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Abstract

We revisit the following question: what is the optimal round complexity of verifiable secret
sharing (VSS)? We focus here on the case of perfectly-secure VSS where the number of corrupted
parties t satisfies t < n/3, with n being the total number of parties. Work of Gennaro et al.
(STOC 2001) and Fitzi et al. (TCC 2006) shows that, assuming a broadcast channel, 3 rounds
are necessary and sufficient for efficient VSS. The efficient 3-round protocol of Fitzi et al.,
however, treats the broadcast channel as being available “for free” and does not attempt to
minimize its usage. This approach leads to relatively poor round complexity when protocols are
compiled for a point-to-point network.

We show here a VSS protocol that is simultaneously optimal in terms of both the number
of rounds and the number of invocations of broadcast. Our protocol also has a certain “2-level
sharing” property that makes it useful for constructing protocols for general secure computation.

1 Introduction

The round complexity of cryptographic protocols has been the subject of intense study. Besides
protocols for general secure computation, protocols for various specific functionalities of interest
(e.g., broadcast, zero-knowledge proofs, etc.) have also been explored. Here, we revisit the case
of verifiable secret sharing, whose definition we now recall informally. (Formal definitions appear
in Section 2.) In secret sharing [2, 19], there is a dealer who shares a secret among a group of
n parties in a sharing phase. The requirements are that, for some parameter t < n, any set of t
colluding parties gets no information about the dealer’s secret at the end of the sharing phase, yet
any set of t+1 parties can recover the dealer’s secret in a later reconstruction phase. Secret sharing
assumes the dealer is honest; verifiable secret sharing (VSS) [3] also requires that, no matter what a
cheating dealer does (in conjunction with t−1 other colluding parties), there is some unique secret
to which the dealer is “committed” by the end of the sharing phase. VSS serves as a fundamental
building block in the design of protocols for general secure multi-party computation as well as other
specialized goals (such as Byzantine agreement); thus, it is of interest to understand the inherent
round complexity for carrying out this task.

In this work we will always consider perfectly-secure VSS, where the protocol is required to
be error-free and security should hold even against an all-powerful adversary. This is known to
be possible if and only if t < n/3 [1, 6]. Previous research investigating the round complexity of
VSS, surveyed further below, has focused on optimizing the round complexity assuming a broadcast
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channel is available “for free”. (We remark that broadcast is essential for VSS, in a way we make
precise below.) As argued previously [13], however, if the ultimate goal is to optimize the round
complexity of protocols for point-to-point networks (where protocols are likely to be run), then it
is preferable to minimize the number of rounds in which broadcast is used rather than to minimize
the total number of rounds. This is due to the high overhead of emulating a broadcast channel
over a point-to-point network: deterministic broadcast protocols require Ω(t) rounds [8]; known
randomized protocols [7, 9, 12] require only O(1) rounds in expectation, but the constant is rather
high. (The most round-efficient protocol known [12, 13] requires 23 rounds in expectation for
t < n/3.1) Moreover, when using randomized broadcast protocols, if more than one invocation of
broadcast is used then special care must be taken to deal with sequential composition of protocols
without simultaneous termination (see [15, 12, 13]), leading to a substantial increase in the round
complexity. As a consequence, a constant-round protocol that only uses a single round of broadcast
is likely to yield a more round-efficient protocol in a point-to-point setting than any protocol that
uses two rounds of broadcast (even if that protocol uses no additional rounds).

As a concrete example (taken from [13]) to illustrate the point, consider the VSS protocol of
Micali and Rabin [16] and the ‘round-optimal’ VSS protocol of Fitzi et al. [10]. The former uses
16 rounds but only a single round of broadcast; the latter uses 3 rounds, two of which require
broadcast. Compiling these protocols for a point-to-point network using the most round-efficient
techniques known (see [13]), the Micali-Rabin protocol runs in an expected 31 rounds while the
protocol of Fitzi et al. requires an expected 55 rounds!

In light of the above, when discussing the round complexity of protocols that assume a broadcast
channel we keep track of both the number of rounds as well as the number of rounds in which
broadcast is used. (In a given round when broadcast is used, each party may use the broadcast
channel but a rushing adversary is still assumed. Existing broadcast protocols can be modified
so that the round complexity is unchanged even if many parties broadcast in parallel.) We say a
protocol has round complexity (r, r′) if it uses r rounds in total, and r′ ≤ r of these rounds invoke
broadcast. The round complexity of VSS refers to the sharing phase only, since the reconstruction
phase of most known protocols utilizes only a single round, without broadcast. (An exception is
the protocol of [10], whose reconstruction phase uses a single round of broadcast.)

Our results and techniques. Gennaro et al. [11] show that three rounds are necessary for
VSS, assuming a broadcast channel. We also observe that it is impossible to construct a strict
constant-round protocol for VSS without using a broadcast channel in at least one round: VSS
implies broadcast using one additional round (the message to be broadcast can be treated as the
input for VSS), and the results of Fischer and Lynch [8] rule out strict constant-round protocols for
broadcast. Prior work [16, 10, 13, 14] shows that optimal round complexity as well as optimal use
of the broadcast channel could each be obtained individually for VSS, but it was unknown whether
they could be obtained simultaneously. Here, we resolve this question and show a (3, 1)-round
VSS protocol that is optimal in both measures. (Our protocol has a 1-round reconstruction phase
that does not use broadcast.) As a consequence, we obtain a VSS protocol with the best known
round complexity in point-to-point networks. Our work also leads to an improvement in the round
complexity of the most round-efficient broadcast protocols known [12].

A nice feature of our VSS protocol is that it also satisfies a certain “2-level sharing” property
that is not achieved by the 3-round protocol from [10]. Roughly speaking, this means that the
following conditions hold at the end of the sharing phase when the dealer’s (effective) input is s:

1. There exists a polynomial f(x) of degree at most t such that f(0) = s and each honest party
1Actually, the VSS protocol given here can be used to improve this slightly.
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Pi holds the value f(i).

2. For each party Pi, there exists a polynomial fi(x) of degree at most t such that fi(0) = f(i)
and each honest party Pj holds the value fi(j).

VSS protocols with this property constitute a useful building block for protocols for general secure
multi-party computation (see, e.g., [13, 14]).

Our protocol is efficient, in that the computation and communication are polynomial in n. The
communication complexity of our protocol is O(n2t) field elements, which matches the communi-
cation complexity of [10] but is worse than that of [11].

We now summarize the basic techniques used to prove our main result. As in [10], we begin by
constructing a protocol for weak verifiable secret sharing (WSS) [18]. (In WSS, informally, if the
dealer is dishonest then, in the reconstruction phase, each honest party recovers either the dealer’s
input or a special failure symbol.) Fitzi et al. show a (3, 2)-round WSS protocol that essentially
consists of the first three rounds of the 4-round VSS protocol from [11]. On a high level, their
protocol works as follows: In the first round, the dealer distributes the shares of the secret using a
random bivariate polynomial; in parallel, each pair of parties (Pi, Pj) exchanges a random pad ri,j .
In the second round, Pi and Pj check for an inconsistency between their shares by broadcasting
their common shares masked with the random pad. In the third round, if there is a disagreement
between Pi and Pj in round 2 (note that all parties agree whether there is disagreement since
broadcast is used in round 2), then the dealer, Pi, and Pj all broadcast the share in question. This
allows the rest of the parties to determine whether the dealer “agrees” with Pi or with Pj .

A (5, 1)-round WSS protocol is implicitly given in [13].2 There, rather than using the “random
pad” technique, a different method is used to detect disagreement between Pi and Pj . While this
saves one round of broadcast, it requires additional rounds of interaction.

To construct a (3, 1)-round WSS protocol, we modify the (3, 2)-round WSS protocol from [10]
by using the random pad idea with the following twist: in the second round of the protocol, Pi and
Pj check if there is any inconsistency between their shares by exchanging their common shares over
a point-to-point link; they also send the random pad ri,j to the dealer. In the third round of the
protocol, if there is a disagreement between Pi and Pj , then Pi and Pj each broadcast the shares
they hold; otherwise, they broadcast the value of their common share masked with the random
pad. The dealer will broadcast the corresponding share masked with the random pad (or the share
itself if the random pads it received from Pi and Pj are different). Notice that secrecy of the share
is preserved if Pi, Pj , and the dealer are all honest. On the other hand, if the dealer is malicious
and there is a disagreement between honest parties Pi and Pj , then the dealer can only “agree”
with at most one of Pi and Pj in round 3, but not both of them.

The above is the high-level idea of our WSS protocol. Using the same techniques as in [10], we
can then immediately obtain a (3, 1)-round VSS protocol. However, the VSS protocol constructed
in this manner will not have the “2-level sharing” property; as a consequence, the resulting protocol
cannot directly be plugged in to existing protocols for general secure multi-party computation.

To convert the VSS protocol into one with 2-level sharing we note that, by the end of the sharing
phase, there is a set of honest parties (that we call a “core set”) who already do have the required
2-level shares; thus, we only need to provide honest parties outside the core set with their required
shares. We achieve this, as in [5], by having the dealer use a symmetric bivariate polynomial to
share its input, and then modifying the protocol so that honest parties who are not in the core set
can still generate appropriate shares by interpolating the shares of the parties in the core set. Of

2That work shows a 6-round VSS protocol that uses broadcast in the final two rounds. The first five rounds of
that protocol suffice for WSS.
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course, this process needs to be carefully designed so that no additional information is leaked to
the adversary. We defer the details of this to a later section.

Other related work. Gennaro et al. [11] initiated a study of the exact round complexity of VSS.
For t < n/3, they show an efficient (i.e., polynomial-time) (4, 3)-round protocol, and an inefficient
(3, 2)-round protocol. (Recall that the round complexity of VSS is defined as the number of rounds
in the sharing phase; unless otherwise stated, all protocols mentioned use only one round, without
broadcast, in the reconstruction phase.) They also show that three rounds are necessary for VSS
when t < n/3. For t < n/4, they show that two rounds are necessary and sufficient for efficient
VSS. Settling the question of the absolute round complexity of efficient VSS for t < n/3, Fitzi
et al. [10] show an efficient (3, 2)-round VSS protocol. The reconstruction phase of their protocol
requires one round of broadcast as well.

As discussed extensively already, although the protocol by Fitzi et al. is optimal in terms of
the total number of rounds, it is not optimal in terms of its usage of the broadcast channel. VSS
protocols for t < n/3 using one round of broadcast are known, but these protocols are not optimal
in terms of their overall round complexity. Micali and Rabin [16] give a (16, 1)-round VSS protocol,
and recent work of the authors [13, 14] improves this to give a (7, 1)-round protocol.

Our work, as well as all the work referenced above, focuses on VSS protocols with perfect
security (i.e., 0-error VSS ). A natural relaxation is to consider statistical VSS where the security
properties may fail with negligible probability. Surprisingly, recent work subsequent to our own [17]
shows that the lower bound of Gennaro et al. [11] no longer holds in this setting, and that 2-round
protocols are in fact possible.

Future directions. It would, of course, be nice to characterize the optimal round complexity of
VSS in point-to-point networks. Though our work represents progress toward this goal, the question
is complicated by the fact that one must consider the distribution of running times of any protocol
(since strict constant-round protocols are ruled out). It will also be interesting to understand the
round complexity of statistical VSS when t < n/2; see [17] for work in this direction.

2 Model and Definitions

We consider the standard communication model where parties communicate in synchronous rounds
using pairwise private and authenticated channels. We also assume a broadcast channel, with the
understanding that it can be emulated in a point-to-point network using a broadcast protocol. A
broadcast channel allows any party to send the same message to all other parties (and all parties
to be assured they have received identical messages) in a single round. We stress that we do not
assume simultaneous broadcast, but allow rushing here as well.

When we say a protocol tolerates t malicious parties, we always mean that it is secure against
an adversary who may adaptively corrupt up to t parties during an execution of the protocol and
coordinate the actions of these parties as they deviate from the protocol in an arbitrary manner.
Parties not corrupted by the adversary are called honest. We always assume a rushing adversary;
i.e., in any round the malicious parties receive the messages sent by the honest parties before
deciding on their own messages.

2.1 VSS and Variants

We now present definitions of WSS, VSS, and VSS with 2-level sharing.
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Definition 1 [Weak verifiable secret sharing] A two-phase protocol for parties P = {P1, . . . , Pn},
where a distinguished dealer D ∈ P holds initial input s, is a WSS protocol tolerating t malicious
parties if the following conditions hold for any adversary controlling at most t parties:

Privacy If the dealer is honest at the end of the first phase (the sharing phase), then at the end of
this phase the joint view of the malicious parties is independent of the dealer’s input s.

Correctness Each honest party Pi outputs a value si at the end of the second phase (the recon-
struction phase). If the dealer is honest then si = s.

Weak commitment At the end of the sharing phase the joint view of the honest parties defines
a value s′ (which can be computed in polynomial time from this view) such that each honest
party will output either s′ or a default value ⊥ at the end of the reconstruction phase. ♦

Definition 2 [Verifiable secret sharing] A two-phase protocol for parties P, where a distinguished
dealer D ∈ P holds initial input s, is a VSS protocol tolerating t malicious parties if it satisfies
the privacy and correctness requirements of WSS as well as the following (stronger) commitment
requirement:

Commitment At the end of the sharing phase the joint view of the honest parties defines a value
s′ (which can be computed in polynomial time from this view) such that all honest parties
will output s′ at the end of the reconstruction phase. ♦

Definition 3 [Verifiable secret sharing with 2-level sharing] A two-phase protocol for parties P =
{P1, . . . , Pn}, where a distinguished dealer D ∈ P holds initial input s, is a VSS protocol with 2-level
sharing tolerating t malicious parties if it satisfies the privacy and correctness requirements of VSS
as well as the following requirement:

Commitment with 2-level sharing At the end of the sharing phase each honest party Pi out-
puts si and si,j for j ∈ {1, . . . , n}, satisfying the following requirements:

1. There exists a polynomial p(x) of degree at most t such that si = p(i) for every honest
party Pi, and furthermore all honest parties will output s′ = p(0) at the end of the
reconstruction phase.

2. For each j ∈ {1, . . . , n}, there exists a polynomial pj(x) of degree at most t such that
(1) pj(0) = p(j) and (2) si,j = pj(i) for every honest party Pi. ♦

This implies the commitment property of VSS, since the value s′ = p(0) that will be output in the
reconstruction phase is defined by the view of the honest parties at the end of the sharing phase.

In our protocol descriptions, we implicitly assume all parties send properly-formatted messages
at all times; this is without loss of generality, as we may interpret an improper or missing message as
some default message. We assume the dealer’s input s lies in a finite field F containing {0, 1, . . . , n}
as a subset.

3 Weak Verifiable Secret Sharing

We show a (3, 1)-round WSS protocol tolerating t < n/3 malicious parties.
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3.1 The Protocol

Sharing phase. The sharing phase consists of three rounds, with broadcast used in the last round.

Round 1: The dealer holds s. The following steps are carried out in parallel:

• The dealer chooses a random bivariate polynomial F (x, y) of degree at most t in each
variable such that F (0, 0) = s. The dealer then sends to each party Pi the polynomials
fi(x) := F (x, i) and gi(y) := F (i, y).

• Each party Pi picks a random pad ri,j ∈ F for j ∈ {1, . . . , n}, and sends ri,j to both Pj

and the dealer D.

Round 2: For every ordered pair (i, j), parties Pi and Pj proceed as follows:

• Party Pi sends ai,j := fi(j) to Pj .

• Party Pj sends bj,i := gj(i) to Pi.
(Note that, when everyone is honest, then ai,j = bj,i = F (j, i).)

• Let r′i,j be the random pad that Pj received from Pi in the previous round. Then Pj

sends r′i,j to D.

Round 3: For every ordered pair (i, j), parties Pi, Pj , and D do:

• (From the viewpoint of Pi:) If bj,i 6= fi(j), then Pi broadcasts (“disagree”, fi(j), ri,j).
Otherwise, Pi broadcasts (“agree”, fi(j) + ri,j).

• (From the viewpoint of Pj :) If ai,j 6= gj(i), then Pj broadcasts (“disagree”, gj(i), r′i,j).
Otherwise, Pj broadcasts (“agree”, gj(i) + r′i,j).

• (From the viewpoint of D:) If ri,j 6= r′i,j , then D broadcasts (“not equal”, F (j, i)).
Otherwise, D broadcasts (“equal”, F (j, i) + ri,j).

Local computation. An ordered pair of parties (Pi, Pj) is conflicting if, in round 3, party Pi

broadcasts (“disagree”, fi(j), ri,j); party Pj broadcasts (“disagree”, gj(i), r′i,j); and ri,j = r′i,j . For
a pair of conflicting parties (Pi, Pj), we say that Pi (resp., Pj) is unhappy if one of the following
conditions hold:

• The dealer broadcasts (“not equal”, di,j) and di,j 6= fi(j) (resp., di,j 6= gj(i)).

• The dealer broadcasts (“equal”, di,j) and di,j 6= fi(j) + ri,j (resp., di,j 6= gj(i) + r′i,j).

Note that all parties agree on who is unhappy. If there are more than t unhappy parties, the dealer
is disqualified and a default value is shared.

Reconstruction phase. The reconstruction phase is similar to the one in [10], except that we do
not use broadcast.

1. Every party Pi that is not unhappy sends fi(x) and gi(y) to all other parties.

2. Let f i
j , gi

j denote the polynomials that Pj sent to Pi in the previous step. Pi then constructs
a consistency graph Gi whose vertices correspond to the parties who are not unhappy:

• Initially, there is an edge between Pj and Pk in Gi if and only if f i
j(k) = gi

k(j) and
gi
j(k) = f i

k(j). (Note that we allow also the case j = k here.)
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• If there exists a vertex in Gi whose degree is less than n− t (including self-loops), then
that vertex is removed from Gi. This is repeated until no more vertices can be removed.

Let Corei denote the parties whose corresponding vertices remain in Gi.

3. If |Corei| < n − t, then Pi outputs ⊥. Otherwise, Pi reconstructs the polynomial F ′(x, y)
defined by any t + 1 parties in Corei, and outputs s′ := F ′(0, 0).

We remark that, since we do not use broadcast in the reconstruction phase, it is possible that
Corei, Corej are different for different honest parties Pi, Pj .

3.2 Proofs

Lemma 1 If the dealer is not corrupted by the end of the sharing phase, then privacy is preserved.

Proof Let C denote the set of parties corrupted by the end of the sharing phase. We show that
if the dealer remains uncorrupted, then the information the adversary has about the dealer’s input
at the end of the sharing phase consists of the polynomials {fi(x), gi(y)}Pi∈C . Since F (x, y) is a
random bivariate polynomial of degree at most t and |C| ≤ t, a standard argument implies that the
view of the adversary is independent of the dealer’s input s.

It is immediate that the adversary learns nothing additional about s in round 2. As for the values
broadcast in round 3, consider any ordered pair (Pi, Pj) of parties who remain honest throughout
the sharing phase. Since the dealer is honest, we have fi(j) = gj(i) = F (j, i) and, since Pi, Pj are
honest, we have ri,j = r′i,j . Thus, in round 3, parties Pi, Pj , and the dealer all broadcast the same
“blinded” value F (j, i) + ri,j . Since ri,j is chosen uniformly at random from the point of view of
the malicious parties, they do not learn anything about the value of F (j, i).

Lemma 2 If the dealer is not corrupted by the end of the sharing phase, then correctness holds.

Proof Observe that if the dealer remains honest then no honest party will be unhappy. It follows
that the dealer is not disqualified at the end of sharing phase.

Let Pi be honest. In the reconstruction phase, Corei contains all the honest parties and so
|Corei| ≥ n− t. We claim that for any Pj ∈ Corei, it holds that f i

j(x) = F (x, j) and gi
j(y) = F (j, y),

where F is the dealer’s polynomial. When Pj is honest this is immediate. When Pj is malicious, the
fact that Pj ∈ Corei means that f i

j(k) = gi
k(j) = F (k, j) for at least n−2t ≥ t+1 honest parties Pk.

Since f i
j(x) has degree at most t, it follows that f i

j(x) = F (x, j). A similar argument shows that
gi
j(y) = F (j, y). Therefore, the polynomial F ′(x, y) reconstructed by Pi is equal to F (x, y), and Pi

outputs s = F (0, 0).

Lemma 3 Weak commitment holds.

Proof The case of an honest dealer follows from the proof of correctness, so we consider the case
of a malicious dealer. If there are more than t unhappy parties, the dealer is disqualified and weak
commitment trivially holds; so, assume there are at most t unhappy parties. Then there are at
least n− 2t ≥ t + 1 honest parties who are not unhappy. Let H denote the first t + 1 such parties.
The polynomials fi sent by the dealer to the parties in H define a bivariate polynomial F̂ (x, y) in
the natural way: namely, let F̂ be such that F̂ (x, i) = fi(x) for each Pi ∈ H. Because parties in H
are not unhappy, it holds also that F̂ (i, y) = gi(y) for all Pi ∈ H. Set s′ := F̂ (0, 0). We show that
every honest party outputs either ⊥ or s′ in the reconstruction phase.
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Consider an honest party Pi in the reconstruction phase. If |Corei| < n−t then Pi outputs ⊥ and
we are done. Say |Corei| ≥ n− t. We claim that for each Pj ∈ Corei, it holds that f i

j(x) = F̂ (x, j)
and gi

j(y) = F̂ (j, y). When Pj is honest, the fact that Pj is not unhappy (which is true since
Pj ∈ Corei) means that f i

j(k) = fj(k) = gk(j) = F̂ (k, j) for all t + 1 parties Pk ∈ H. Since f i
j is a

polynomial of degree at most t, this implies that f i
j(x) = F̂ (x, j). A similar argument shows that

gi
j(y) = F̂ (j, y). When Pj ∈ Corei is malicious, we have that f i

j(k) = gi
k(j) = F̂ (k, j) for at least

n − 2t ≥ t + 1 honest parties Pk ∈ Corei. Again, since f i
j(x) has degree at most t it follows that

f i
j(x) = F̂ (x, j), and a similar argument shows that gi

j(y) = F̂ (j, y). Therefore, the polynomial
reconstructed by Pi is equal to F̂ (x, y), and Pi outputs s′ = F̂ (0, 0).

As the proof of the above lemma indicates, our WSS protocol also satisfies a weak variant of
2-level sharing that we state for future reference:

Lemma 4 Say the dealer is not disqualified in an execution of the WSS protocol, and let H denote
the set of all honest parties who are not unhappy. Then there is a bivariate polynomial F̂ of degree
at most t in each variable such that, at the end of the sharing phase, the polynomials fi, gi held by
each Pi ∈ H satisfy fi(x) = F̂ (x, i) and gi(y) = F̂ (i, y).

As a consequence, each Pi ∈ H can compute si and si,j for j ∈ {1, . . . , n} such that:

1. There is a polynomial p(x) of degree at most t with si = p(i), and furthermore all honest
parties output either s′ = p(0) or ⊥ in the reconstruction phase.

2. For each j ∈ {1, . . . , n}, there exists a polynomial pj(x) of degree at most t such that
(1) pj(0) = p(j) and (2) si,j = pj(i).

Proof When the dealer is honest take F̂ to be the dealer’s polynomial. When the dealer is
dishonest, let F̂ be the bivariate polynomial defined in the proof of the preceding lemma. Set
p(x) def= F̂ (0, x) and pj(x) def= F̂ (x, j). In what follows we assume a dishonest dealer, but it is
immediate that everything (trivially) holds also if the dealer is honest.

The proof of the preceding lemma shows that, at the end of the sharing phase, each Pi ∈ H
holds polynomials fi, gi with fi(x) = F̂ (x, i) and gi(y) = F̂ (i, y), and such that all honest parties
output either s′ = F̂ (0, 0) or ⊥ in the reconstruction phase. Then each Pi ∈ H can compute
si := fi(0) = F̂ (0, i) = p(i) and si,j := gi(j) = F̂ (i, j) = pj(i). Furthermore, s′ = p(0). Finally,
pj(0) = F̂ (0, j) = p(j) for all j ∈ {1, . . . , n}. Thus, all the stated requirements hold.

4 Verifiable Secret Sharing

Before we describe our VSS protocol with 2-level sharing, we review the ideas used in [10] to
transform their WSS protocol into a VSS protocol (that does not have 2-level sharing). At a high
level, the sharing phase of the VSS protocol is more-or-less the same as the sharing phase of the
underlying WSS protocol; the difference is that now, in the reconstruction phase, each party reveals
the random pads they used in the sharing phase. A problem that arises is to ensure that a malicious
party Pi reveals the “correct” random pads. This is enforced by having each player act as a dealer in
its own execution of WSS, and “binding” the random pads of each party to this execution of WSS.
In more detail: in parallel with the sharing phase of the larger VSS protocol, each party Pi also acts
as a dealer and shares a random secret using the WSS protocol. Let F pad

i (x, y) be the corresponding
bivariate polynomial chosen by Pi. Then Pi will use ri,j := F pad

i (0, j) as the appropriate “random
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pad” in the larger VSS protocol. (The pads {ri,j} used by any honest party Pi are thus no longer
independent, but secrecy is still preserved since they lie on a random degree-t polynomial.) These
random pads are then revealed in the reconstruction phase by using the reconstruction phase of
the underlying WSS protocol.

We can use the ideas outlined in the previous paragraph to obtain a (3, 1)-round VSS protocol,
but the resulting protocol will not have 2-level sharing. Yet all is not lost. As observed already in
Lemma 4, by the end of the sharing phase of the resulting VSS protocol the honest parties that are
not unhappy do have the required 2-level shares. To achieve our desired result we must therefore
only enable any unhappy honest party to construct its 2-level shares.

At a high level, we do this as follows: Suppose F̂ (x, y) is the dealer’s bivariate polynomial,
defined by the end of the sharing phase of the VSS protocol, and let Pi be an honest party who
is unhappy. We need to show how Pi constructs the polynomials F̂ (x, i) and F̂ (i, y) (which it will
use to generate its 2-level shares exactly as in the proof of Lemma 4). Let Pj be a party such that:

• Pj is not unhappy (in the larger VSS protocol);

• Pj was not disqualified as a dealer it its own execution of WSS; and

• Pi is not unhappy in Pj ’s execution of WSS.

From the proof of Lemma 4, we know there is a bivariate polynomial F̂ pad
j (x, y) for which Pi holds

the univariate polynomial F̂ pad
j (x, i). Furthermore, Pj has effectively broadcasted the polynomial

Bj(x) def= F̂ (x, j) + F̂ pad
j (0, x) in round 3, since it has broadcasted F̂ (k, j) + F̂ pad

j (0, k) for all k.
Thus, party Pi can compute

F̂ (i, j) := Bj(i)− F̂ pad
j (0, i) = F̂ (i, j)

for any party Pj satisfying the above conditions. If there are t + 1 parties satisfying the above
conditions, then Pi can reconstruct the polynomial F̂ (i, y).

Unfortunately, it is not clear how to extend the above approach to enable Pi to also reconstruct
the polynomial F̂ (x, i) in the case when F̂ is an arbitrary bivariate polynomial. For this reason, we
have the dealer use a symmetric3 bivariate polynomial. Then F̂ (x, i) = F̂ (i, x) and we are done.

4.1 The Protocol

We show a (3, 1)-round VSS protocol with 2-level sharing that tolerates t < n/3 malicious parties.
Proofs of security are deferred to the appendix.

Sharing phase. The sharing phase consists of three rounds, with broadcast used in the last round.

Round 1: The dealer holds s. The following steps are carried out in parallel:

1. The dealer chooses a random symmetric bivariate polynomial F (x, y) of degree t in
each variable such that F (0, 0) = s. Then D sends to each party Pi the polynomial
fi(x) := F (x, i). Note that F (x, i) = F (i, x) since F is symmetric.

2. Each party Pi picks a random value ŝi and executes the first round of the WSS protocol
described in the previous section, acting as a dealer to share the “input” ŝi. We refer to
this instance of the WSS protocol as WSSi.

3A polynomial F is symmetric if, for all `, m, the coefficient of the term x`ym is equal to the coefficient of the
term xmy`. If F is symmetric then F (i, j) = F (j, i) for all i, j.
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3. Let F pad
i (x, y) denote the bivariate polynomial used by Pi in WSSi (i.e., F pad

i (0, 0) = ŝi).
Party Pi sends the polynomial ri(y) := F pad

i (0, y) to the dealer D.

Round 2: Round 2 of WSSi is run, for all i. Concurrently, each party Pj does the following:

1. For all i, send aj,i := fj(i) to Pi.

2. Let fpad
i,j (x) be the x-polynomial that Pi sent to Pj in round 1 of WSSi. (If Pi is honest

then fpad
i,j (x) = F pad

i (x, j).) Party Pj sends r′i,j := fpad
i,j (0) to D.

Round 3: Round 3 of WSSi is run, for all i. Concurrently, for every ordered pair (i, j):

1. (From the viewpoint of Pi:) If aj,i 6= fi(j), then Pi broadcasts (“disagree”, fi(j),
F pad

i (0, j)). Otherwise, Pi broadcasts (“agree”, fi(j) + F pad
i (0, j)).

2. (From the viewpoint of Pj :) If ai,j 6= fj(i), then Pj broadcasts (“disagree”, fj(i),
fpad

i,j (0)). Otherwise, Pj broadcasts (“agree”, fj(i) + fpad
i,j (0)).

3. (From the viewpoint of D:) If ri(j) 6= r′i,j , then D broadcasts (“not equal”, F (j, i)).
Otherwise, D broadcasts (“equal”, F (j, i) + ri(j)).

Local computation. Each party locally carries out the following steps:

1. An ordered pair of parties (Pi, Pj) is conflicting if, in round 3, party Pi broadcasts (“dis-
agree”, fi(j), F pad

i (0, j)); party Pj broadcasts (“disagree”, fj(i), fpad
i,j (0)); and it holds that

F pad
i (0, j) = fpad

i,j (0). For a pair of conflicting parties (Pi, Pj), we say that Pi (resp., Pj) is
unhappy if one of the following conditions hold:

(a) D broadcasts (“not equal”, di,j) and di,j 6= fi(j) (resp., di,j 6= fj(i)).

(b) D broadcasts (“equal”, di,j) and di,j 6= fi(j) + F pad
i (0, j) (resp., di,j 6= fj(i) + fpad

i,j (0)).

Let Core denote the set of parties who are not unhappy with respect to the definition above.
For every Pi who was not disqualified as the dealer in WSSi, let Corei denote the set of
parties who are not unhappy with respect to WSSi. (If Pi was disqualified in WSSi, then set
Corei := ∅.)

2. For all i, j, remove Pj from Corei if either of the following hold for the ordered pair (i, j) in
round 3:

• Pi broadcasts (“agree”, y) and Pj did not broadcast (“agree”, y).

• Pi broadcasts (“disagree”, ?, w) and Pj broadcasts anything other than (“disagree”, ?, w).
(Here, ? denotes an arbitrary value.)

3. Remove Pi from Core if |Core ∩ Corei| < n − t. (Thus, if Pi was disqualified in WSSi then
Pi 6∈ Core.)

Note that all parties have the same view regarding Core and the {Corei}.
4. If |Core| < n − t, then the dealer is disqualified and a default value (and appropriate 2-level

shares) are shared.

5. Each party Pi computes a polynomial f̂i(x) of degree at most t:

10



(a) If Pi ∈ Core, then f̂i(x) is the polynomial that Pi received from the dealer in round 1.

(b) If Pi /∈ Core, then Pi computes f̂i(x) in the following way:

i. Pi first defines a set Core′i as follows: A party Pj is in Core′i if and only if all the
following conditions hold:
• Pj ∈ Core and Pi ∈ Corej .
• Define pj,k, for k ∈ {1, . . . , n}, as follows: if, in step 1 of round 3 for the ordered

pair (j, k), party Pj broadcasted (“agree”, yj,k), then set pj,k := yj,k. If Pj

broadcasted (“disagree”, wj,k, zj,k), then set pj,k := wj,k + zj,k.

We require that the {pj,k} are consistent with a polynomial Bj(x) of degree at
most t; i.e., Bj(k) = pj,k for all k. (If not, then Pj is not included in Core′i.)

Our proofs show that |Core′i| ≥ t + 1 if the dealer is not disqualified.
ii. For each Pj ∈ Core′i, set pj := pj,i − fpad

j,i (0). Let f̂i be the polynomial of degree at
most t such that f̂i(j) = pj for every Pj ∈ Core′i. (It will follow from our proof that
such an f̂i exists.)

6. Finally, Pi outputs si := f̂i(0) and si,j := f̂i(j) for all j ∈ {1, . . . , n}.

Reconstruction phase. Each party Pi sends si to all other parties. Let s′j,i be the value that
Pj sends to Pi. Using Reed-Solomon decoding, Pi computes a polynomial f(x) of degree at most t
such that f(j) = s′j,i for at least 2t + 1 values of j. The final output of Pi is f(0).

4.2 Proofs

We prove that the protocol given in the previous section is a VSS protocol with 2-level sharing that
tolerates t < n/3 malicious parties.

Lemma 5 If the dealer is not corrupted by the end of the sharing phase, privacy is preserved.

Proof Let C denote the set of parties corrupted by the end of the sharing phase. We show
that if the dealer remains uncorrupted, then the view of the adversary can be simulated given the
polynomials {fi(x)}Pi∈C . Since F (x, y) is a random symmetric bivariate polynomial of degree at
most t and |C| ≤ t, a standard argument (see, e.g., [4]) implies that the view of the adversary is
independent of the dealer’s input s.

It is immediate that the adversary learns nothing additional about s in round 2. As for the values
broadcast in round 3, consider an ordered pair (Pi, Pj) of parties who remain honest throughout the
sharing phase. Since the dealer is honest, we have fi(j) = F (j, i) = F (i, j) = fj(i) and, since Pi, Pj

are honest, ri(j) = r′i,j . Thus, in round 3, parties Pi, Pj , and the dealer all broadcast the same
“blinded” value fi(j)+F pad

i (0, j). Since F pad
i (0, y) is a random polynomial of degree at most t this

does not leak any information about the {fi(x)}Pi 6∈C that the adversary does not already know.

Lemma 6 If the dealer is not corrupted by the end of the sharing phase, then correctness and
commitment with 2-level sharing hold.

Proof If the dealer is honest, then no honest party is unhappy. Also, all honest parties are in
Corei for any honest player Pi. Since there are at least n − t honest parties, no honest party is
removed from Core. It follows that the dealer is not disqualified.
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Since all honest parties are in Core, each honest party Pi sets f̂i(x) := fi(x) = F (x, i). Defin-
ing p(x) def= F (0, x) and pj(x) def= F (j, x), it is straightforward to verify that the properties of
commitment with 2-level sharing hold:

• Each honest party Pi outputs si := f̂i(0) = F (0, i) = p(i).

• For all j, it holds that pj(0) = F (j, 0) = F (0, j) = p(j).

• For each honest party Pi and all j ∈ {1, . . . , n}, we have

si,j = f̂i(j) = F (j, i) = pj(i).

In the reconstruction phase, s′j,i = sj = p(j) for any honest party Pj . Thus, each honest party Pi

receives at most t values s′j,i that do not lie on the polynomial p(x). It follows that Pi outputs
s = p(0) = F (0, 0), the dealer’s input. This completes the proof.

We now move on to show that commitment with 2-level sharing holds even when the dealer is
malicious. The case of a disqualified dealer is obvious, so we focus on the case of a malicious dealer
who is not disqualified. We begin by proving three claims:

Claim 7 If the dealer is not disqualified, then for any honest Pi it holds that |Core′i| ≥ t + 1.

Proof If the dealer was not disqualified, then Core contains at least n−2t ≥ t+1 honest parties.
We show that any honest Pj ∈ Core is also in Core′i, proving the claim.

Since Pi and Pj are both honest, Pi ∈ Corej . Set B(x) def= fj(x)+F pad
j (0, x). This is a polynomial

of degree at most t, and the pj,k computed by Pi all lie on Bj(x). We conclude that Pj ∈ Core′i.

Claim 8 If the dealer is not disqualified in the sharing phase, there is a bivariate symmetric polyno-
mial F̂ (x, y) of degree at most t in each variable that is consistent with the polynomials f̂i computed
by every honest party in Core; i.e., for every honest Pi ∈ Core it holds that f̂i(x) = F̂ (x, i).

Proof If the dealer is not disqualified, then there are at least n − t parties in Core and at least
n−2t ≥ t+1 of them are honest. Let H denote the first t+1 such parties. The polynomials fi sent
by the dealer to the parties in H define a bivariate polynomial F̂ (x, y) in the natural way: namely,
let F̂ be such that F̂ (x, i) = fi(x) for each Pi ∈ H. We show that F̂ satisfies the requirements of
the claim.

By definition of F̂ , we have f̂i(x) = fi(x) = F̂ (x, i) for any Pi ∈ H. Next, observe that for
every honest Pi, Pj ∈ Core it holds that f̂i(j) = f̂j(i). Indeed, it must be the case that fi(j) = fj(i)
(or else one of Pi or Pj would be unhappy), and since Pi, Pj ∈ Core we have f̂i(x) = fi(x) and
f̂j(x) = fj(x). Since H ⊂ Core, this implies that F̂ is symmetric. It also implies that for every
honest Pi ∈ Core (i.e., not just the Pi ∈ H) we have f̂i(x) = F̂ (i, x) = F̂ (x, i), proving the claim.

Claim 9 Assume the dealer is not disqualified in the sharing phase, and let F̂ be the polynomial
guaranteed to exist by Claim 8. Then for any honest Pi 6∈ Core, it holds that f̂i(x) = F̂ (x, i).

Proof Fix an honest Pi 6∈ Core, and Pj ∈ Core′i. (Claim 7 shows that Core′i is non-empty.) By
definition, this means Pj ∈ Core and Pi ∈ Corej . So Pj was not disqualified as a dealer in WSSj

and, by Lemma 4, there exists a bivariate polynomial F̂ pad
j of degree at most t in each variable
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such that fpad
j,k (x) = F̂ pad

j (x, k) for all Pk ∈ Corej . (Recall that fpad
j,k denotes the polynomial that

Pj sent to Pk in round 1 of WSSj .)
Let pj,k be the values computed by Pi, and let Bj(x) be a polynomial of degree at most t such

that Bj(k) = pj,k for all k. Such a polynomial is guaranteed to exist because otherwise Pj 6∈ Core′i.
Since Pj remains in Core, we have |Core ∩ Corej | ≥ n − t. This means that there are at least

n−2t ≥ t+1 honest parties that are in both Core and Corej . Letting F̂ be the symmetric polynomial
guaranteed by the previous claim, we now show that for any honest Pk ∈ Core ∩ Corej we have
Bj(k) = F̂ (k, j) + F̂ pad

j (0, k). There are two cases to consider:

• If, in step 1 of round 3 for the ordered pair (j, k), party Pj broadcasted (“agree”, yj,k), then
pj,k := yj,k. Since Pk ∈ Corej , this means that Pk must have broadcasted (“agree”, yk,j) with
yk,j = yj,k in step 2 of that round (cf. step 2 of the local computation phase). Since Pk is
honest,

Bj(k) = pj,k = yj,k = yk,j

= fk(j) + fpad
j,k (0)

= F̂ (j, k) + fpad
j,k (0) (using Claim 8 and Pk ∈ Core)

= F̂ (j, k) + F̂ pad
j (0, k) (since Pk ∈ Corej)

= F̂ (k, j) + F̂ pad
j (0, k),

using the fact that F̂ is symmetric.

• If, in step 1 of round 3 for the ordered pair (j, k), party Pj broadcasted (“disagree”, wj,k, zj,k)
then, since Pk ∈ Corej , this means that Pk must have broadcasted (“disagree”, wk,j , zk,j) with
zk,j = zj,k. It must also be the case that wk,j = wj,k or else one of Pj or Pk would be unhappy.
It follows that

Bj(k) = pj,k = wj,k + zj,k = wk,j + zk,j ,

and then an argument as before shows that Bj(k) = F̂ (k, j) + F̂ pad
j (0, k).

Summarizing, we have Bj(k) = F̂ (k, j) + F̂ pad
j (0, k) for at least t + 1 values of k. Since Bj(x)

has degree at most t, this means Bj(x) = F̂ (x, j) + F̂ pad
j (0, x).

Party Pi next computes

pj := pj,i − fpad
j,i (0) = Bj(i)− F̂ pad

j (0, i)

= F̂ (i, j) + F̂ pad
j (0, i)− F̂ pad

j (0, i) = F̂ (i, j),

using the fact that Pi ∈ Corej in the first line. Since this is true for arbitrary Pj ∈ Core′i, we see that
the polynomial f̂i computed by Pi satisfies f̂i(x) = F̂ (i, x) = F̂ (x, i). This completes the proof.

Lemma 10 Even when the dealer is malicious, commitment with 2-level sharing holds.

Proof By the preceding two claims, there exists a symmetric bivariate polynomial F̂ (x, y) with
degree at most t in each variable such that f̂i(x) = F̂ (x, i) for any honest party Pi. Set p(x) :=
F̂ (x, 0) and pj(x) := F̂ (x, j). One can then verify that the properties of commitment with 2-level
sharing hold:
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• Each honest party Pi outputs si
def= f̂i(0) = F̂ (0, i) = F̂ (i, 0) = p(i).

• At the end of the reconstruction phase, each honest party Pi will output s′ = p(0).

• For all j, it holds that pj(0) = F̂ (0, j) = p(j).

• For each honest party Pi and all j ∈ {1, . . . , n}, we have

si,j
def= f̂i(j) = F̂ (j, i) = F̂ (i, j) = pj(i).

This completes the proof.
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