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Abstract

In this paper we present a new method to construct a polynomial u(x) ∈
Z[x] which will make Φk(u(x)) reducible. We construct a finite separable
extension of Q(ζk), denoted as E. By primitive element theorem, there exists
a primitive element θ ∈ E such that E = Q(θ). We represent the primitive
k-th root of unity ζk by θ and get a polynomial u(x) ∈ Q[x] from the repre-
sentation. The resulting u(x) will make Φk(u(x)) factorable.

1 Introduction

In recent years, there has been much interest in pairing-based cryptography. Many
protocols have been proposed such as [5, 15, 6]. In these protocols the following
problem is of great interest: given a small positive integer k, constructing an elliptic
curve over finite field Fq, denoted by E(Fq), such that #E(Fq), its group order,
has a large enough prime factor r and r divides qk − 1, but does not divide qi − 1,
0 < i < k. k is called embedding degree of E(Fq) and E(Fq) pairing-friendly
curve.

In practical application, the embedding degree of E(Fq) should be small enough.
Menezes, Okamoto and Vanstone [19] have pointed out that supersingular elliptic
curves have embedding degree k ≤ 6, thus they are suitable for paring-based cryp-
tography. However, the security of the cryptosystem is directly related to embed-
ding degree, but the embedding degree of supersingular elliptic curves is limited
to 6. In order to achieve higher security level, we turn to ordinary elliptic curves.
However Balasubramanian and Koblitz [2] have shown that ordinary elliptic curves
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which have small embedding degree are very rare. Hence we can not expect to find
elliptic curves with prescribed embedding degree by random selection.

Miyaji, Nakabayashi and Takano [20] first proposed a method to construct or-
dinary curves of prime order with embedding degree k = 3, 4, 6. Scott, Barreto
[25] extended Miyaji et al’s method and obtained curves of near prime order. A
lot of methods have been proposed to construct curves with arbitrary embedding
degree, such as Barreto, Lynn and Scott [6], Dupont, Enge and Morain [9] and
Brezing, Weng [7].

The factorization of Φk(u(x)) plays a important role in many methods such as
[20, 7, 4, 10], where Φk(u(x)) is the k-th cyclotomic polynomial [16] and u(x) ∈
Z[x]. Generally believe that u(x) ∈ Z[x] such that makes Φk(u(x)) factorable
is rare. The results of Galbraith, McKee and Valença [12] are often used when
k = 5, 8, 10, 12 [4, 10]. In other cases, u(x) is found by computer search.

In this paper we describe a new method to explicitly construct u(x) ∈ Q[x]
such that Φk(u(x)) splits. By this method, we can find all most all suitable u(x).
The resulting u(x) can be used to search paring-friendly elliptic curves with good
property.

This paper is organized as follows. In Section 2, we describe some prerequi-
sites for our method and use power integral basis to construct suitable polynomials.
In Section 3, we present our method and give some examples. In section 4, some
applications are presented.

2 Prerequisites and Power integral basis

If E is an extension of field F, an element α of E is said to be algebraic over F
if there is nonconstant polynomial f ∈ F[x] such that f(α) = 0. E is said to be
algebraic if every element of E is algebraic over F.

Definition 1. [1] An irreducible polynomial f ∈ F[x] is separable if f has no
multiple roots.

Definition 2. [1] Let E be an extension of F and α ∈ E, α is separable over F,
if α is algebraic over F and the minimal polynomial of α over F is a separable
polynomial. If every element of E is separable over F, then we say that E is a
separable extension of F.

It is well-known that every algebraic extension of a field of characteristic zero
is separable[1].

In this paper we are interested in number field. A number field is a subfield L
of C which is a finite extension of Q. Since every finite extension of a field is an
algebraic extension [1, 16], then every element of L is algebraic over Q. Because
the characteristic of L is zero, L is a separable extension of Q.

In the remainder of this section, we use power integral basis to construct suit-
able polynomials.
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Theorem 1. Let u(x) be a polynomial with rational coefficients. Suppose ζk is a
primitive k-th root of unity, if equation u(x) = ζk has a solution in Q(ζk), then
Φk(u(x)) has an irreducible factor of degree ϕ(k).

Proof. Suppose θ ∈ Q(ζk) and u(θ) = ζk, then Φk(u(θ)) = 0. Let r(x) be the
minimal polynomial of θ over Q, so r(x)|Φk(u(x)). By the hypothesis, Q(ζk) ⊆
Q(θ). Since θ ∈ Q(ζk), we have Q(θ) ⊆ Q(ζk). Hence Q(ζk) = Q(θ) and
degr(x) = ϕ(k).

Theorem 1 extends the results of Galbraith, McKee and Valença [12]. From
the theorem we see that if an element θ ∈ Q(ζk) can be found such that ζk = u(θ),
u(x) ∈ Q[x], then Φk(u(x)) is factorable.

Definition 3. [23] Let K be a number field andOK is its ring of integers, thenOK

is said to have a power integral basis if there exists an element α of OK such that
OK = Z[α].

If K = Q(ζk), then OK = Z[ζk] [17].

Definition 4. Suppose α, α̃ ∈ OK , α and α̃ are said to be equivalent if α =
n± δ(α̃), δ ∈ Gal(K/Q).

According to Györy [14], up to equivalent, there are only finitely many ele-
ments which generate a power integral basis for any number field.

As K = Q(ζk) is concerned, if θ 6= ζk generates a power integral basis(i.e.
OK = Z[θ]), then ζk = u(θ), u(x) ∈ Z[x], since ζk ∈ OK . By Theorem 1,
Φk(u(x)) splits. We used the results of [23, 24, 13] to find elements that generate
a power integral basis for Q(ζk). If k = p or pm, where p is a prime, we choose
θ = n ± δ(ζk) or θ = n ± δ(η), η = 1

1+ζk
, δ ∈ Gal(Q(ζk)/Q). Otherwise, we

select θ = n ± δ(ζk) where δ ∈ Gal(Q(ζk)/Q). The advantage of above method
is that u(x) has small integral coefficients.

Example 1. Let k = 5, if we choose θ = 1 + ζ2
k , then u(x) = x3 − 3x2 + 3x− 1,

Φk(u(x)) = (x4−3x3 +4x2−2x+1)(x8−9x7 +35x6−76x5 +99x4−76x3 +
30x2 − 4x + 1)

Example 2. Let k = 8, we choose η = 1
1+ζk

= −1
2x3 + 1

2x2− 1
2x+ 1

2 , θ = 2− η,
then u(x) = 2x3 − 8x2 + 14x − 9, Φk(u(x)) = 2(2x4 − 12x3 + 30x2 − 36x +
17)(4x8 − 40x7 + 196x6 − 592x5 + 1194x4 − 1632x3 + 1470x2 − 792x + 193).

It follows from Theorem 1 that the method above can only generate u(x) ∈
Z[x] such that Φk(u(x)) has an irreducible factor of degree ϕ(k). So there are
some suitable polynomials which can not be generated by above method.

Example 3. Let k = 3, u(x) = 2
9x5 − 7

9x4 + 14
9 x3 − 26

9 x2 + 28
9 x − 2

9 , then
Φ3(u(x)) = 1

81(4x4−16x3 +33x2−61x+67)(x6−3x5 +6x4−11x3 +12x2 +
3x + 1)

It is a problem whether there is a method which can construct all suitable poly-
nomials. We will solve this problem in Section 3.

3



3 Primitive Element Theorem

The following theorem extends Theorem 1.

Theorem 2. Let ζk be a primitive k-th root of unity and Q(ζk) the k-th cyclotomic
field. Then Φk(u(x)) splits where u(x) ∈ Q[x] iff there exists an finite extension E
of Q such that ζk ∈ E and u(x) = ζk has a solution in E.

Proof. If there exists an extension E of Q which satisfies above conditions and
u(θ) = ζk, then Φk(u(θ)) = 0. Let r(x) be the minimal polynomial of θ over
Q, so r(x)|Φk(u(x)). Conversely, if Φk(u(x)) is factorable, let r(x) ∈ Q[x] be an
irreducible factor of Φk(u(x)) and θ be a solution of r(x) = 0, then Φk(u(θ)) = 0.
Hence u(θ) is a primitive k-th root of unity, without loss of generality, we assume
u(θ) = ζk. So ζk ∈ E = Q(θ) and E = Q(θ) is an finite extension of Q.

Corollary 1. Suppose u(x) is a suitable polynomial and θ is a root of equation
u(x) = 0. If f(x) is the minimal polynomial of θ over Q, then Φk(g(x)f(x) +
u(x)) is reducible where g(x) ∈ Q[x].

Proof. Form the hypothesis we have g(θ)f(θ) + u(θ) = u(θ) = ζk. Theorem 2
implies that Φk(g(x)f(x) + u(x)) is factorable.

Without loss of generality, we assume E = Q(θ). If a simple extension E =
Q(θ) of Q can be found such that Q(ζk) ⊆ E, then there exists u(x) ∈ Q[x] such
that u(θ) = ζk. According to Theorem 2, Φk(u(x)) is factorable.

Here we face the problem of generating such E. We use following theorems to
solve this problem.

Theorem 3. Suppose E = F(α1, · · · , αn), if αi is separable over F, then E is
separable over F.

Proof. See Ash [1] or Lang [16].

Theorem 4. (Primitive Element Theorem) If E is a finite separable extension of F,
then E = F(α) for some α ∈ E.

Proof. See Ash [1] or Lang [16].

We say that α is a primitive element of E over F.
Let g(x) be an irreducible polynomial over Q, then g(x) is separable over Q,

since the characteristic of Q is zero. Suppose β is a root of g(x) = 0. Because
Φk(x) is also separable, according to Theorem 3, Q(ζk, β) is finite separable exten-
sion of Q. By Theorem 4, there exists α ∈ Q(ζk, β) such that Q(ζk, β) = Q(α).
So ζk = u(α) for some u(x) ∈ Q[x] . According to Theorem 2, Φk(u(x)) is re-
ducible. Determining α for Q(ζk, β) is known as the primitive element problem [8].
According to Corollary 1, Φk(g(x)f(x) + u(x)) is splitting, where g(x) ∈ Q[x]
and f(x) is the minimal polynomial of α over Q.

Above method can be summarized as:
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Algorithm 1. For a fixed small positive integer k:
1. Random select an irreducible polynomial g(x) over Q.
2. Find a primitive element α of Q(ζk, β) where β is a root of equation g(x) = 0.
3. Represent ζk by α, get u(x) where u(x) ∈ Q[x], ζk = u(α).
4. Choose a polynomial g(x) ∈ Q[x], let ũ(x) = g(x)f(x) + u(x) where f(x) is
the minimal polynomial of α over Q.

In our algorithm we firstly construct an extension of Q(ζk)(possibly will be
a trivial extension see example 7 below, but it is rare). Then we find a primitive
element θ of the extension. We use θ to represent the primitive k-th root of unity
ζk and get u(x) from the representation. The polynomial ũ(x) we get from the
algorithm will make Φk(ũ(x)) reducible. One irreducible factor r(x) of Φk(ũ(x)
is the minimal polynomial of θ over Q. Usually θ /∈ Q(ζk).

Using PARI [22], we have following examples.

Example 4. Let k = 3, g(x) = x2 − 3, suppose β is a root of the equation
x2 − 3 = 0 and α is a primitive element of Q(ζ3, β), the minimal polynomial of
α over Q is x4 − 2x3 − 3x2 + 4x + 13. We have u(x) = − 2

15x3 + 1
5x2 − 8

15 ,
Φ3(u(x)) = 1

225(4x2 − 4x + 13)(x4 − 2x3 − 3x2 + 4x + 13)

Example 5. Suppose k = 3 and g(x) = x3 − 3x2 + 1, let β be the root of
equation x3 − 3x2 + 1 = 0, we get a primitive element α of Q(ζ3, β) whose
minimal polynomial over Q is x6 − 9x5 + 30x4 − 47x3 + 45x2 − 30x + 19. Then
u(x) = − 4

57x5 + 31
57x4 − 86

57x3 + 109
57 x2 − 115

57 x + 2
3 , Φk(u(x)) = 1

3249(16x4 −
104x3 + 233x2 − 235x + 361)(x6 − 9x5 + 30x4 − 47x3 + 45x2 − 30x + 19)

Example 6. Assume k = 4, g(x) = x3− 3 and β is a root of equation x3− 3 = 0,
then the primitive element α of Q(ζ4, β) found in this example is such that its
minimal polynomial over Q is x6 + 3x4 − 6x3 + 3x2 + 18x + 10. Hence u(x) =
24
179x5 − 27

179x4 + 80
179x3 − 234

179x2 + 201
179x + 273

179 , Φ4(u(x)) = 1
32041(x6 + 3x4 −

6x3 + 3x2 + 18x + 10)(576x4 − 1296x3 + 2841x2 − 8208x− 10657)

In some cases, Q(α) = Q(ζk).

Theorem 5. Suppose d is a squarefree positive integer, then (1) if 2 - d, 4 - k
and d|k, then

√
d ∈ Q(ζk) if d ≡ 1 (mod 4),

√
−d ∈ Q(ζk) if d ≡ 3 (mod 4)

; (2) If 4|k and d|k but 2 - d, then
√

d,
√
−d ∈ Q(ζk) ; (3) if 8|k and d|k then√

d,
√
−d ∈ Q(ζk).

Proof. See Murphy, Fitzpatrick [21].

If g(x) = x2 + d or g(x) = x2 − d and d satisfies above conditions, then
β =

√
d or

√
−d ∈ Q(ζk). Hence Q(ζk, β) = Q(ζk).

Example 7. Let k = 12 and d = 3, suppose f(x) = x2 − 3 and f(β) = 0, using
PARI [22], the primitive element α of Q(ζk, β) we find is such that its minimal
polynomial over Q is x4 − 13x2 + 49. Using the modreverse function of PARI
[22], we get that Q(ζk, β) = Q(α) = Q(ζk).
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Theorem 6. All u(x) ∈ Q[x] such that Φk(u(x)) is reducible can be constructed
by Algorithm 1.

Proof. Suppose u(x) is a suitable polynomial, by Theorem 2, there exists a simple
extension Q(θ) of Q such that ζk ∈ Q(θ) and u(θ) = ζk. Let f(x) be the minimal
polynomial of θ over Q. Assume g(x) = f(x) and β = θ, since ζk ∈ Q(θ),
we have Q(ζk, β) = Q(β)(i.e. α = β). If ζk is represented by θ, we get ũ(x)
from the representation. Since ũ(θ) = u(θ) = ζk, f(x)|u(x) − ũ(x) (i.e. u(x) =
ũ(x) + h(x)f(x), where h(x) ∈ Q[x]).

4 Applications

Brezing-Weng’s method [7] is often used in constructing pairing-friendly curves.
It can be described as follow [11].

Algorithm 2. Fix a integer k and a positive square free integer D:
1. Choose a number field K containing

√
−D and a primitive k-th root of unity

ζk.
2. Find an irreducible polynomial r(x) ∈ Z[x] such that Q[x]/(r(x)) ∼= K.
3. Let t(x) ∈ Q[x] be a polynomial mapping to ζk + 1 ∈ K.
4. Let y(x) ∈ Q[x] be a polynomial mapping to ζk−1√

−D
∈ K.

5. Let p(x) ∈ Q[x] be given by (t(x)2 + Dy(x)2/4. If p(x) and r(x) represent
primes, then then the triple (t(x), r(x), p(x)) represents a family of curves with
embedding degree k and discriminant D.

We will search x0 ∈ Z+ such that r(x0) and p(x0) are primes. If x0 is found,
then there exists an elliptic curves over the prime fields Fp(x0) with embedding
degree k [7].

Our method can be used in step 2 and 3. Let t(x) = u(x) + 1 and r(x) be an
irreducible factor of Φk(u(x)).

Most of currently constructed pairing curves are those with small CM dis-
criminant specially D = 3. In [11] the authors have shown that for maximum
security it is necessary to generate curves with variable square-free discriminant.
Our method can be used for this purpose. In the step 1 of algorithm 1, we select
polynomials of special form g(x) = x2 + D where D is a square free positive
integer. In the step 4 of algorithm 1, we select g(x) = 0. Let β be a root for
g(x) = x2+D(i.e.β =

√
−D) and θ a primitive element θ of the compositum field

of Q(ζk) and Q(β). Hence
√
−D, ζk ∈ Q(θ). If we use θ to represent

√
−D and

ζk, two polynomials u(x) and δ(x) are got where u(θ) = ζk and δ(θ) =
√
−D. In

algorithm 2, we select the polynomial t(x) = u(x)+1 which maps to ζk +1 ∈ K,
and y(x) = (u(x) − 1)δ(x)−1 which maps to ζk−1√

−D
∈ K. Using algorithm 2, we

can construct pairing-friendly curves with discriminant specified. The advantage
of this is that it does not pre-request that r(x) has special form or we have to do
other operations. It can generate curves with relatively larger discriminant which
is pre-set.
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Example 8. Let k = 5 and g(x) = x2 + 2, using algorithm 1, we get u(x) =
720

13079x7 − 1355
13079x6 + 8016

13079x5 − 10970
13079x4 + 29840

13079x3 − 19940
13079x2 + 14926

13079x + 56
1189 ,

r(x) = x8−2x7+11x6−16x5+39x4−28x3+19x2+6x+11,
√
−2 ≡ 720

13079x7−
1355
13079x6 + 8016

13079x5 − 10970
13079x4 + 29840

13079x3 − 19940
13079x2 + 28005

13079x + 56
1189 (mod r(x)),

y(x) = 360
13079x7− 1355

26158x6+ 4088
13079x5− 5485

13079x4+ 14920
13079x3− 9970

13079x2+ 28005
26158x+ 28

1189
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III, Publ. Math. Debrecen, 23, 141-165(1976).

[15] A. Joux, A One Round Protocol for Tripartite Diffie-Hellman, Journal of
Cryptology, 17, 263-276(2004).

[16] S. Lang, Algebra, Revised 3ed, Springer, New York(2002).
[17] D. A. Marcus, Number Fields, Springer, New York(1977).
[18] A. Menezes, An introduction to pairing-based cryptography, Available at

http://www.cacr.math.uwaterloo.ca/˜ajmeneze/publications/pairings.pdf.
[19] A. Menezes, T. Okamoto, and S. Vanstone, Reducing Elliptic Curve Log-

arithms to Logarithms in a Finite Field, IEEE Transactions on Information
Theory, 39, 1639-1646(1993).

[20] A. Miyaji, M. Nakabayashi and S. Takano, New Explicit Conditions of El-
liptic Curve Traces for FR-Reduction, IEICE Transactions on Fundamentals,
E84-A(5), 1234-1243(2001).

[21] A. Murphy, N. Fitzpatrick, Elliptic Curves for Pairing Applica-
tions, Cryptology ePrint Archive Report 2005/302, Available at:
http://eprint.iacr.org/2005/302.pdf.

[22] PARI/GP, Computer Algebra System, Available at: http://pari.math.u-
bordeaux.fr.

[23] L. Robertson, Power Bases for Cyclotomic Integer Rings, Journal of Number
Theory, 69, 98-118(1998).

[24] L. Robertson, Power Bases for 2-Power Cyclotomic Fields, Journal of Num-
ber Theory, 88, 196-209(2001).

[25] M. Scott and P. S. L. M. Barreto, Generating More MNT Elliptic Curves,
Designs, Codes and Cryptography, 38, 209-217(2006).

[26] L. Washington, Introduction to Cyclotomic Fields, Springer, New
York(1997).

8


