Generalizations of the Karatsuba Algorithm for Efficient
Implementations

André Weimerskirch and Christof Paar

Communication Security Group
Department of Electrical Engineering & Information Sciences
Ruhr-Universitdt Bochum, Germany
email: {weika, cpaar}@crypto.rub.de

Abstract

In this work we generalize the classical Karatsuba Algorithm (KA) for polynomial multiplica-
tion to (i) polynomials of arbitrary degree and (ii) recursive use. We determine exact complexity
expressions for the KA and focus on how to use it with the least number of operations. We
develop a rule for the optimum order of steps if the KA is used recursively. We show how the
usage of dummy coefficients may improve performance. Finally we provide detailed information
on how to use the KA with least cost, and also provide tables that describe the best possible
usage of the KA for polynomials up to a degree of 127. Our results are especially useful for
efficient implementations of cryptographic and coding schemes over fixed-size fields like GF(p™).

Keywords: polynomial multiplication, Karatsuba Algorithm, finite fields,
cryptography, coding theory

1 Introduction

Multiplying two polynomials efficiently is an important issue in a variety of applications, including
signal processing, cryptography and coding theory. The present paper provides a generalization
and detailed analysis of the algorithm by Karatsuba [2] to multiply two polynomials which was
introduced in 1962. The Karatsuba Algorithm (KA) saves coefficient multiplications at the cost of
extra additions compared to the schoolbook or ordinary multiplication method. We consider the
KA to be efficient if the total cost of using it is less than the cost of the ordinary method. If we
assume that we know the cost ratio between one multiplication and one addition we can decide
which method is more efficient.

In order to simplify the problem we assume that the maximum degree of the two polynomials
which are multiplied is identical. Knuth [3] gives a brief introduction on how to multiply polyno-
mials in a fast way. He demonstrates an algorithm very similar to the KA which he calls “digital
method”, and achieves a complexity of O(n2V 2logn 1o n) for very large polynomials. Another well
known fast approach for polynomial multiplication is the Fast Fourier Transform (FFT). A theo-
retical upper bound for very large numbers can be shown as O(nlognloglogn). A comprehensive
survey of different methods to multiply polynomials was given by Bernstein [1]. Assuming that the
polynomials represent elements of a Galois Field GF(p™) we could use the KA to multiply two ele-
ments of the finite field and reduce the resulting polynomial afterwards. Another approach is shown

by Lempel, Seroussi and Winograd in [4] and by Winograd in [7]. They demonstrate algorithms
which perform a modular multiplication and derive asymptotical lower bounds for these.

While many algorithms have lower asymptotic complexity than the KA the later one shows
better performance for polynomials of small degree as they are used in many applications. In this
paper we show in detail how to use the KA in an efficient way, both iteratively and recursively. We
provide methods and tables to ease this task, and give a detailed count of the numbers of elementary
additions and multiplications needed. We also show that for many polynomials using the KA needs
less multiplications and additions than the schoolbook method. The work is organized as follows.
Section 2 introduces the KA. Section 3 extends the KA for polynomials of arbitrary degree in one
iteration, and Section 4 enhances the KA to recursive use. Section 5 describes the complexity of
the KA when using it for squaring. Section 6 improves the KA by using dummy coefficients, and
Section 7 provides the conclusion.

2 Preliminaries: Karatsuba Algorithm

Let R be a ring. Let A(z) and B(z) be degree-d polynomials over R. The Karatsuba Algorithm
(KA) describes a method to multiply two polynomials with coefficients in R. There are two ways
to derive the KA: the Chinese Remainder Theorem [1] and simple algebraic transformations. The
KA can easily be applied recursively for polynomials which have 2! coefficients. But first we show
an example of the schoolbook method.

2.1 Schoolbook Method

The usual way to multiply two polynomials is often called the schoolbook method. Consider two
degree-d polynomials with n = d 4 1 coefficients:

Then the product C(x) = A(z) B(x) is calculated as

d d d .
C(x) = Z " - Z asby | = Z Z aibjmz‘” (1)
j s+t=i;s,t>0 i=0 j=0

The polynomial C(z) can be obtained with n? multiplications and (n — 1)? additions.

2.2 KA for Degree-1 Polynomials

The KA for degree-1 polynomials was introduced by Karatsuba in [2]. We will now develop the
KA through simple algebraic manipulations. Consider two degree-1 polynomials A(z) and B(zx).

A(z) = a1z + ag, B(x) = bix + by
Let Dg, D1, Do, be auxiliary variables with
Dy = apby, D1 =a1bi, Doy = (ap +a1) (bp+ b1)
Then the polynomial C'(z) = A(z) B(z) can be calculated in the following way:

C(iﬁ) = Dll‘Q + (DO,l — Dy — Dl)l’ + Dy

We need four additions and three multiplications to compute C(z). Using the schoolbook method
we need four multiplications and one addition, thus we save one multiplication and need three extra
additions.

For application in practice, e.g., multi-precision multiplication we are interested in the particular
value of the ratio between the cost of one multiplication and one addition for which the KA is
efficient. Let r be the ratio between the cost of one multiplication and one addition on a specific
implementation platform. Then r = t,,/t, where t,, and t, denote the cost of one multiplication
and one addition, respectively. The cost for the schoolbook method cs; can be calculated as ¢; =
1ty + 4t,,. The cost of the KA can be similarly obtained as ¢ = 4t, + 3t,,. We want to know
the ratio r when the cost of the KA is less than for the schoolbook method. Therefore we obtain
cp < cs & 4ty + 3ty < 1ty + 4t < 3 < r. If the ratio between the cost of one multiplication and
one addition is greater than three it is more efficient to use the KA.

2.3 Recursive KA for Polynomials of Degree 2¢ — 1

The KA can be applied in a recursive way as shown in Algorithm 1. This is straightforward for
polynomials whose number of coefficients n is a power of 2. To apply the algorithm both polynomials
are split into a lower and an upper half.

Alz) = Au(z)a™? + Ayz), B(z) = Bu(z)z"? + By(z)

These halfs are used as before, i.e., as if they were coefficients. The algorithm becomes recursive
if it is applied again to multiply these polynomial halfs. The next iteration step splits these
polynomials again in half. The algorithm eventually terminates after ¢ steps. In the final step
the polynomials degenerate into single coefficients. Since every step exactly halves the number
of coefficients, the algorithm terminates after ¢ = logyn steps. Let #MUL and #ADD be the
number of multiplications and additions in the underlying ring. Then the complexity to multiply
two polynomials with n coefficients is as follows [6]:

#MUL = nlos23
#ADD < 6n'°823 — 8n 42

Algorithm 1 Recursive KA, C = KA(A, B)
INPUT: Polynomials A(x) and B(x)
OUTPUT: C(z) = A(z) B(x)

N = maz(degree(A), degree(B)) + 1

if N==1return A-B

Let A(z) = Ay(z) 2V/2 + A(x)

and B(z) = By(z) 2™V/? + Bj(z)

Do = KA(A, By)

D1 = KA(Ay, By)

Dy = KA(A; + Ay, B+ By)

return Dz + (Do 1 — Doy — D1)zN/?2 + Dy

3 One-Iteration KA for Polynomials of Arbitrary Degree

As mentioned above it is straightforward to apply the KA to polynomials which have 2¢, i positive
integer, coefficients (if 7 > 1, we apply the KA recursively). However, it is not obvious how to apply

the KA to polynomials with a number of coefficients which has the form 27 n, with j a non-negative
integer and n an odd integer, n > 1. Even though the original trick can be applied j times, the
problem of multiplying polynomials with n coefficients remains. In particular if j = 0, i.e., if the
number of coefficients is odd, the classical KA cannot be applied in a straight forward manner. We
start by giving a simple example. Then a general algorithm is provided, followed by a complexity
analysis.

3.1 KA for Degree-2 Polynomials

Consider two degree-2 polynomials:
A(x) = agax® + a1z + ag, B(x) = box® + by + by
with the auxiliary variables

Dy = apby, D1 = aiby, Dy = asby
Do1 = (ap+a1)(bo+0b1), Do2 = (ap+ az)(bo + b2), D12 = (a1 + az)(bi + b2)

C(z) = A(z) B(z) is computed with an extended version of the KA
C(x) = D2$4 + (DLQ — Dy — DQ){L‘3 + <D0’2 — Dy — Dy + D1)$2 + (DO,I — Dy — Do)x + Dy

We need 13 additions and 6 multiplications. Using the schoolbook method we needs 4 additions
and 9 multiplications. Let us take a look at the ratio r. We obtain ¢ < ¢s & 13t, + 6t,, <
4ty + 9ty & 3 < r. If r > 3 it is more efficient to use the KA for degree-2 polynomials.

3.2 KA for Polynomials of Arbitrary Degree

The following algorithm describes a method to multiply two arbitrary polynomials with n coeffi-
cients using a one-iteration KA.

Algorithm 2 Consider two degree-d polynomials with n = d + 1 coefficients

Compute for eachi=0,...,n—1

Dz‘ = aibi (2)
Calculate for eachi=1,...,2n — 3 and for all s and t with s+t =14 andt>s>0
Dyt = (as+ ar) (bs +by) (3)

Then C(x) = A(x) B(z) = 7% cix’ can be computed as

co = Dy (4)
Com—2 = Dp (5)
o — Posttmist>s>0 Dst — Zsimimst>s>0 (Ds + Dt) for odd i, 0 <i <2n—2 (6)
7 — . .
Dosttmitss>0 Dst = Dsiimimst>s>0 (Ds + Di) + Dy o for even i, 0 <i < 2n — 2

Correctness of the algorithm First we prove (6) for odd ¢ and then for even i. Using (1) we

obtain
= > ash
s+t=i;5,t>0

Now consider some D,;. Each D, is calculated as (as + at) (bs + b) = asbs + asby + arbs + arby
with s+t=4dand t > s > 0. The sum Zj D, consists of all combinations of coefficients asb; with
s+t=1dand s #t, and all asbs; and a;b; where s,t are summands of ¢ = s +t. We must subtract
all of the latter products, which were denoted by Ds.

> Dai= > (asbs+ash+abs +aby) = D (ash+abs) + Y (ashs + asby)
i s+t=1;t>5>0 s+t=i;t>5>0 s+t=1;t>s>0

This can be re-written as

Z Dy = Z asby + Z asbs = c; + Z D,
J

s+t=1;t>5>0 s+t=i;t>s>0 s+t=i;t>s>0

with s # t for odd 4. For even i there are two products asbs for s =t = i/2 in the sum D4, such
that we have to take care of the extra product:

Z Ds,t == Z asbt + Z asbs - (ci - Dz/2) + Z Ds
j s+t=it>s>0 s+t=i;t>s>0 s+t=i;t>s>0
These equations can easily be transformed to (6). Equations (4) and (5) are special cases of (6) for
even i, which ends the proof. O
3.3 Complexity of KA for Arbitrary Polynomials

In order to determine the number of additions and multiplications we first analyze the number of
auxiliary variables D; and Dy, denoted by #D; and #D, ;.

Lemma 1 Let A(z), B(z) and C(x) be defined as in Algorithm 1, and the variables D; and Dg
as defined in (2) and (3), respectively. The numbers of auziliary variables is then given as:

1 1
#DSJ = 5”2 — in
1 45 1
#D = #Di+#Dss = 5" + 5"
Proof We calculate for each ¢ = 0,...,n—1 an auxiliary variable D;, therefore we need n variables

D;. The number of variables Ds; can be determined as follows. Each D,; describes one pair of
coefficients ag, a;. Each possible pair occurs once. Therefore the number of possible pairs out of n
elements is () and we obtain Dy, = (5) = in? — In. O
Corollary 1 Let #MUL and #ADD be the number of multiplications and additions, respectively,
needed to multiply two polynomials with n coefficients using the KA. Then using the extended KA
we need one multiplication for determining each variable D; and D, which results in

#MUL = 5n® + on

KA schoolbook
n | #MUL #ADD | #MUL #ADD | r
2 3 4 4 1 3
3 6 13 9 4 3
5 15 46 25 16 3
7 28 99 49 36 3
11 66 265 121 100 3

Table 1: Comparison of the KA and the schoolbook method for small primes.

multiplications.

We need two additions to obtain an auxiliary variable D resulting in 2 #D,; additions.
Furthermore, we need 2 additions to determine c,_2, ¢n_3, ¢1 and ¢z, 5 additions for c¢,_4, Cn_s5,
c3 and ¢y and so on. So we need 4 - (3i — 1) additions for determining all ¢; (one term must be
removed for i = 5). For each even i we need a further addition. This results in

(n1)/2 n—1 5 7
#ADD =2#Dg;+4 > (3i—1)—(3 —1)+(n—1)—1:§n2—§n+1
=1

For large n, the one-iteration KA approaches 0.5 n? coefficient multiplications, which is about
half as many as the schoolbook method. The number of additions approaches 2.5 n?, which is more
than the n? of the schoolbook method. Note that KA is efficient if the ratio between multiplication
and addition on a given platform is larger than 3. This is due to the fact that

e < cs e (/202 +1/2n)t, + (5/2n — 7/2n + V)te < 0ty + (n — 1)%t, <17 > 3

Since r = 3 for n = 2 this is a sharp bound.

For short polynomials, especially for those with a prime number of coefficients (where a recursive
application of the basic KA is not straightforward), the method can yield complexities which are
relevant in applications. Table 1 shows a few expected values.

4 Recursive Application of the KA

We can use the KA in a recursive way to decrease the number of operations. First we show the
complexity of a simple extension to the basic recursive KA. Then we show how two polynomials
with n-m coefficients can be multiplied using a simple one-step recursion of the KA. We will divide
the polynomial into m polynomials each with n coefficients and use the KA for m polynomials,
i.e., we consider the original polynomial to have m coefficients. To multiply these, the KA for n
coefficients is used in the recursive step. We will write “KA for n-m” coefficients to mean that the
KA for m coefficients was used on polynomials with n coefficients. These n coefficient polynomials,
in turn, are multiplied using the KA for n coefficients. Furthermore we will determine a method
to multiply polynomials with [J/_; n; coefficients by recursion.

4.1 Recursive KA for Arbitrary Polynomials

If the number of coefficients n is no power of 2 Algorithm 1 is slightly altered by splitting the
polynomials into a lower part of [N/2] coefficients and and upper part of | N/2| coefficients. We call

this the simple recursive KA. In this case the KA is less efficient than for powers of 2. A lower bound
for the number of operations is given by the complexity of the KA for n = 2! coefficients as described
in Section 2.3. Thus the lower bound for the number of multiplications is #MUL;,,, = n'°823
whereas the lower bound for the number of additions is #ADD;,,, = 61n/°923 — 8n + 2. We obtain
the upper bound by empirical tests as #MUL,,;, = 1.39 nl°g23 When applying the one-iteration
KA for two and three coefficients as basis of the recursion, i.e. when applying the KA for two
and three coefficients as final recursion step by adding the recursion basis #MUL3 = 6, the upper
bound improves to #MUL,, = 1.24 nl°823 When applying the one-iteration KA for two, three,
and nine coefficients as basis of the recursion, the upper bound further improves to

#MUL,,, = 1.20 n'°823,

The number of additions in the worst case, i.e., the upper bound can be obtained in a similar
fashion.

#ADD; = 0, #ADDy =4
—_——

recursive application of KA calculation of D,
+ 2 n/2]+2[n/2] -2 42 [n/2] -2
addition of auxiliary variables overlaps

= 2 #ADD"n/Q] + #ADDLH/QJ +4(n—1)

When applying the one-iteration KA for two and three coefficients as basis of the recursion, the
anchor #ADD3 = 13 is included. An upper bound of additions is then obtained as

#ADD,,, = 7 n'°823,

4.2 KA for Degree-5 Polynomials

Consider the two polynomials
Az) = asx® + agzt + asx® + asx® + a1z + ag

B(:c) = b5$5 + b4a:4 + b3$3 + ngz + blx + b()
Then A(z) and B(z) can be written as
A(z) = Ay (z)a® + Ay, B(z) = Bi(x)z® + By
with
Ai(x) = asx® + asx + as, Ap(x) = asx® + a1 + aop
Bl(l‘) = b5.7}2 + byx + b3, B(](l’) = b2$2 + bix + by

Now we apply the KA for degree-1 polynomials. Notice that the coefficients of the polynomials
A;(x) and B;(x) are themselves polynomials and the multiplications of these coefficients result in
further applications of the KA for degree-2 polynomials. In the following, we drop the notation
"(x)" for convenience.

Dy = A¢Boy, Dy =A1B1, Doy = (Ao + A1) (Bo+ B1)

Method Multiplications #MUL | Additions #ADD
KA for 3-2 18 59
KA for 2-3 18 61

Table 2: Costs for multiplying degree-5 polynomials.

Thus, we obtain
C(CC) = D1$6 + (DO,l — Dy — Dl)l‘g + Dy

The KA for degree-1 polynomials needs four additions and three multiplications of degree-2 poly-
nomials. Each multiplication is solved by the KA for degree-2 polynomials for which we need 13
additions and 6 multiplications. The number of additions must be carefully analyzed. In order to
determine the auxiliary variables D, ; we need two additions of degree-3 polynomials. Two degree-d
polynomials can be added by adding all n = d 4+ 1 coeflicients. Furthermore two degree-5 polyno-
mials have to be added. Notice that there are some overlaps resulting in four further additions. As
an example for the overlaps look at Dy and (D1 — Do — D1)z®. The first polynomial has degree-4,
the second one degree-7. To determine c3 and ¢4 we have to add coefficients from the first and
second polynomial. Overall we need 18 multiplications and 59 additions.

For polynomials with 6 coefficients the KA is not unique. Above, we first applied the KA for
2 and then for 3 coefficients. One can also first use the KA for 3 and then for 2 coefficients. The
needed operations can be calculated with similar arguments as above. The number of operations
for both possibilities are depicted in Table 2. The first example is for the KA for 3-2, meaning that
first the KA for 2 polynomials where the coefficients themselves are polynomials with 3 coefficients
is used. The second example is the KA for 2 -3 in which case the KA is used for polynomials for 3
polynomials where the coefficients themselves are polynomials with 2 coefficients. Notice that the
number of multiplications is the same for both approaches. We will see that this is always true.
We will also show that it is always more efficient to apply the KA for n-m than for m-n if n > m.

4.3 KA for Polynomials with n - m Coefficients

This section analyzes the complexity of the KA with a single step recursion. Let A(x) = ;i'};l a;xt.

This can be written as A(z) = 37! As(z) 2™ where Ay(x) are degree-(n — 1) polynomials. B(z)
can be written in the same way. The KA is applied to the polynomials A(z) and B(z) that are
considered to have m coefficients. In the recursive step the KA is applied to the polynomials with n
coefficients and merged at the end. The number of additions needed for the KA for polynomials with
n coefficients is denoted by #ADD,,, the number of multiplications with #MUL,,. Let #(Ds+), be
the number of auxiliary variables D, needed for the KA for n coefficients. When applying the KA
for m coefficients, we need #MUL,, multiplications. Each one of these m multiplications requires
#MUL,, multiplications. This results in

1 1 1 1
HMUL, = #MUL, - #MUL, = <2m2 + 2m> . (2n2 + zn)

Notice that the order of the recursion does not make any difference thus far.

The number of additions is achieved from the recursive application of the KA: the number of
additions to build the variables D, the additions of the variables D; and D, ; and the number of
overlaps. For each recursive application of the KA we need #ADD,, additions, overall #MUL,, -
#ADD,, additions. We need two additions for polynomials with n coefficients to build a variable
Dy, altogether 2n - (#Ds¢)m additions. Furthermore (#ADD,, — 2(#Ds)m) additions of the

variables D, are needed, each of it having (2n — 1) coefficients. Finally we have to consider the
overlaps resulting in ((2m — 1) - (2n — 1) — (2nm — 1)) additions. Overall we obtain

#ADD,,.,, = #MUL,, - #ADD,, + 2n:(#Dst)m
—_————
recursive application of KA calculation of D;

+(2n — 1) - (#ADD,, — 2(#D,0))) + ((2m — 1) - (20— 1) — (2nm — 1))

addition of auxiliary variables overlaps
This results in
)) 9 23
#ADD,,.,, = ZanQ + Zan + Zan — g mn - m?+m+1 (7)

Now we will prove that it is more efficient to use the KA for n - m with n > m. Since the number
of multiplications is identical we only have to prove that this holds for the number of additions.

Lemma 2 Let n > m and n,m > 2. The number of additions for the KA for n-m is not greater
than the number of additions for the KA for m-n, i.e., #ADDy.., < #ADD,,.p,.

Proof Let n > m > 2. Assume that #ADD,,., < #ADD,,..,,. Then

< m2n2+5mn +9m2n—§nm m? +m+4+1
4 4 4 4

5 9 5 9
= an2+1m2m—n2+n+1< Zmn2+1m2
= n*(m—1)—n(m—1)(m+1) < (m—1)(-m)
= (1-n)-(m—n)<0=m-n>0=>n<m

n—m2+m+1

This is a contradiction and hence #ADD,,.,,, < #ADD,,.,, for n > m. O

4.4 KA for Polynomials with [[/_, n; Coefficients

We will determine the number of additions and multiplications needed when using the KA re-
cursively for arbitrary polynomials with ngl n; coefficients. We call this KA version the gen-
eral recursive KA. To be exact, we consider polynomials with a maximum degree of ngl n; — 1.
Consider two such polynomials A(z) and B(z) with H{Zl n; coefficients. First we write A(z) =
Zgigl Asazs'Hi;ll " as polynomial with n; coefficients A; and do the same for B(z). Each of these
“coefficients” is itself a polynomial with Hf;ll n; coefficients. Then we use the KA for n;. To obtain
the number of multiplications we repeatedly apply the KA. The method introduced in Section 4.3
for n - m coefficients is a special case of this one.
In each application of the KA there are #MUL,,, multiplications needed

#MUL H —n? + nl :(%)ani(ni—Fl) (8)
=1 =1

Again, the number of multiplications is independent of the order of the recursion. The number
of additions can be developed as follows. We introduce a term w;, [= 1... j, where j is the recursion
depth, which describes the number of additions for one recursive application. This includes the

additions to build Dy, to add all auxiliary variables, and it takes into account the overlaps. We
comprise the last three points to

i=1 "

-1
wy = w(Hl*1 T 21':1_[17%) (#DS,t)m

calculation of Dy ;

Qan—1 (#ADD,,, — 2(#Ds1)n,)) + (20 — 1) - QHnl—l 2an—1

addition of auxiliary variables overlaps

describing the number of additions for the KA for n; polynomials with Hi;} n; coefficients without
looking at the recursion. This can be simplified to

l

wl:4-Hni-(nl—1)
=1

3, 1
- = — 1
271[+ 271[+
Moreover we need to look at the additions required for the recursion and define the number of

additions recursively
#ADDy; = w; + #MULy, - #ADD5-1

=1 =1 L
with initial condition

5 7
#ADD,,, = §n12 —gmtl

Using (7) this recursion can be transformed to

J -1
#ADDr; = [[#MUL,, - #ADDyyn, + > _([[#MUL,, - wy) 4 w;
= 1=3 i=l+1
or
J -1
#ADDr; = [[#MULy, - #ADDy, + > ([[#MULy, - w;) + w; (9)
=2 1=2 i=l+1

Theorem 1 Let n; be integer values with n; > 2. Then the application of the KA for H‘gzl n; s
most efficient (i.e., it needs the least number of additions and multiplications) for a permutation of
(ni)ie{17.__7j} with n; Z Mi+1 fOT‘ 1 S 1 S j —1.

Proof The number of multiplications is independent of the order of the recursion steps and needs
not to be considered. Let ni,...,n; be a sequence n with n; < n;q for i = 1,...,7 — 1. Let
t=s+1andn,... ,n;- be another sequence n’ with n, = ny, n} = ns and n} = n; otherwise. We
will show that the recursive KA for the sequence n’ needs at least the same number of additions as
the recursive KA for the sequence n. Since each sequence can be determined by changing adjacent
elements, i.e., elements which are next to each other, the recursive KA for the original sequence n
is most efficient. We only look at 7 > 3. For j = 2 see Lemma 2.

Let w} be the value w It il To compare the number of additions we only look at the values
that differ in the two Sequerjlces. Then w), < ws, ws < wy, wy < wy, wy; < wh and w; = w, otherwise.
Furthermore n/, = ny, nj = ns, n’, < n) and n; < ns. We want to prove by applying (9) that

#ADDypi < #ADDyi

=1 i=1 "1

10

Since most of the values in the sequence are identical we only have to prove that

wl, #MULy, #MULy, - #MULy, |+ wj#MULy #MULy, -« #MUL,,
> wy #MUL,, #MUL,, | -...- #MUL,_,, + w#MUL,,#MUL,,_, - ... - #MUL

ni4+1

We note that n, | = n; and nj | = nyy1. We simplify this to

w, - #MUL,; > w, - #MUL,,

and obtain
3 1 1 1
(4(ny-ng-...-ng_q-nl) - (n—1)— in’SQ + §n; +1)- (5%2 + §nt)
3 1 1 1
> (4(n1-na-...-mg_1-ng) - (nsg—1) — 57152 + §ns +1)- (§nt2 + §nt)
=
3 1 1 1
(4(ny -mg - ... ng_qy-mg) - (ng —1) — §nt2 +5mt1): (5%2 + 57s)
3 1 1 1
> (4(ny-ng ... ng_q-ng) - (ng—1) — 57152 +5ns 1) (gnf +5m)
This can be simplified to
1 3 1
Ng - MN¢ * (Zns - Znt) - ns2 +ns > ng-ng - (Znt - Zns) - nt2 + ng
& ns2nt — nt2ns + nt2 — n32 —ng—ng >0
& (ns—mng) - (nsmg+1—mny —ng) >0
Since ngs > ny > 2 and ngng > ny + ng for ng, ny > 2 this is always true. O

4.5 How to Apply KA with the Least Cost

It was shown above that for a sequence n; the KA for []; n; coefficients is most efficient when
n; > nir1. We will now show that it is more efficient to apply the KA recursively than only
once. Let k be the non-prime number of coefficients. Since k is not prime it can be written as
k=mn-m and n,m # k. We compare using the KA for k and for n - m coefficients. Since we use
the KA recursively proving that the one-step recursion is more efficient than no recursion results
immediately in the law to use the KA for the factorization of k with multiple prime factors.

Theorem 2 Let k = [, p; with p; prime. Then the general recursive KA for []; Hji:lpi with
D > piyr1 results in the least number of operations.

Proof Let n > m > 2. First we compare the number of multiplications of the KA for k and
n-m = k coefficients.

1 1
#MUL;, = §(nm)2 + 5nm
1
#MULy.py = Z(n2 +n)(m?* 4+ m)
We will show that #MULy,.., < #MUL
1 1 1 1 1 1
ZanQ + anQ + Zan + an < §n2m2 + §nm

11

2

1 9 1 4 1 9 1
S -nm“+-n"m<-n"m“+-nm&Sm+n<nm-+1

4 4 4 4
Since m + n < mn for n,m > 2 this is true. Now we compare the number of additions.
5 7
#ADD;, = 5n?m? —gnm+ 1
5 5 9 23
#ADD,,.,, = Zn2m2 + Zan + 1m2n — Zmn —m?+m+1

Then
#ADD,,.n, < #ADDy, < 50 4+ 9mn — 4m + 4 < 5n’*m + 9n

This can be proven by induction on n with arbitrary m.
Basis n = 2,m < n implies m = 2:

5:44+9-2m—4dm+4=24+14m =52 <58 =20m + 18 =5-4m + 18
Assume the assertion holds for £ < n. Then we prove it for n + 1
5(n+1)2+9m(n+1) —4m+4 = 5n®+9mn —4m+44+10n+5+9m < 5n’m +9n+10n+549m

<5n%m 4+ 9n + 94+ 10(n +m) +m < 5n*m+9n 4+ 9+ 10nm +m < 5(n + 1)*m 4+ 9(n + 1)

O
This results in a simple rule on how to use the general recursive KA: use the factorization of
a number k£ with multiple prime factors combined with an increasing sequence of steps, i.e., KA
for k = [[)_, n; with n; > ni11, e.g., 2-2-3-5 for polynomials with 60 coefficients. However, a
number of intermediate results has to be stored due to the recursive nature. This might reduce the
efficiency for small-sized polynomials. As we showed in Section 3.3 the threshold value r for the KA
to be efficient is always 3 for the one-iteration KA. Since we proved that the recursive KA is more
efficient than the one-iteration KA it is obvious that r < 3 always holds. Appendix A displays the
least number of operations needed to multiply two polynomials with the KA for polynomials with
n € [2,128] coefficients. There are two sections. The first one displays numbers for the general
recursive KA as described in Section 4.4 while the second one describes numbers for the simple
recursive KA as introduced in Section 4.1. The first column “n” displays the number of coefficients
of the polynomials. The second column “distribution” displays how to use the KA for n coefficients
(as mentioned above these are the prime factors in declining order). The next columns denote the
number of multiplications and additions. The following column gives the ratio

_ #ADD — (n—1)?
T T UL

If the time ratio 7’ between a multiplication and an addition on a given platform is larger than this r,
then the KA is efficient. Note that very small values occur for values of n which largest prime factor
is still small, while negative values for r occur if the KA needs less multiplications and additions
than the schoolbook method. The very last column “opt(r)” describes which KA version results in
a better value r, i.e., has smaller 7. We use this as an indicator for a better performance. One can
see that the simple recursive KA often outperforms the general recursive KA, especially when n
has not only small prime factors. When the number of coefficients is unknown at implementation
time or changes permanently it is wise to use the simple recursive KA since it is more efficient in
most cases and easier to implement. There are more variants of the KA that might be considered
for a fixed-size polynomial multiplication. For example, instead of using the one-iteration KA for

12

#ADD
6110823 — 8n + 2
@n10g36 — 8n + 11
%nlogﬁi 15 _8p + ?—77
%inog7 28 8n + %

N ot W |

Table 3: Values #MUL,, for n = pJ.

n = 31 coefficients you can use the recursive KA and split the 31 coefficient polynomial into two
polynomials of 15 and 16 coefficients, respectively. Alternatively you could split the 31 coefficient
polynomial into three parts of 10, 10, and 11 coeflicients, respectively. In the next recursion step
the polynomials are again split in two or three parts, and so on.

Note that it might be more efficient to use a combination of the KA and the schoolbook method.
For example, take a look at n = 8 with the distribution [2 2 2] in Appendix A. Let us consider a
platform with 7/ = 2. Since ' > r = 1.38 it is more efficient to use the KA. However the threshold
value for n = [2 2] is r = 2.14. Therefore it is most efficient to first use the KA for polynomials
with 2 coefficients where the coefficients themselves are polynomials with 4 coefficients. These
polynomials are then multiplied by the schoolbook method, and not by the recursive KA.

4.6 Complexity of KA

In this section we will analyze the asymptotic complexity of the KA. To simplify this we assume
that the number of coefficients n is a power of some integer number, i.e., n = p?. The number of
multiplications can be determined by

#MUL,, = (%p2 + %p)j = (éﬁ + %p)l‘)g“‘ — nlogs(3°+37) (10)

For very large p this converges to (1/2)7 n2, for small p, especially p = 2 we derive a complexity

of nl°23. As shown in Section 4.1 an upper bound of the simple recursive KA for arbitrary n is
1.20'0823,

The number of additions is not as easily obtained. The number can be obtained by (9). Table 3

shows the number of additions needed for some values of p. We obtain for #ADD a complex

formula

j—1 .
#ADD, = (1/2p* +1/2p)" (5/2p* = 7/2p+ 1) +4p/ (p— 1) = 3/2p* +1/2p+14+1/2 (p+ 1)

(1/2p% + 1/2p)j <3p2 <2 p(pl+1)>j +2 (2 p(p‘trl)>jp —8p(2(p+ 1)‘1)j —16 (2 (p+ 1)_1)j>

- J -2 1 P -1
(p+2)7t=1/2 (p+1)(1/2p* +1/2p (52 (p+1)2+8 — 32)(p+2)
() plp+1)? (p+1)°
This expression can be written as
#ADD,, = a - n'%(@P"T2P) _gpn 4 (11)

with @ and b some positive number smaller than n (actually a < 6 and b < 3). For very large p
(11) converges to

lim #ADD,, = lim 5n/°%GP*+3?) _8p 13 =5n2 — 8n + 3
P—00

p—0o0

13

Note that for small p and large j the number of multiplications and additions is smaller compared
to the schoolbook method that requires (n — 1)? additions. For large integer numbers of p (10)
converges to a complexity of n?.

5 Squaring with KA

The KA can be applied to squaring polynomials by simply replacing all the coefficient multiplica-
tions by coefficient squarings while keeping the additions. Although there is no special form of a
squaring KA there still might be a performance gain compared to the ordinary squaring method
which requires n squarings, n(n — 1)/2 multiplications and (n — 1)? additions. However, this varies
for different platforms and depends on the ratio in time between a squaring and a multiplication.
Let t,, ts and t,, be the time for an addition, a squaring and a multiplication, respectively. Let
r = tm/tg be the ratio between a multiplication and an addition as before, and let ¢ and ¢, be the
cost of the KA and schoolbook method, respectively. For the comparison we use the upper bound
complexity of the KA as stated in Section 4.1. We obtain

cp < s < 1.20n1%23¢, 4+ Tnl°®23¢, < nt, +n(n — 1)/2ty + (n — 1)2ta

We want to present the two extreme scenarios. In the first one a squaring comes for free, e.g., as
it almost is the case for binary fields. Thus t; = 0 such that we obtain

Tnlog23 _n? 4 on — 1
(n?—n)/2

r >

Let ' be the right side term. If r > 7’ then it is efficient to use KA instead of the schoolbook
squaring method. For r = 10, i.e. a multiplication takes as long as 10 additions, the Squaring KA
outperforms the schoolbook squaring method for n >= 4 if a squaring is for free and a multiplication
does not perform faster than an addition. For » = 2, the Squaring KA outperforms the schoolbook
method for n >= 24.

The second scenario is the case when a squaring takes as long as a multiplication, i.e., t5 = t,,.

Then we obtain
Tnlog23 —p2 4 op — 1

>
" n/2(n+ 1) — 1.20nlo8:23

Again let 7’ be the right side term. In this case, for n >= 3 the KA Squaring outperforms the
schoolbook method if r = 10, and for n >= 21 it outperforms the schoolbook method if r = 2. If
r = 1, i.e. a multiplication takes as long as an addition, then the KA Squaring outperforms the
schoolbook squaring method for n >= 44.

Clearly, if ts = a t,, with 0 < a < 1 then the range where KA Squaring outperforms the
schoolbook method are in a similar range as above. Hence, one needs first to consider the ratio r
in order to estimate the superior squaring method.

6 Improvement by Using Dummy Coefficients

To improve the KA we can use dummy coefficients, i.e. prefix zero coefficients, to reduce the number
of operations. In Appendix A we observe that the general recursive KA for 11 coefficients needs
more operations than the one for 12. Assume A(z) and B(x) are polynomials with 11 coefficients,
i.e., of degree 10. Just by adding a dummy coefficient a1; and b1; with a1 = b1; = 0 we can reduce
the total number of operations from 331 to 275. Furthermore it can be observed that the added

14

coefficients imply that there are some computations in the algorithm which do not need to be done.
Whenever a1 or by; occurs in the computation we do not need to compute the result. We will
show this for an example for polynomials with 11 coefficients.

Let A(z) = 1% a; - 2° and B(z) = Y12, b; - 2° be two degree-10 polynomials. Then A’(z) =

. ? .
Hoa; -2 and B'(z) = S b - 2% with a;; = b;p = 0 are two degree-11 polynomials with
A(x) - B(x) = A'(x) - B'(z). We will apply the KA recursively for polynomials with 12 coefficients
(in the sequence 3 - 2 - 2). First we rewrite the polynomials:

Alz) =AW . 28 + AV, B'(z) = By - 28 + B,V
and use the KA for degree-1 polynomials:
Do = AWM. B, DM =4, W . B W Dy = (4, + A, D). (BD + B D)

Do and D(),l(l) are computed as usual and only the computation of D1 saves some operations
(note that DM has 10 and not 12 coefficients). Now we compute D,

DM = A4,M . @
For the second iteration we divide the polynomials once more
AW = 4,® .23 4 4, () = B,® . 4%+ B,®
and obtain the auxiliary variables:
Dy® = A4, .By®, D@ =4,®.p3 D071(2) - (A0(2) +A1(2)) . (30(2) +B1(2))

As above, Dy and D071(2) do not change compared to the usual computation. To compute D,
we need the KA for 2 coefficients instead of 3. Furthermore we save 2 additions to compute each
Dojl(l) and ngl(z) because A1) and B; (M have only 5 coefficients, A4;? and B;@ only 2. To
obtain the result we have to compute

DI = 4,0 B0 = p,® 6 4 (D@ — Dy — D, @) . 43 4 Dy@

Since D1 has only 4 coeflicients instead of 6 we save another 2 additions. To obtain the desired
result we compute

A'(z)- B'(x) = DiM - 212 + (D, Y — Dy — DMy . 26 4 Dy

We save another 2 additions because D; () has only 10 coefficients instead of 12. So altogether we
derive

#MUL}, = #MULy — #MUL;3 + #MULy = 54 — 6 4+ 3 = 51
#ADD!, = #ADDjy — #ADDs+ #ADDy —4-2 =221 — 1344 — 8 = 204

and
#MUL), + #ADD); = 51 + 204 = 255

compared to
#MUL1; + #ADDq; = 331

for the general recursive KA.

15

Note that computing DM by using the KA for 5 coefficients requires the same amount of
operations. This simple approach can be enhanced by adding one or more dummy coefficients and
using this approach recursively.

Now observe that the number of multiplications is exactly the same as it is for the simple
recursive KA for 11 coeflicients while the number of additions is slightly less. Without a formal
proof we can state that the usage of dummy coefficients combined with the general recursive KA
only results in a slight performance gain compared to the simple recursive KA. This is due to the
fact that the simple recursive KA for n coeflicients always needs less operations than the KA for
n + 1 coefficients because of the algorithm’s construction. Since the simple recursive KA is more
efficient than the general recursive KA we can only expect a slight performance gain.

7 Concluding Remarks

In this article we demonstrated several recursive algorithms to multiply two arbitrary polynomials
by means of the Karatsuba Algorithm. We analyzed the complexity of these algorithms and de-
scribed how to apply them most efficiently. In most cases the simple recursive KA yields the most
efficient computation. By adding dummy coefficients the complexity might be slightly decreased.

References

[1] D. J. Bernstein. Multidigit Multiplication for Mathematicians. Advances in Applied Mathemat-
1cs, to appear.

[2] A.Karatsuba and Y. Ofman. Multiplication of Multidigit Numbers on Automata. Soviet Physics
~ Doklady, 7 (1963), 595-596.

[3] D. E. Knuth. The Art of Computer Programming. Volume 2: Seminumerical Algorithms.
Addison-Wesley, Reading, Massachusetts, 3rd edition, 1997.

[4] A. Lempel, G. Seroussi and S. Winograd. On the Complexity of Multiplication in Finite Fields.
Theoretical Computer Science, 22 (1983), 285-296.

[5] H.J. Nussbaumer. Fast Fourier Transform and Convolution Algorithms, 2nd Edition. Springer-
Verlag, Berlin, Heidelberg, New York, 1982.

[6] C. Paar. Efficient VLSI Architecture for Bit Parallel Computation in Galois Fields. PhD Thesis,
Institute for Experimental Mathematics, University of Essen, Germany, 1994.

[7] S. Winograd. Some Bilinear Forms Whose Multiplicative Complexity Depends on the Field of
Constants. Mathematical Systems Theory, 10 (1977), 169-180.

A Complexity of KA

16

001 o[duurs G500 YXa%) 060 9.99 G9€T [eer] 59
[enbs 820~ 00121 1812 820~ 00131 L81T l[zzeeezee] | sg1 [enbe £0°0- 798¢ 62TL €00~ 798¢ 6L l[zzeeze]l | ¥9
oex odwits | Lg'0- 69021 ¥81¢ 00'€ 6L86€ 818 [221] 221 o1 orduurs 000 L€8€ 9TL 6€°0 6667 8001 [egL] €9
oex odwits | 9g°0- 11031 8LIC 10°0- | L6¥ST $20¢€ [cegL] 9z1 o1 orduurs 200 L8L€ 0zL [6TIL 88V [z1e] 4]
oox odwits | Gg'0- LG6TT TLIT 0z°0 908L1T GLEE [gcg] Gzl o1 orduurs S0°0 vLe PIL 00'€ 0606 1681 [19] 19
oar orduits | gz 0- €G8TT 0912 290 6L81¢ 147 [zete] ¥Tl oax opduurs 90°0 £99¢ T0L 0z'0 6707 018 [zzeg] 09
oar orduits | $g'0- €08TT ¥S1C €01 ££€93 991¢ [e17] [543 oo1 orduurs 60°0 119¢ 969 00°€ L6¥8 0LLT [6g] 69
oar ordwits | €g°0- L0LTT [4a¢d (420 $GLLT €198 [zg19] (443 oo1 orduurs 11°0 1888 $89 [0 $€29 S0€T [2 6] 89
oox odurs TT0- STITT 0€12 SL0 SS1TT felf 34 [11171] 121 oo1 opdurts TT0 [elel 4 TL9 T L9¥S oF1T [g61] LG
oo ordurs 2T 0 SEVIT 901¢C €10~ £2921 0eve [zczzeg] 0z1 oax adurts 110 L0gg 879 820 ¢89¢ 9GL [zzaL] 99
oox odwits | 1g°0- 68€TT 0012 SL0 6LETT ¥8¢¥H [221] 611 o1 orduurs ST°0 692¢ Tv9 ¥6°0 1287 066 [er1T] <14
oax ordws | 0Z°0- 10€TT 880C (4288 696ST 0t1es [z6g] 8TT oox opduwrs LT°0 L61¢€ 0€9 €2°0 6z€€ 8%9 [zeeeg] 7S
oex odwits | G170~ L1211 9L0T 820 6€€91 9.2€ [eeer] L11 o1 orduurs 61°0 621€ 819 00'€¢ 8€89 1671 [eg] €3
oax ordwits | G170~ €S0TT [4<lit4 290 z9161 S16¢ l[zcz6g] 911 a1 orduurs 61°0 1668 ¥6S 69°0 906€ 618 l[ezer] 44
oex ordwits | QT°0- €L60T 0v0g T80 16702 Niass [cez] [0 o1 orduurs 12°0 £€6C z8¢ (481 186¥ 816 [g21] 16
oox orduwits | QT°0- L1801 910¢ €70 £9891 0Tve [zeer] vIT o1 ofduurs 12°0 608¢ 8GS €50 79€€ GL9 [zgg] 08
oax ofdwits | L1°0- G9901T 7661 00'€ 82S1E 799 [er1] €11 o1 o[duurs 12°0 6892 1239 16°0 6.8€ 8L [22L] 67
oox ofduwits | QT°0- G9€0T Y61 80°0- 66711 892C l[zzeeL] (481 [enbe €10 344 987 €10 344 98¥ l[zzeeel 54
oox odwits | L1°0- £2E01 8€61 c0'1 17902 812V [g2e] 111 o1 orduurs 81°0 8TVT €87 00’ 65€S 8TI1T [7] Ly
oex odwits | 91°0- £v201 9261 €20 66871 0,62 [zgg1r] 011 o1 orduurs T 0 T8ET LLY 9’1 606€ 828 [zea] 97
oex odwits | GT'0- L9101 P161 00'€ TTE6T S66¢ [601] 601 o1 orduurs 9z°0 ovee 1% 670 6592 ovg [egg] [
oex odwits | GI°0- 61001 0681 11°0- GIVOT P61 [zzeee] 80T o1 o[duurs 820 092¢ 657 TL0 6082 69 l[zgg1r] 44
oar orduirs | €1°0- L¥66 8L8T 00'€ 6728% 8LLS [Lo1] 20T oax apduurs £€°0 (4444 f<i4 00'€ LYY 9¥6 [ev] eF
oar orduits | €1°0- L086 7S81 ev'T $£60C €63V [zeg] 90T oo1 orduirs g0 0812 344 8G°0 L1¥C $0g [zeL] 47
oax orduits | g1°0- 1,96 0€81 %20 G68TT 035T [eg2] S0T oo1 orduurs 8€°0 T80T 6T 00'€ 090% 198 [17] v
oox odurs €T°0- £0¥6 T8LT 8T°0 0€121 LSYT [zzzer] 701 [enbe 9€°0 0S6T S0¥ 9€°0 0S6T S0¥ [zzeg] o¥
oo1 ordurs Tr0- Gee6 0LLT 00°€ €919¢ 9g€g [eot] €01 oaux adurrs [0l 9161 66€ ST'T 69GC 9¥e [eer] 6¢
oo orduurs TT0- €026 9VLT 790 LVGET ¥G9LT [zeLr] z0T oax adurrs 9%°0 Ta8T 18€ 8T T 699¢ 0Lg [zer] 8¢
oaux arduurs 11°0- SL06 TTLI 00°€ 0STST 161G [101] 10T oox apduwrs 080 TOLT GLE 00°€ 762¢€ €0L [Le] L8
oex ordwis | 10~ €288 ¥L9T 60°0 88701 $T0T [zzeg] 00T oo1 [e1oual | 80 9,91 16¢ 8€°0 S64T 1243 [ezeeg] 9g
oex ordwits | 11°0- 6698 0891 0€°0 6E8TT 9LET [eerr] 66 oox opdurs TS0 0291 6€€ 90T 1102 0cy [g1] <o
oex ordwits | 10~ [453 z091 9€°0 G20TT TSET [gLL] 86 o1 orduurs 0g'0 TIgT g1g 81 jZ4¢4 6S¥ [g21] ¥e
oex orduwits | €1°0- s128 ¥GaT1 00'€ $81€C €GLY [26] 16 o1 orduurs 870 |0V 162 8T'T €781 96¢€ [et11] €g
[enbe L1°0- 6ELL |GV L1°0- 6ELL |GV l[zzzeee] 96 [enbe 1£°0 ¥0TT 544 1€°0 7021 544 l[czeee] 44
oox ordwits | GT°0- 0TLL A ¥8°0 7071 0582 [g61] g6 o1 orduurs 6€°0 1811 ove 00'€ S62C 967 [1g] 1€
oox odwits | €1°0- 959L 67V1 A 6791 78€€ [22L7] 76 o1 orduurs g0 6811 ¥€T 890 1231 0LZ [zeg] og
oex odwits | Z1°0- 909L 544 90T £0ShT 9L6C [e1g] €6 o1 orduurs Te0 1011 82T 00'€ 2002 [[62] [i4
oex odwits | 11°0- 01gL 1€V1 ¥9°0 16031 iizd l[zzeg] 26 o1 orduurs €80 6201 912 080 GGTT 44 [zceL] 8T
oex odwits | 60°0- OVL [t d 080 66931 Eigetd [2g1] 16 o1 orduurs 19°0 666 01e 1L°0 6£0T1 91e [egeg] LT
oax ordwirs | 0°0- 9LEL eIVl 900 cees 0291 [zceeg] 06 oax opduurs ¥9°0 1€6 86T 181 veeT €LT [zer] 9z
oax orduirs | L0°0- T6TL 1071 00'€ T6V6T S00¥ [68] 68 oo1 orduirs 29°0 1L8 98T 0z'1 9501 744 [gg] 14
oax orduits | L0°0- 8TTIL LLET 020 GLLS T8LT [zze1r] 88 renbe S5°0 §GL 4228 SG°0 (<< 4228 [zzee] 44
oox odurs 50°0- 980L TLET L0°T L6921 0192 [¢6c] L8 oo1 opdurts 89°0 PEL 6GT 00°¢ %A 9.2 [ec] €T
oox odurs $0°0- 900L 6S€T v 1 6SLET 8€8T [zev] 98 oo1 opdurrs LL°0 969 €91 et 618 86T [g11] TT
oo1 orduurs z0°0- 0£69 LYET 98°0 98CTT $62T [g2s1] g8 oax opduwrs 68°0 299 L¥T 621 TGL 89T [eL] 12
oax ordwts | g0°0- T8L9 €zel €10 £8GL TIST [zzes] 78 renbe 680 86¢ getr 680 86¢ get1 [zzg] 114
ooux ordurs 00°0 0TL9 1161 00'€¢ £€691 987¢€ [eg] €8 001 orduurs S0'T 89¢ 621 00°€¢ L€8 06T [61] 61
o1 orduurs 000 0L99 1821 T $052T £859T [z1v] z8 oor [eteuel | 80T z1¢ LT 16°0 G8% 80T [zeeg] 8T
o1 orduurs 10°0 PEV9 €921 60°0 1L89 96T T [eegeeg] 18 01 orduurs 111 09% g0T 00'€ 799 €51 [21] LT
[enbe 10°0~ 9919 [EA 10°0- 9919 34 4¢ l[ezzegl 08 [enbe LL°0 09¢ 18 1270 09¢ 18 EEEEA 91
o1 o[duurs 10°0 8219 6021 00'€ 1781 091€ [62] 6L o1 orduurs 660 17e 8L ov't G8¢ 06 [gg] ST
o1 o[duurs €00 9509 L6T1 %0 G108 8€91 [zger] 8L o1 orduurs 11 L0€ TL 19T (343 78 [gL] 2
o1 o[duurs ¥0°0 886¢ G8TT ¥8°0 6616 8V8T [211] LL o1 o[duurs 62T LLT 99 00'€ 8LE 16 [e1] €1
o1 o[duurs G0°0 958¢ 1911 G9°0 1128 0TLT [zzer] 9L [enbe 11 122 29 111 12% 7S [zczeg] 48
o1 o[duurs 20°0 T6LS 6V11 ¥€'0 5269 0geT [gcg] gL o1 orduurs 67’1 v0% 1g 00'€ G692 99 [11] 11
o1 o[duurs 800 899¢ 4R T vLIOT 6012 [g2e] YL enbe 69'T TLI <14 69'1 VLT 54 [zeg] [0}
oox orduurs 60°0 875G 1011 00'€ 890€T 1042 [eL] €L oo1 [e1RULS | (00'C 8¥1 6¢ 29'1 681 9€ [eeg] 6
oo1 [RIBULS | 400 (48 €501 10°0 690¢ TL6 [zzzee] TL renbo 8€'T 00T L3 8€'T 00T LT [zgee] 8
oox arduurs 60°0 414 1701 00°€ 4 995C [12] 1L oo1 orduurs 961 g8 ¥e 00°€ 66 8T [2] L
oox arduurs 01°0 9€1g L10T £7°0 60€9 0921 [zg2] 0L renba 68°'T 69 8T 68T 6¢ 8T [ze] 9
oox odurs 11°0 $209 €66 60°T 666L 9991 [gee] 69 [enbe 00°€ 9% [} 00°€ 9¥ ST [¢] g
oo orduwrs 60°0 708% 76 99°0 0799 LLET [zzeLr] 89 renboa ¥1'C ¥T 6 v1'C %4 6 [zz] i
o1 orduurs 010 9697 126 00°€¢ 68601 8LTT [29] 29 renba 00°€¢ €1 9 00°€¢ €1 9 [e] €
oo apduurs 20°0 aciad €L8 670 68LS 88TT [zetr] 99 renbo 00°¢ ¥ € 00'€¢ ¥ € [z] 14
(1)3do 4 aav# | T0nN# 4 aav# | Ta0nN# uornqrIIsIp 4 aav# | 1T0N#) aav# | 1I0nN# uornqrIIsIp
AhanO VM 201S4nd23] M&QEH@W VM 20184N09Y DL2UIE) u Ahvuﬂo VM 20154n02Y mN«:tﬁsm VM 20184N09Y [DL2UIE) u

17

