secret S can be obtained as
the unique solution modulo [A] of the system of equations

{wz]imodmi,ieA

Indeed, the secret S is the unique solution modulo [A] of the above system of equations
because S is an integer solution of the system by the choice of the shares Iy,..., I,
and, moreover, S € Zy), by the choice of the secret S (S < a and o = minae a([A])).

Having a set of shares {I; | i € A} with A € A the only information we can obtain
by finding the unique solution zg in Z4) of the system of equations

{xz[imodmi,ieA

is that S = z9 mod [A]. Indeed, the secret S is not the unique solution modulo [A] of
the above system of equations because S ¢ Z4), by the choice of the secret S (S>p
and 8 = maz 4.%([A])). Choosing .A-Mignotte sequences with a large factor O‘Tgﬂ, the
problem of finding the secret S, knowing that S is in the interval [ + 1, — 1] and
S = xp mod [A], for some unauthorized access set A, is intractable.

Ezample 6. (with artificial small parameters) Let A, = {{1},{2,3}}. We use the
sequence from Example 5. Thus, the secret S will be generated in the interval [5, 15].
For example, we consider S = 13. The shares will be I; = S mod m; = 13, I =
S mod me =1 and I3 = S mod m3 = 3. The sets {1} or {I3, I3} will lead to the secret
S, but the set {I3} will lead only to S =1 mod 3.

Remark 5. 1t is interesting to see that some access structures can not be realized using
sequences of pairwise coprime numbers and, thus, the general Chinese remainder
theorem must be used. For example, for the access structure A given by Anin =
{{1,2},{3,4}}, there is no A-Mignotte sequence with pairwise coprime elements,
because, otherwise, the condition

max([m1, ms], [m1, ma], [me, ms], [ma, m4]) < min([my, ma], [ms, ma))

will lead to mims < mymeo and momy < mgmy and, thus, to mz < mg and mg < mg!
The sequence 6,35, 10,21 is an A-Mignotte sequence. In general, if a,b,c,d > 2
are pairwise coprime, the sequence ab, cd, ac, bd is an A-Mignotte sequence.



5 Capabilities of the Presented Scheme

In this section we discuss some interesting aspects of the proposed scheme like veri-
fiability, secret sharing homomorphisms and multiplicative properties. These notions
have been introduced for the threshold secret sharing schemes, but they can be ex-
tended to the general case in a natural manner. Moreover, we shall also show how to
use these properties in electronic voting or in threshold cryptography.

5.1 Verifiability

In practice, the secret and the shares are generated by an administrator (or dealer)
which must be a mutually trusted party. Afterwards, the administrator securely dis-
tributes the shares to the users. The wverifiable secret sharing schemes (see, for ex-
ample, [7], [15], [25]) can detect, with some probability, a dishonest behavior of the
administrator or of some users in the reconstructing phase. This feature is very im-
portant, for example, in e-voting protocols based on secret sharing schemes.

In our case, we shall use that, if I1,..., I, represent correct shares of a secret
S, then S = I; mod m;, for all 1 < ¢ < n. Such a congruence is equivalent with
af = ozili mod p;, for any positive integer p; and any element «; € Zj of order m;
(m; must be a divisor of ¢(p;)).

The administrator makes public the values (p;, a;, ag;), where ag; = af mod p;,
for all 1 <+4¢ < n, and sends securely I, ..., I, to users.

The it" user, after receiving I;, can verify that his share is correct by computing
ozz-li mod p; and comparing the result with ag;. Moreover, the integrity of the shares
is also assured. The security of this new feature of our secret sharing scheme is based
on the intractability of the discrete logarithm problem.

5.2 Secret Sharing Homomorphisms
Benaloh introduced the notion of secret sharing homomorphisms in [2].

Definition 5. Let Dgeerer and Dgperes be the set of possible secrets and, respec-
tively, the set of possible shares. Consider two binary operations @& and ® over
Dgecret and, respectively, Dgpares- We say that an A-secret sharing scheme is (@, ®) —
homomorphic if for any S1,S2 € Dseerer With the corresponding shares (I7,...,I}),
and respectively, (IZ,...,12), the shares (I1 ®I%, ..., I} ®12) correspond to the secret
S1 @ Ss.

Our secret sharing scheme provides some partial secret sharing homomorphisms
in the following sense. Consider Dgecrer = {8+ 1,...,a — 1}, Dspares = Z and a
binary operation ® € {+, —, -} over Z. The extended Mignotte secret sharing scheme
is partially (®,®) — homomorphic, in the sense that, for any S1,S2 € Dgeerer With
the corresponding shares (I{,...,Il), respectively, (IZ,...,I2), the shares® (Ii ©

rtn

5 In the extended Mignotte scheme, the shares are chosen as I; = S mod m;, for 1 < i < n, but any
integers I; with I; = (S mod m;) mod m;, for 1 <i < n, will work.

10



I%,...,I}L ® 1721) correspond to the secret S7 ® So, providing that 51 ©® Sy €
Dgecret- Moreover, if S is a secret with the corresponding shares (Iy,...,1,) and f
is a polynomial function with integer coefficients such that f(S) € Dsecrer then the
shares (f([1),..., f(I,)) correspond to the secret f(S). All these properties result
from the corresponding properties of the congruences.

An E-voting Scheme

We propose an e-voting scheme based on these properties, following an idea from
[2]. More exactly, we address to the case of yes/no e-voting. Any voting server deals
with a group of at most m voters and each server is divided in n subservers, for
some n > 2. The central voting server decides on an authorized access structure A
of size n and generates an A-Mignotte sequence with a large factor aTgﬁ A secret
value valueys € {#+1,...,a — 1} is assigned to a yes vote and a secret value
valuen, € {f+1,...,a — 1} is assigned to a no vote.

Each voter securely obtains the secret valueyes or valuey, corresponding to his yes
or no vote using any oblivious transfer technique and distributes the corresponding
shares to the n subservers. Each subserver can verify the consistency of the received
share using the technique described in Section 5.1. Each subserver computes the sum
of the incoming shares and, at the end of voting, sends the result to the central vot-
ing server. By the partial (+, +)-homomorphism property of the extended Mignotte
secret sharing scheme, the sums of shares are shares of the sum of the secrets. The
values valueyes and value,, must satisfy m - max(valueyes,valuem) < «. Thus, the
central voting server can obtain the final sum by using the sums of shares from any
trusted authorized subservers.

Moreover, if the values valueyes and valuey,, satisfy m - valueyes < value,,, then
the correct numbers of yes and no votes can be obtained as the unique solutions of
the equation valueyes - * + valuey, - y = final_sum, or, more exactly, as follows:
number_votes_no = final_sum div valuey,,
number_votes_yes = (final_sum mod valuen,) div valueyes.

5.3 Multiplicative Aspects

The multiplicative threshold secret sharing schemes were introduced in [11]. We
present here a slight modification of the definition given in the mentioned paper.

Definition 6. Let Dg...e; be the set of possible secrets, Dgpqares be the set of possible
shares and consider an associative and commutative binary operation ® over Dgeeret-
We say that an A-secret sharing scheme is multiplicative with respect to @ if for any
set A € A there is a family of public functions (f; 4)|i € A) from Dpares t0 Dsecret
such that

S = Oieafi,a) i)

This property of secret sharing schemes can be used in designing threshold cryp-
tographic primitives. We show that the extended Mignotte secret sharing scheme can

11



be used for this purpose. More exactly, we indicate how our secret sharing scheme
can be combined with ElGamal decryption in order to obtain threshold decryption.
Our proposal follows an idea from [12].

We shall first present the ElGamal public-key cryptosystem [14]. The public key
is (p, a, B) where p is a large prime, « is a primitive root modulo p, # = a® mod p and
a € Zy,_ is the private key. A message x € Z, is encrypted by a pair (v,d) where
y=comodp, d =z-3 mod pand! € Z,_1 is a parameter chosen by the sender. The
legal receiver can obtain the message x by computing v~ - § mod p.

The administrator decides on an authorized access structure A of size n, for some
n > 2, and generates an A-Mignotte sequence with a large factor O‘Tgﬂ such that
0 < a < a. The private key a will be the secret and the shares I,...,I, will be
securely distributed to the users Uy,...,U,. Consider now an authorized access set
A. Using the Ore’s construction [24] for obtaining the solution of the corresponding
system of modular equations (see also [19]), the secret a can be expressed as

a = Z f(,;’A)(IZ-) mod [A],
€A
where the function f(; 1) : Z — Z is given by f(; 4)(%) = A a)1(,4)T With
- AG,A) = % (remark that these numbers are coprime);
- the numbers p(; 1) are arbitrary integers that satisfy

Z A, A A = 1,
€A

for all 1 € A.
We return to the decryption operation for ElGamal cryptosystem. Suppose that

a group of users {U; | i € A}, for some authorized access set A, want to decrypt a
message (,0). If they individually compute the elements

v = ,yf(i,A)(Ii) mod p,

then
H i mod p = ’yZiEA Faa) () pog p
€A
On the other hand,
~% mod p = fyzieA fii,.a)(Ti) mod [A] mod p

Thus, if the access set A additionally satisfies the condition

z fa,a) i) = (Z fii,4)(1;) mod [A]) mod ordy ()

€A i€A

(for example, we may have (p—1)|[A] which leads, using ordy(y)|(p—1), to ord,(v)|[A])
then v* mod p can be obtained as [[;c 47 mod p, and the message x can be finally

12



obtained as (y* mod p)~! -6 mod p. If p and A are chosen such that (p — 1)|[A], for
all A € A, then the decryption can be carried on by any authorized group of users.

In [20] we have combined the threshold secret sharing schemes based on the
general Chinese remainder theorem with the RSA cryptosystem [29] in order to get
threshold decryption or signature generation. This technique can be extended to more
general access structures in an obvious manner.

6 Conclusions

We have extended the threshold secret schemes based on the Chinese remainder
theorem in order to address more general access structures. We have also shown that
some access structures can not be realized using only sequences of pairwise coprime
numbers and, thus, the general Chinese remainder theorem must be used. We have
further presented some interesting aspects of these schemes like verifiability, secret
sharing homomorphisms and multiplicative properties and we have also showed how
to exploit these properties in e-voting or in threshold cryptography.

An interesting open problem is to characterize the access structures that can be

realized using the proposed schemes. Another interesting problem is the problem to

efficiently generate extended Mignotte sequences with a large factor O“%ﬁ We shall

consider these problems in our future work.
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