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Abstract

Reducing the minimum assumptions needed to construct various
cryptographic primitives is an important and interesting task in theo-
retical cryptography. Oblivious Transfer, one of the most basic crypto-
graphic building blocks, is also studied under this scenario. Reducing
the minimum assumptions for Oblivious Transfer seems not an easy
task, as there are a few impossibility results under black-box reduc-
tions.

Until recently, it is widely believed that Oblivious Transfer can be
constructed with trapdoor permutations but not trapdoor functions
in general. In this paper, we enhance previous results and show one
Oblivious Transfer protocol based on a collection of trapdoor functions
with some extra properties. We also provide reasons for adding the
extra properties and argue that the assumptions in the protocol are
nearly minimum.
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1 Introduction

1.1 Oblivious Transfer

Oblivious Transfer (OT) is an important two-party cryptographic protocol.
The first known OT system was introduced by Rabin [24] in 1981 where a
message is received with probability 1/2 and the sender cannot know whether



his message reaches the receiver. Prior to this, Wiesner [25] introduced a
primitive called multiplexing, which is equivalent to the 1-out-of-2 OT [10]
known today, but it was then not seen as a tool in cryptography. In 1985,
Even et al. defined the 1-out-of-2 OT [10], where the sender has two secrets
oo and oy and the receiver can choose one of them in an oblivious manner.
That is, the sender cannot know the receiver’s choice i € {0,1} and the
receiver cannot know any information on o1_;. The former property is called
receiver’s privacy and the latter sender’s privacy. Later, Crépeau [6] showed
that Rabin’s OT and the 1-out-of-2 OT are equivalent. Furthermore, the
more general l-out-of-N OT (where the sender has N secrets), the more
specific 1-out-of-2 bit OT (where the secrets are one bit long), are similarly
defined and the reductions among the variants of OT have been discussed
in the literature, e.g. [3, 4, 8].

OT protocols are fundamental building blocks of modern cryptography.
Most notably, it is known that any multi-party secure computation can be
based on OT [20, 28]. By simple arguments it can be seen that, in 1-out-of-2
OT, either sender’s privacy or receiver’s privacy must be protected by some
computational assumptions, where the other party may be protected in the
information theoretic sense. The symmetry of 1-out-of-2 bit OT [26] implies
that we have the freedom to choose which side to protect in which way when
we are given a protocol.

Various implementations of OT protocols have been proposed, and they
are all based on some computational assumptions. As an efficient implemen-
tation, Naor and Pinkas has proposed a protocol [22] based on Diffie and
Hellman [9] type of problems.

1.2 Complexity Assumptions of OT

We are interested to know the minimum computational assumptions neces-
sary for building OT. Unavoidably, for each OT protocol proposed, we may
have to rely on some unproven computational assumptions for its security.
To some extent, this is acceptable, since most cryptographic protocols imply
the existence of one-way functions [18], which in particular implies P # N P.

On the other hand, since it may be impossible to avoid all the computa-
tional assumptions, we would like to construct protocols based upon as weak



assumptions as possible. In any cryptographic protocol, less underlying as-
sumptions means more confidence on the security. Therefore, the study of
minimum computational assumptions of various cryptographic primitives
is an important part in cryptographic research. For example, while one-
way permutation is known to imply statistically-hiding commitment [21],
this assumption has been reduced in [15]. And finally, Haitner and Reingold
[16] recently proved that statistically-hiding commitment can be constructed
from any one-way function. That enables us to rely on one-way functions
to use zero-knowledge arguments.

The situation for OT is more complicated. From the discussion in [17],
it is known that OT can be based on one-way functions if there exists a
witness retrievable compression algorithm for some type of SAT formulas.
But on the other hand, the combination of the oracle separation [19] between
one-way permutations and key agreement and the construction [2, 24] of key
agreements from OT suggests that black-box reductions from OT to one-
way functions are impossible. In general, it is believed that it will be very
difficult, if not impossible, to build OT with one-way functions only.

In the original paper of [10], trapdoor permutations with some extra
properties are used to construct OT. In [13], Haitner proposed a similar
protocol which in theory reduced the computational assumptions required by
[10]. The protocol uses a collection of dense trapdoor permutations. In [23],
another construction of [10] is made from a new type of trapdoor functions
(called lossy trapdoor functions) with some specific properties. However, the
definition comes rather from concrete problems such as the Diffie-Hellman
problem and lattice problems than from the theoretical origin.

In this paper, we focus on two issues. We explore the possibility to
further reduce the computational assumptions of OT as stated in [13]. We
like to know if trapdoor functions, rather than trapdoor permutations, can
be used to construct OT. Also, we investigate the essential properties of
trapdoor functions that is necessary for OT. For example, Bellare et al.
showed that many-to-one trapdoor functions with super-polynomial pre-
image size can be constructed from one-way functions [1]. This fact says that
many-to-one trapdoor functions with polynomial pre-image size may have
very different properties from those of super-polynomial pre-image size. It



also suggests that OT may not be constructible from many-to-one trapdoor
functions with super-polynomial pre-image size.

While public key encryptions can be constructed from many-to-one trap-
door functions with polynomial pre-image size as stated in [1], there exists
an oracle separation in [11] between public key encryptions and OT. Thus, it
is natural to ask whether OT can be constructed from many-to-one trapdoor
functions with polynomial pre-image size.

As the main result of this paper, we show that the protocol of [13] can
be improved to make it applicable to general trapdoor functions. The per-
mutation property is thus not essential. This fact is actually discussed in
the concluding remarks of [13]. But the trapdoor functions used in our pro-
tocol have some extra properties with respect to pre-image size and length
expansion, and we argue that these extra properties are necessary and are
close to the minimum in black-box reductions. Consequently, we have an
OT construction based on a weaker assumption than the previous results.

2 Preliminaries

2.1 Semi-honest Model

We limit ourselves to the semi-honest model in our OT protocol. In a semi-
honest protocol, all parties are assumed to follow the protocol properly,
except that they may try to extract extra information from the communi-
cations, possibly by performing some computations afterwards. In [12] it
is shown that a protocol for semi-honest model can be used to construct
an equivalent protocol in the general malicious model, where nothing is as-
sumed about the parties. In [14], it is shown that such a construction can
be done in the black-box way, where the semi-honest protocol is used as a
black-box.

These known constructions of protocols for the malicious model from the
semi-honest model are based on commitment schemes and zero-knowledge
proofs. Regarding to complexity assumptions, they also require the existence
of one-way functions. Using the combination of these results, we can obtain
OT in the general model simply by constructing a semi-honest OT protocol.



2.2 1-out-of-2 Bit OT

In this paper, we consider only the 1-out-of-2 bit OT in the semi-honest
model. It is known that other versions of OT can be constructed using 1-
out-of-2 bit OT as building blocks. The sender has two secret bits (o9, 071)
and the receiver has a choice bit 7. In the correct output, the receiver will
get 0; and not o;_;, where the sender will get no information about 7. More
formally, let Vg(og,01,4) and Vg(0j,01-4,1) be the random variables for the
sender’s and receiver’s view of the protocol respectively, given the receiver’s
choice 7 and the sender’s secrets oy and o;. Note that the notation of
Vr(04,01-4,1) is informal because the order of parameters is not fixed. This
is not a problem because the receiver always knows ¢ and the order of the
other two parameters are decided accordingly. The privacy properties of OT
can be described as, for all possible ¢, oy and o7:

1. Sender’s privacy: Receiver gains no computational knowledge about
o1-4. That is, for any probabilistic polynomial time algorithm M,

| Pr[M(VR(Uia L, Z)) = 1] - Pr[M(VR(Uia 0, Z)) = 1]| < neg(n) (1)
where neg(n) stands for a negligible function of n.!

2. Receiver’s privacy: Sender gains no computational knowledge about 3.
| Pr[M (Vs(o0,01,0)) = 1] = Pr[M(Vs(oo,01,1)) = 1]| <neg(n) (2)
for any probabilistic polynomial time algorithm M.

The standard definition of OT above requires that both parties are at
least protected computationally. Nonetheless, in an OT system, it is known
that at most one party’s privacy can be perfectly protected in information
theoretic sense. In that case, even if the other party is computationally
unbounded, the first party’s privacy is still maintained. On the other hand,
as it is impossible to protect both parties perfectly, some computational
assumptions must be introduced.

In our basic protocol, the receiver’s privacy is protected in information
theoretic sense. It is compatible with the standard definition, and our anal-
ysis is much simplified by the information theoretic arguments.

! A negligible function of n, denoted by neg(n), is defined as a function of n where
|neg(n)| < |ﬁ| for any polynomial g(n), for large enough n.



2.3 Weak OT

A Weak OT protocol (WOT) is a relaxed version of OT. The weakness is
described by three parameters. In a (e, €2, €3)-WO'T, the secret required by
the receiver is only guaranteed to pass correctly with a probability no less
than 1 — ¢;. This is called the correctness of the protocol. On the other
hand, the receiver does not gain more computational advantage about o;_;
than €9, and the sender does not gain more computational advantage about
1 than eg. Similar to the normal OT, we have:

1. Sender’s privacy: For any probabilistic polynomial time algorithm M,
| Pr[M(Vg(04,1,1)) = 1] — Pr[M (Vg(0:,0,7)) =1]] < €. (3)
2. Receiver’s privacy: For any probabilistic polynomial time algorithm
M,
| Pr[M (Vs(00,01,0)) = 1] — Pr[M (Vs(09,01,1)) =1]| <e3.  (4)
Note that, under our definition, a (neg(n),neg(n),neg(n))-WOT is equal to
OT, in either the semi-honest model or the general model.

2.4 Pairwise Independent Hash Functions

Let H, be a family of functions where the length of input /; and length of
output /2 are both in polynomial in n. From [5] it is well known that, for any
choice of [1 and Iy, there exists an efficient family of pairwise independent

hash functions H,, with the following properties.
1. There exists a polynomial-time algorithm to sample h € H,, uniformly.

2. There exists a polynomial-time algorithm to evaluate h(z) given h and
x € {0,1}1.

3. When h is uniformly sampled, for every distinct 1,25 € {0,1}* and
every y1,ys € {0,1}",

Prlh(a1) = y1 A hes) = 12] = g (5)



3 Trapdoor Functions for OT

In this paper we are constructing OT based on a special type of trapdoor
function. We first define the normal trapdoor function, and add some extra
restrictions suitable for our purpose. At the same time, we try to minimize

the assumptions we make.

3.1 Collection of Dense Trapdoor Functions

In general, a collection of (non-injective) trapdoor functions F,,, where n is
the security parameter, have the following properties:

1. There exists an efficient algorithm which uniformly selects a function
fa in F,, represented by «, and generates the trapdoor ¢ at the same

time.

2. Denote the domain of the function by D,. If € D, then f,(z) can
be computed efficiently.

3. Without the trapdoor ¢, for a uniformly chosen x € D,, when given
fa(2) it is computationally infeasible to obtain any =’ € D,, such that

fa(2') = fa().

4. For any = € D,, given f,(z) and ¢, there exist an efficient algorithm to
find one 2’ € D, such that f,(z') = fao(z). That is, we can calculate
2’ = f1(t,y) where y = f,(z'), if in the first place y = f.(z) for some

z in the domain.

3.2 The Extra Properties

In this paper, in order to construct our OT protocol, we require the trapdoor
functions to have a few more properties. We list them here and call them
the Five Extra Properties, in order to distinguish our trapdoor functions

from the general ones.

1. Without loss of generality, we assume D, C {0,1}". For all z € {0,1}"
we assume f,(z) can be evaluated using the same algorithm evaluating
the function, and the algorithm will halt in polynomial time, producing



some output. That is, even if x ¢ D, we assume the algorithm will
still run and produce a string as output. As we do not assume that
the algorithm can detect the fact of x ¢ D,, we assume nothing about
the output string.

2. For all y € {0,1}™, the function f;'(¢,y) can be evaluated using the
same algorithm evaluating the inverse function, and the algorithm will
halt in polynomial time, producing some output. The idea is similar
to Property 1 above.

3. There exist a polynomial p(n) such that, for all «, the set D, is dense
in {0,1}". That is,

1

o g (6)

4. For all z € D, we have f,(z) € {0,1}" for some fixed m = n +
O(logn). That is, the expansion (in terms of the length of strings)
of the function is in order of logn. This assumption can be relaxed
slightly that only a majority of x € D, have this property. To be more
precise, as long as those x € D, having this property are dense in D,
they are also dense in {0,1}" due to Property 3 above. In that case
we can restrict the domain of the trapdoor function to this new set of
x, without affecting any other property of the trapdoor function.

5. For any o, when 2 € D, and y = f,(x), the number of pre-images of
y is bounded by a polynomial. That is, there exist a polynomial ¢(n)
that, for all o and y,

Iny = {z€Dy: falz) =y} (7)
oyl < a(n). (8)

3.3 Reasons for Extra Properties

Among the Five Extra Properties, Property 1 and 2 are general clarifications
and may be assumed to be true anyway. Property 3 is adopted from [13],
and we find that in our protocol it is still necessary in order to sample the

elements in the function domain.



Property 4, the expansion property, is related to [11], which proves that
OT cannot be black-box reduced to public key encryption or trapdoor func-
tion without any assumption. The proof is constructed relative to a world
with a PSPACE-complete oracle. In this world one special trapdoor func-
tion exists, but OT does not exist. The special trapdoor function is length-
expanding in O(n). The length-expanding property of this trapdoor function
makes it difficult to sample valid images of the function without knowing
the pre-image.

Note that OT can be reduced to public key encryption if it is possible to
sample its valid ciphertexts, separately from the corresponding plaintexts.
Therefore, the impossibility results are shown relative to a world where the
only public key encryption does not have this property.

As OT cannot be black-box reduced to trapdoor functions which is
length-expanding in O(n), we attempt to build the OT with a trapdoor
function which is at most length-expanding in O(logn).

Property 5, the pre-image property, is due to [1], where non-injective
trapdoor functions are studied. In [1], a trapdoor function with exponential
pre-image size is black-box constructed from a one-way function. On the
other hand, it is known that OT cannot be black-box reduced to one-way
function [19]. This, combined with the recent results of black-box construc-
tion of OT from semi-honest OT [14], implies that semi-honest OT cannot be
black-box constructed from a trapdoor function with exponential pre-image
size.

In [1], it is also shown that a trapdoor function with polynomial pre-
image size is sufficient to construct public key encryption. Therefore, we are
motivated to build our OT protocol with a trapdoor function of polynomial

pre-image size.

4 The Protocol

The construction of our OT protocol is similar to [13], that a semi-honest
Weak OT protocol is first constructed. After that, the process to enhance
it to a semi-honest OT is exactly the same as [13].

First of all, we select a collection of pairwise independent hash functions



H,, with domain {0,1}" and range {1,2,...,g(n)p(n)q(n)} where g(n) > 1
is a polynomial of our choice which will be discussed in the next two sections.
The sender has secret bits (0, 01) and the receiver has the choice bit i. The
protocol is:

1. The sender uniformly selects a trapdoor function («,t) and a hash
function h € H,,.

2. The sender sends (h, «) to the receiver.

3. The receiver selects uniformly s € {0,1}" and calculates f,(s). If
fa(s) ¢ {0,1}™ another s is selected iteratively until f,(s) € {0,1}"™.
After that the receiver sets r; = fq(s) and selects uniformly ri_; €
{0,1}™.

4. The receiver sends {rg, 1} in random order to the sender.

5. Not knowing the order of {ry,r;}, for both j = 0,1 the sender checks
the following conditions are satisfied.

fc?l(tvrj) € {0, l}n (9)
falfat(t,ry)) = 1. (10)

If the answer is negative, the sender aborts the current iteration and
restarts the protocol. Otherwise the protocol continues with the sender
setting for j = 0,1

v = h(f7 (t.r))). (1)

6. The sender sends {vg,v1} in the same order as he received {rg,r}
from the receiver before.

7. Receiver checks that v; = h(s). If the result is negative, the current
iteration aborts and the protocol is restarted. Otherwise, the receiver
reveals the true order of (rg,r1) to the sender. From here, both ry and
ry are thought to be good candidates as the keys in the OT protocol.
The receiver is thought to know the pre-image of exactly one of them,
where the sender does not know which one.

10



8. For both j = 0,1 the sender chooses y; € {0,1}" uniformly and sets

¢j = o ®b(f3 (t,75),y)) (12)

where b(x,y) is the inner product of z,y modulus 2, a hardcore pred-
icate.

9. The sender sends (cg, c1, Yo, y1) to the receiver.

10. The receiver outputs o, = b(s,y;) ® ¢;. This is the secret required.

5 Analysis of Protocol

To make analysis easier, we define the following sets before we proceed.

D, = {x€Dy:x= [, (t falr))} (13)
Ry = fa(Da) = fa(Dq) (14)
where R, is the range of the trapdoor function. Also, there is a one-to-one

relationship between D! and R,. Next, we define the following sets, acting
as an extension of the domain of the trapdoor function.

D! = {ze{0,1}":z = f, (t, fo(@)) A folz) € {0,1}™}  (15)
R, = fa(Dy). (16)

Naturally, there is also a one-to-one relationship between elements in D
and R/. Also we see that D!, = D, N DJ.

5.1 Running Time

Observe that, due to the dense property of Dy, in {0,1}" and D/, in D,, D),
is also dense in {0,1}". As |D.| = |Ry| and m = n + O(logn), R, is dense
in {0,1}". To be more precise, in our protocol we have

Pr(s € D) > (n)lq a (17)
Pr(ry i € o) > - (n)ql(n)nc (18)



for some constant c.

In an iteration, if s € D!, and r;_; € R, then the protocol will reach the
end successfully. It is easy to see that the total expected number of iterations
is polynomial in n. Thus, we say the protocol runs in expected polynomial
time. To be precise, in order to guarantee that the protocol will come to a
halt, we need to set a counter for the number of iterations. The protocol is
terminated when the counter exceeds some predetermined number. In this
case, the running time will be polynomial, while the weakness parameter for
correctness in WOT will be increased by a negligible amount.

Also, we see how the properties of the trapdoor function affect the run-
ning of the protocol. Both the expansion property and pre-image property
affect the density of usable elements in the domain and range of the trapdoor

function. Here they are required for the running time to be polynomial.

5.2 Correctness

With the discussion above, the protocol will be prematurely terminated with
a negligible probability. If this does not happen, the protocol is executed to
the last step. In the last iteration of the protocol, the receiver can get the
required secret correctly if s = f (¢, ;).

Failure occurs if s # f,!(t,7;) and at the same time h(s) = v;. It is
independent of the choice of r1_;, even though r;_; may lead to an absorbed
round. For probability we write:

_
p(n)q(n)

—1 . S) = v; -
Pr(s # fo (t,7:) A h(s) i) < ( p(n)q(n)

and the remaining probability is that the iteration gets absorbed. Thus, the

Pr(s = f, ' (t,m)) > (19)

) (20)

probability of correctness, given that the iteration is not absorbed, would
be

1
p(n)q(n)

1 1
s T 1~ e Grpmam))

1
9(n) + (1 = smam)

12



> 1—— (21)

as p(n) > 1 and ¢g(n) > 1. This gives the required result that ¢; < 1/g(n).
If we also consider the minor case that the protocol may not run through
the end, we have €; < 1/g(n) + neg(n).

5.3 Privacy of Receiver

First of all we argue that, when s = f, !(¢,7;), we have s € D”. On the other
hand, r1_; € R if the protocol is run through the end in an iteration. Due to
the one-to-one relation between elements of D/ and R, we conclude in this
case that both ry and r will appear uniformly distributed in R[, protecting
the privacy of the receiver. As a result, the weakness parameter for receiver’s
privacy is bounded by the same events that determine correctness, and thus
e3 < 1/g(n).

At this point, it is important to see that receiver’s privacy is protected
in information theoretic sense, without requiring permutation properties in
the trapdoor functions. In previous works, the permutation property in
trapdoor permutations is usually needed to protect the receiver’s privacy
in information theoretic sense, while the sender’s privacy is protected by
computational hardness of the inverse function.

5.4 Privacy of Sender

The main weakness of the Weak OT protocol is on the sender’s privacy.
After all, 7o and r; are finally not even guaranteed to be in R,. We can
assume nothing about the computational hardness of inverting function f,
in that case.

But if r;_; € R,, the sender’s privacy is maintained. In this case it is
easy to see that, if the receiver has non-negligible advantage in guessing o;_;
then he also has non-negligible advantage in getting f, !(¢,71_;), in violation
of our computational assumption.

The event r1_; € R, is only related to the density of R, in {0,1}™. For
that we have

e <1— (22)

p(n)q(n)ne

13



where we see that the privacy of sender depends on all the special properties
of our trapdoor function: the dense property p(n), the pre-image property
¢(n) and expansion property c.

6 Strengthening the Weak OT

As a result, we have a (ﬁ + neg(n),1 — ﬁ, ﬁ)—WOT, where t(n) =

In general, it is possible to strengthen a Weak OT [27] to a

C

p(n)a(n)ne.
standard OT under some conditions, within either the semi-honest model or
general model. For our protocol, the construction in [13] can be used, which
involves a technique from [7]. The details of the process can be seen in the
Appendix of this paper.

7 Concluding remarks

We believe the main contribution of this paper is two-fold. In some sense,
we remove the permutation requirement in trapdoor functions for construct-
ing OT. We show that trapdoor functions with some extra properties are
sufficient. On the other hand, we argue that these extra properties may be
hard to remove, considering previous black-box impossibility results.
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A The Strengthening of the Weak OT

The following construction is designed to strengthen a (€1, €2, €3)-WOT with
(€1,€2,€3) = (ﬁ + neg(n),1 — %, ﬁ) While €; and e3 are subjected
to our choice of g(n), e2 depends on the density parameters of the trapdoor
function. It is relatively larger and we handle it first. As the process is
the same as [13], the choice of g(n) can be the same. As illustrated in the

following, it works for g(n) = 3n2t(n).

A.1 The Second Parameter

We enhance the sender’s privacy by breaking his secrets into many parts by
a secret sharing scheme. Each secret o; is split into nt(n) parts {w;}, for
1 < k < nt(n). The following conditions are satisfied:

1. Wj1...Wjniyn)—1 are uniformly chosen from {0,1}.

t(n)—1
2. Wjmni(n) = ( Z:(T) wjik) B 0.

The pairs {wo, w1} are then sent by the (Tln) + neg(n),1 — nt%n)’ ﬁ)'

WOT system. As the receiver can only get the secret o; by getting {w;}

for all k, this process enhances sender’s privacy. It produces a (Zt((:)) +

neg(n),neg(n), Zﬁ%))—WOT system, where the second parameter is negligi-
ble. Note that the first and third parameters of the WOT are increased for

no more than n¢(n) times. The running time of the protocol is also increased

for nt(n) times.

A.2 The First Parameter

Next, the correctness is enhanced by a repeated run of the WOT resulted
from the last step, and the correct value is decided by the majority rule.
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TL2 n nun
We get a (neg(n),neg(n), gffz)) gt((n)) +
nt(n)

neg(n),neg(n), o) )-WOT protocol n times. While ¢; becomes negligible,

)-WOT protocol by running the (

€3 increases no more than n times. The running time also increases n times.

A.3 The Third Parameter

The last step is a technique from [7] in which an OT system is constructed
out of a repeated run of a WOT which is weak in terms of the third parameter
only. At the end, only the XOR of all the receiver’s choices is his real choice.
The protocol is:

1. Sender chooses a constant p and generates a list of y — 1 random bits

(do,1---Pou—1)-
2. Sender sets ¢p, = o9 ® @Z;i b0,k
3. Sender sets the second list of bits as ¢1 1 = ¢o . © o¢ @ o1 for all k.

4. The two parties use the (neg(n),neg(n), %)—WOT for y times to
transfer each pair of (¢, P1k)-

5. The receiver makes the choices randomly, except that the XOR of all
choices represents the real choice. That is, denoting the choices by i

for 1 <k < p, we have

o
i=Pir. (23)

i = D bi, - (24)

In this protocol, if the sender tries to guess the final choice ¢ of the
receiver, he has to guess each of the i; correctly. The probability of the
sender being able to do so drops exponentially with u. By selecting a
suitable p linear in n, we get a (neg(n),neg(n),neg(n))-WOT out of the

(neg(n),neg(n), ngzé(g))—WOT. The running time is increased by p times.

This is our final OT protocol as all three weakness parameters are now
negligible.
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