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Abstract. We use hybrid encryption with Fuzzy Identity-Based Encryption (Fuzzy-IBE) schemes, and 
present the first and efficient fuzzy identity-based key encapsulation mechanism (Fuzzy-IB-KEM) 
schemes which are chosen-ciphertext secure (CCA) without random oracle in the selective-ID model. 
To achieve these goals, we consider Fuzzy-IBE schemes as consisting of separate key and data 
encapsulation mechanisms (KEM-DEM), and then give the definition of Fuzzy-IB-KEM. Our main 
idea is to enhance Sahai and Waters' "large universe" construction, chosen-plaintext secure (CPA) 
Fuzzy-IBE, by adding some redundant information to the ciphertext to make it CCA-secure.  
Keywords: chosen-ciphertext security; hybrid encryption; fuzzy identity based encryption; key 
encapsulation mechanism 
 
1 Introduction 

In an Identity-Based Encryption (IBE) scheme, a user's public key may be an arbitrary string, such 
as an email address or other identifier. IBE can simplify public key and certificate management in a 
public key infrastructure (PKI). Shamir (1985) proposed the concept of IBE in 1984, and the first IBE 
systems were given by Boneh and Franklin (2001) and Cocks (2001). Ever since then, a rapid 
development of IBE has taken place, and a series of papers (Boneh and Boyen, 2004a, b; Canetti et al., 
2003; Gentry, 2006; Waters, 2005) have been striving to achieve stronger notions of security in the 
standard model.  

However, we don't necessarily have a unique string identifier for each person. Instead, we often 
identify people by their attributes. For example, an airport might want to send a ciphertext to any A380 
plane which belongs to Eastern Airlines or Southern Airlines. To fulfill this task, the concept of 
Fuzzy-IBE recently introduced by Sahai and Waters (2005) is to provide an error-tolerance property for 
IBE. Namely, in Fuzzy-IBE, a user with the secret key for the identity ω  can decrypt a ciphertext 

encrypted with the public key 'ω  if ω  and 'ω  are within a certain distance of each other. Since 
Sahai and Waters' first work, Fuzzy-IBE has been discussed in the context to the attribute-based 
encryption (ABE). Recently, Goyal et al. (2006) proposed an ABE scheme that provides fine-grained 
sharing of encrypted data. Piretti et al. (2006) used Sahai and Waters' "large universe" construction of 
Fuzzy-IBE to realize their secure information management architecture. In 2007, Baek et al. (2007) 
presented two new Fuzzy-IBE schemes in the random oracle model in which their public parameter's 
size is independent of the number of attributes in each identity. Chase (2007) presented a scheme which 
allows any polynomial number of independent authorities to monitor attributes and distribute secret 
keys. 

Chosen-ciphertext security: In a chosen ciphertext attack (CCA), the adversary is given access 
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to a decryption oracle that allows him to obtain the decryptions of ciphertexts of his choosing. For 
different reasons, the notion of CCA-secure has emerged as the "right" notion of security for 
encryption schemes. We stress that, in general, CCA-secure is a much stronger security requirement 
than chosen-plaintext attacks (CPA), because in CPA an attacker is not given access to the decryption 
oracle. To the best of our knowledge, all (Sahai and Waters, 2005; Goyal et al., 2006; Pirretti et al., 
2006; Baek et al., 2007; Chase, 2007) are CPA-secure. We can use the Fujisaki-Okamoto 
transformation (Fujisaki and Okamoto, 1999) to achieve CCA-secure, but the drawback of this 
technique is to use random oracle. Unfortunately a proof in the random oracle model can only serve as 
a heuristic argument and has proved to possibly lead to insecure schemes when the random oracles are 
implemented in the standard model (Canetti et al., 1998). 

Arbitrary-length plaintexts: As is often the case with most public-key and identity-based 
encryption schemes, the fuzzy identity-based encryption (Fuzzy-IBE) schemes can only be used to 
encrypt relatively short messages, typically about 160 bits. To encrypt longer messages, one will have 
to resort to hybrid techniques (Hofheinz and Kiltz, 2007; Kiltz, 2007; Kiltz and Galindo, 2006): the 
sender uses the Fuzzy-IBE to encrypt a fresh symmetric key K and encrypts the actual message under 
the key K .  

Our contributions: In this paper, we use hybrid encryption with Fuzzy Identity-Based 
Encryption (Fuzzy-IBE) schemes that consist of separate key and data encapsulation mechanisms 
(KEM-DEM) to give the definition of Fuzzy-IB-KEM. Here, the Fuzzy-IB-KEM encrypts a random 
key under a fuzzy identity, while the DEM encrypts the actual data under this random key. In addition, 
we present the first and efficient fuzzy identity-based key encapsulation mechanism (Fuzzy-IB-KEM) 
schemes which are CCA-secure without random oracle in the selective-ID model. Our main idea is to 
enhance CPA-secure Fuzzy-IBE by adding some redundant information to the ciphertext (consisting of 
a single group element) to make it CCA-secure. The redundant information is used to check whether a 
given Fuzzy-IB-KEM ciphertext was "properly generated" by the encryption algorithm or not. 
Intuitively, this "consistency" checking gives us the necessary leverage to deal with the CCA.  

The rest of the paper is organized as follows. In Section 2 we formally define a Fuzzy 
Identity-Based Key Encapsulation scheme and the security model. Then, we describe the security 
assumptions. We follow with a description of our construction In Section 3. In Section 4, we prove the 
security of our scheme. Finally, we conclude in Section 5. 
 
2 Preliminaries 

Below, we first introduce the definition of security for a Fuzzy Identity-Based Key Encapsulation 
system (Fuzzy-IB-KEM), then review the definition of a bilinear map and discuss the complexity 
assumption on which the security of our system is based. 
2.1 Security Model for Fuzzy Identity-Based Key Encapsulation 

Similar to the IB-KEM scheme Kiltz and Galindo (2006), a Fuzzy-IB-KEM system consists of 
four algorithms:   
Setup: Setup establishes the PKG's parameter params and a master key.  
KeyGeneration: KeyGeneration applies the master-key to an identity to generate the private key for 
that identity.  
Encapsulation: Encapsulation takes an identity and params as input, and outputs a random session 
key K  and a corresponding ciphertext E .  
Decapsulation: Decapsulation decapsulates a ciphertext for an identity by using a private key for that 



identity to get back the session key K .  
A Fuzzy-sID-KEM-CCA game: The Fuzzy-sID-KEM-CCA game is very similar to the 

Fuzzy-sID-CPA game (Sahai and Waters, 2005).  
Init: The adversary declares the identity,α , that he wishes to be challenged upon. 
Setup: The challenger runs Setup, and forwards params to the adversary. 

Challenge: The challenger selects a random bit {0,1}b∈  and a random key  KeySpace, sets 

= Encapsulation

*
0K ∈

* *
1,E K< > ( , )params α , and sends * *

bK K= * *,E K< >  to the adversary 

as its challenge ciphertext.  

Guess-stage: Proceeding adaptively, the adversary issues queries where  is one of the 

following: 

1, , mq q iq

Key generation query iγ< >  where iγ α∩ < : The challenger runs KeyGeneration on d iγ  

and forwards the resulting private key to the adversary. 

Decapsulation query ,i iEγ< > : The adversary can not request a Decapsulation query 

,i iEγ< > where iγ α∩ ≥ d  and andiE *E are equivalent. Otherwise, the challenger runs 

KeyGeneration on iγ , decapsulates  using the private key, and sends the resulting session key iE K  

to the adversary. 

Guess. The adversary submits a guess ' {0,1}b ∈ . The adversary wins if 'b b= . 

We call an adversary A a Fuzzy-sID-KEM-CCA adversary in the above game. 

Definition 1:  An Fuzzy-IB-KEM system is ( , , , )ID Ct q q ε  Fuzzy-sID-KEM-CCA secure if all 

t-time Fuzzy-sID-KEM-CCA adversaries making at most  Key generation queries and at most 

chosen ciphertext queries have advantage at most  

IDq

Cq ε  in winning the above game. 

Note that in contrast to the definition of IB-KEM that given by Kiltz and Galindo (2006), we 
consider a simplified (but equivalent) security experiment without a "find-stage". This is because the 
adversary declares the challenge identity firstly in the selective-ID model. 
2.2 Bilinear Maps 

We briefly review the facts about groups with efficiently computable bilinear maps. We refer the 

reader to previous literature (Boneh and Franklin, 2001) for more details. Let  be groups of 

prime order , and let be a generator of . We say  has an admissible bilinear 

map, , into , if the following two conditions hold.  

1,G G2

2

p g 1G 1G

1 1:e G G G× → 2G

The map is bilinear; for all we have . ,a b ( , ) ( , )a b abe g g e g g=



The map is non-degenerate; we must have that ( , ) 1e g g ≠ . 

2.3 Complexity Assumptions 
We state our complexity assumptions below. 

Definition 2 (Decisional Bilinear Diffie-Hellman (BDH) Assumption): Suppose a challenger chooses 

at random. The Decisional BDH assumption is that no polynomial-time adversary is to be 

able to distinguish the tuple  from the tuple 

  with more than a negligible advantage. 

, , pa b c∈

( , , , ( , )a b c aA g B g C g Z e g g= = = = )bc

) )z

2

( , , , ( ,a b cA g B g C g Z e g g= = = =

 
3 Our Construction 

Our construction can be viewed as a modification of the Sahai and Waters' "large universe" 
construction. We modify their scheme by adding some redundant information to the ciphertext 
(consisting of a single group element) in the Encapsulation algorithm and as a result, the consistency of 
the ciphertext in Decapsulation algorithm needs to be tested before decapsulating. 
3.1 Description  

As in the Sahai and Waters (2005), let   be bilinear group of prime order , and let be a 

generator of . Additionally, let bilinear map

1G P g

1G 1 1:e G G G× → . We restrict the length of identities to 

be some fixed n. We also define the Lagrange coefficient Δi,S for Pi∈ and a set, , as elements in S

P :
,

( )
j S j i

x
∈ ≠

Δ = ∏i,S

x-j

i-j
. 

Identities will be sets of  elements of . Our construction follows: n *
P

Setup(n,d): First, choose  , , and Let   be a target 

collision-resistant hash function. 

1 2 1,yg g g G= ∈ *
2u G∈

1

1: pH G →

Next, choose uniformly at random from . Let = 1, , nt t + 1G N {1, , 1}n +  and we define a 

function,T , as: ,
1

( )
2

1

( )
n

i N
n

xx
i

i

T x g t
+

Δ

=

= ∏ .We can view  as the function T ( )
2

nx h xg g for some  

degree polynomial . 

n

h

The public key is: 1 2 1 1( , , , , , )nmpk g g u t t += .  

The master key is: . msk y=

KeyGeneration: To generate a private key for identity ω , the following steps are taken. A 

degree polynomial  is randomly chosen such that 1d − ( )q x (0)q y= .The private key is 



(( ) , ( ) )i i i id D dω ω∈ ∈= ω  where ( )
2 ( ) irq i

iD g T i= and ir
id g= for is a random member ofir P . 

Return (( ) , ( ) )i i i id D dω ω ω∈ ∈= . 

Encapsulation: Encapsulation with the public key of 'ω  proceeds as follows. 

First, a random value  is chosen. The ciphertext is then published as:  ps∈

1
sC g= , '{ ( ) }s

i iE T i ω∈= , , ,1( )t H C= 1( )t sg uΠ = 1 2( , )sK e g g= . 

1 '( ', ,{ } , )i iE C E ωω ∈= Π . 

Return ( , )E K . 

Note that the identity, 'ω , is included in the ciphertext.  

Decapsulation: Suppose that a ciphertext, 1 '( ', ,{ } , )i iE C E ωω ∈= Π , is encapsulated with a key for 

identity 'ω  and we have a private key (( ) , ( ) )i i i id D dω ω∈ ∈ω= where ' dω ω∩ ≥ .First we test 

the consistency of the ciphertext : let 1( )t H C= . 

If 1 '( , , ( ), )i ig C T i E ω∈ and 1 1 2( , , , )tg C u u Π  is a DH-tuple, then we choose an arbitrary 

-element subset, , of d S 'ω ω∩ . After that, the ciphertext can be decapsulated as: return 

, (0)1( , )( )
( , )

i Si

i S i i

e D CK
e d E

Δ

∈

=∏ .Otherwise return a random K ( ). *
2K G∈

Correctness: If the ciphertext is consistent, then 

, , ,

,
,

( ) ( )
(0) (0) (0)1 2 2

( ( ) (0))
( ) (0)

2 2 2 1 2
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s q i
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Δ Δ

∈ ∈ ∈

Δ
Δ

∈

= = =

∑
= = = = =
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∏

Δ

 

Definition 3: A ciphertext 1( , ,{ } , )i iE C E ωω ∈= Π  is consistent if and only 

if 1( , , ( ), )i ig C T i E ω∈ and 1 1( , , , )tg C g u Π  is a DH-tuple, i.e. 1{ ( , ( )) ( , )}i ie C T i e g E ω∈=  and 

.  1 1( , ) ( , )te C g u e g= Π

Definition 4: We say two ciphertexts 1 '' ( ', ',{ '} , ')i iE C E ωω ∈= Π and 

1 ''' ( '', '',{ ''} , '')i iE C E ωω ∈= Π are equivalent if and only if following situations hold: 1)both 'E and 

''E is consistent; 2) ' '' dω ω∩ ≥ ; 3) 1 1' 'C C '= ; 4) ' ''Π = Π .  



3.2 Efficiency 
As in Kiltz and Galindo (2006) we make the Diffie-Hellman consistency checking implicit so that 

the decapsulation algorithm will be more efficient. This is done by choosing a random 

values  and computing the session key as:  *,il l∈ p

,

1 1
(0)1

( , ( ) )
( , )( )
( , ) ( , )

i

i S

i

l t l

i i S
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∈
∈
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∑
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It is easy to see 

,
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,
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t
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e D C
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If 1{ ( , ( )) ( , )}i ie C T i e g E ω∈=  and 1 1( , ) ( , )te C g u e g= Π , then 1( , ( )) 1
( , )i

i

e C T i
e g E

ϕ = = , 

1 1( , ) 1
( , )

te C g u
e g

ϕ = =
Π

. So , (0)1( , )( )
( , )

i Si

i S i i

e D CK
e d E

Δ

∈

=∏  , otherwise is a random group element.  

Compared to Sahai and Waters' "large universe" construction (Sahai and Waters, 2005), our scheme 

contains two more elements of the public key, one more element of ciphertext,  times 

exponentiation and computes two more pairings in decapsulation. 

( )o d

3.3 Public Verifiability 

The consistency of a ciphertext 1( , ,{ } , )i iE C E ωω ∈= Π can be publicly checked by using 

bilinear map, i.e. by verifying if 1{ ( , ( )) ( , )}i ie C T i e g E ω∈=  and . This 

property is denoted as public verifiability of the ciphertext and it gives rise to a public-key threshold 
Fuzzy-IB-KEM (Kiltz and Galindo, 2006). 

1 1( , ) ( , )te C g u e g= Π

 
4 Proof of Security 

We prove that the security of our scheme in the Fuzzy-sID-KEM-CCA model reduces to the 



hardness of the Decisional BDH assumption. The theorem and proof are straightforward 
generalizations to the Fuzzy-IBE case of Sahai and Waters (2005). 

Theorem: Assume the ( , )t ε -Decisional BDH assumption holds. Then, the above Fuzzy-IB-KEM 

system is ( ', , , ')ID Ct q q ε -Fuzzy-sID-KEM-CCA secure for  ' (t t o t)= −  and 'ε ε= .  

Proof: Suppose there exists a polynomial-time adversary, A, that can attack our scheme in the 
selective-ID model with advantage 'ε . We build a simulator B that can play the Decisional BDH game 
with advantage 'ε ε= . 

The simulation proceeds as follows: We first let the challenger set the groups and with an 

efficient bilinear map  and a generator  of .The challenger flips a fair binary coin 

1G 2G

e g 1G μ  

outside of B's view. If 0μ = , the challenger sets ; otherwise 

it sets for random . 

( , , , ) ( , , , ( , ) )a b c abcA B C Z g g g e g g=

( , , , ) ( , , , ( , ) )a b c zA B C Z g g g e g g= , , ,a b c z

Init: B will run A and receive the challenge identity,α , an  element set of members of n P . 

Setup: The simulator B assigns the public parameters 

and , , for random . It then chooses a random  degree 

polynomial 

1g = A 2g B= * ( )t H C=
*t du A g−= d n

( )f x and calculates a  degree polynomial such that for all n ( )u x ( ) nu x x= −

x α∈ and for some other( ) nu x x≠ − x . Our construction assures that ( ( )) nx u x x∀ = −  if and 

only if x α∈ . 

Then, for  from 1 to the simulator sets . Note that since i 1n+ ( ) ( )
2

u i f i
it g g= ( )f x  is a 

random  degree polynomial all will be chosen independently at random as in the construction 

and we implicitly have .  

n it

( ) ( )
2( )T i

ni u i f ig g+=

*Π

Challenge:  The process of computing is as below: 

* * ( ) * * * * *
1 1,{ } , , , ( , ,{ } , )f i d

i i i iC C E C C K Z E C Eα αα∈ ∈= = Π = = = . The simulator 

B implicitly selects a random bit v μ= . 

Then, it sends * *,E K< >  to the adversary A as its challenge ciphertext. 

If 0v μ= = , then . Then the ciphertext is: ( , )abcZ e g g=

* ( ){ ( ) ( ) }c f i c
i iE g T i α∈= = ,

, .This is a 

**
1( ) ( ) ( ) (s ct H g H g H C H C= = = = )

* * * ** ( )
1( ) ( ) ( )t s at a t d c d c dg u g g g g C−Π = = = = * *

0( , )abcK Z e g g K= = =



valid ciphertext and session key *K under the identity α  for randomness . Otherwise, 

if

c

1v μ= = , then ( , )zZ e g g= and . Since * *
1( , )zK Z e g g K= = = z  is random, *K will 

be a random element of  from the adversaries view. 2G

Guess-stage: 

Key generation query γ< >  where γ α∩ < d :   

Suppose A requests a private key γ  where γ α∩ < . Firstly, we define three sets  in 

the following manner:  

d , ', SΓ Γ

γ αΓ = ∩ , can be any set such that 'Γ ' γΓ ⊆ Γ ⊆ , ' 1dΓ = − , and ' {0}S = Γ ∪ . 

Next, we define the decryption key components and  for iD id 'i∈Γ as: 

2 ( )i r
i

iD g T iλ= where  , ir iλ are chosen randomly in and we letp
ir

id g= . 

The intuition behind these assignments is that we are implicitly choosing a random degree 

polynomial by choosing its value for the 

1d −

( )q x 1d −  points  in Γ  randomly by setting 

( ) iq i λ= In addition to having (0)q a= .The simulator also needs to calculate the decryption key 

values for all 'i γ∈ −Γ .We calculate these points to be consistent with our implicit choice of . 

The key components are calculated as: 

( )q x

, 0,
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2 1 2
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Si iri u i
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The value will be non-zero for all( )ni u i+ i α∉ , which includes all 'i γ∈ −Γ . Let 
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= − Δ
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 and let be defined as above. We then have:  ( )q x
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Additionally, we have: 

0, 0,

1 '
( ) ( )'( ) ( )

1( ) ( )
in n

S Si i

ar
i ir ri u i i u i

id g g g g
−

−
Δ Δ+ += = =  

Therefore, the simulator is able to construct a private key for the identityγ . Furthermore, the 

distribution of the private key for  γ  is identical to that of original scheme since our choices of iλ  

induce a random 1d − degree polynomial and our construction of the private keys components 

and . iD id

Decapsulation query , Eγ< > : The simulator B first checks that whether the ciphertext 

1( , ,{ } , )i iE C E ωω ∈= Π  is consistent.  

If E  is not consistent, then the simulator B rejects the query.  
Else E  is consistent, there are two cases. 

Case 1: γ α∩ < : the simulator B can first query the Key generation query and get the private 

key, then decapsulate it. 

d

Case 2: dγ α∩ ≥ : there are three sub-cases: 

Case 2a: if s s* , t= . '' then t In this case, consistency implies '* Π = Π n = , the E  and *E  

 equivalent, so the query made by A is illegal. Therefore it may be rejected by simulator B. are

Case 2b: if *s s≠ and , then this is not possible since simulator B can found 

a collision  in TCR function 

*t t= *
1C C≠ 1

1
*

1C C≠ H with . *
1 1( ) ( )H C H C=

Case 2c: if *s s≠ and , then return*t t≠ *
1

1

(( ) , )t t
dK e B

C
−Π

= . 

Correctness: In the original Decapsulation algorithm, first the secret key for identity γ is 



computed as ( )
2{ ( ) }irq i

i iD g T i γ∈= { }ir
i id g γ∈=  for random , and then the session key ir K  is 

reconstructed as: 
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iρ  is a 

random element in  otherwise, the decapsulated session key 2G K  in the original scheme is 

distributed as in the simulation. 

Guess: A will submit a guess ' of v , the simulator B will output a guess v ' 'vμ = of μ .It is easy to 

see ' v 'μ = and vμ = . 

If  the simulator will output ' 0v = ' 0μ = to indicate that it was given a BDH-tuple. Otherwise 

it will output ' 1μ =  indicating it was given a random 4-tuple. 

As shown in the construction the simulator's generation of public parameter and private keys is 
identical to that of the actual scheme. 

Let  be the event that the simulator B wins its DBDH game, then BF

Pr[ ] Pr[ ' 1 1]Pr[ 1] Pr[ ' 0 0]Pr[ 0]

Pr[ ' 1 1]Pr[ 1] Pr[ ' 0 0]Pr[ 0]
'

BF

v v v v v v

ε μ μ μ μ μ

ε

= = = = = + = = =

= = = = + = = =

=

μ

 

 
5 Conclusions and Future Work 

We present first efficient fuzzy identity-based key encapsulation mechanisms (Fuzzy-IB-KEM) 
schemes which are selective-ID-CCA-secure without random oracle. Compared to Sahai and Waters' 
"large universe" construction (Sahai and Waters, 2005), our scheme contains two more elements of the 

public key, one more element of ciphertext,  times exponentiation and computes two more 

pairings in decapsulation. 

( )o d

Chase (2007) showed how to apply their techniques to achieve a CPA secure multi-authority 



version of the large universe fine grained access control ABE presented by Goyal et al. (2006). We 
want to make it CCA secure. 
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