
Dynamic SHA-2

Zijie Xu
E-mail: xuzijiewz@gmail.com

Abstract. In this paper I describe the construction of Dynamic SHA-2 family of
cryptographic hash functions. They are built with design components from the SHA-2
family, but I use the bits in message as parameters of function G, R and ROTR
operation in the new hash function. It enabled us to achieve a novel design principle:
When message is changed, the calculation will be different. It makes the system can
resistant against all extant attacks.

Key words: Cryptographic hash function, SHA, Dynamic SHA-2

1 Introduction
The SHA-2 family of hash functions was designed by NSA and adopted by NIST in
2000 as a standard that is intended to replace SHA-1 in 2010 [6]. Since MD5, SHA-0
and SHA-1 was brought out, people have not stopped attacking them, and they
succeed. Such as: den Boer and Bosselaers [2,3] in 1991 and 1993, Vaudenay [8] in
1995, Dobbertin [5] in 1996 and 1998, Chabaud and Joux [4] in 1998, Biham and
Chen [1] in 2004, and Wang et al. [9–12] in 2005. Most well known cryptographic
hash functions such as: MD4, MD5, HAVAL, RIPEMD, SHA-0 and SHA-1, have
succumbed to those attacks.

Since the developments in the field of cryptographic hash functions, NIST decided
to run a 4 year hash competition for selection of a new cryptographic hash standard
[7]. And the new cryptographic hash standard will provide message digests of 224,
256, 384 and 512-bits.

In those attacks, we can find that when different message inputted, the operation
in the hash function is no change. If message space is divided many parts, in different
part, the calculation is different, the attacker will not know the relationship between
message and hash value. The hash function will be secure. To achieve the purpose,
Dynamic SHA-2 use bits in message as parameter of function G, R and ROTR
operation to realize the principle.

My Work: By introducing a novel design principle in the design of hash functions, and
by using components from the SHA-2 family, I describe the design of a new family of
cryptographic hash functions called Dynamic SHA-2. The principle is:

When message is changed, the calculation will be different.

The principle combined with the already robust design principles present in SHA-2
enabled us to build a compression function of Dynamic SHA-2 that has the following
properties:

1. There is not message expansion part.
2. The iterative part includes three parts.
3. The first part includes one round. Mix message words once.
4. The second part includes 9 rounds. Mix no message word.
5. The third part includes 7 rounds. Mix message words 7 times.

2 Preliminaries and notation
In this paper I will use the same notation as that of NIST: FIPS 180-2 description of
SHA-2 [6].

The following operations are applied to 32-bit or 64-bit words in Dynamic SHA-2:

1. Bitwise logical word operations:‘ ’∧ –AND ,‘ ’∨ –OR,‘ ’⊕ –XOR and ‘ ’–Negation. ¬
2. Addition ‘+’ modulo or modulo . 322 642

3. The shift right operation, , where x is a 32-bit or 64-bit word and n is an
integer with 0≤n<32 (resp. 0≤n<64).

)(xSHRn

4.The shift left operation, , where x is a 32-bit or 64-bit word and n is an
integer with 0≤n<32 (resp. 0≤n<64).

)(xSHLn

5. The rotate right (circular right shift) operation, , where x is a 32-bit or
64-bit word and n is an integer with 0 ≤ n < 32 (resp. 0 ≤ n < 64).

)(xROTR n

6. The rotate left (circular left shift) operation, , where x is a 32-bit or 64-bit
word and n is an integer with 0 ≤ n < 32 (resp. 0 ≤ n < 64).

)(xROTLn

Depending on the context I will sometimes refer to the hash function as Dynamic
SHA-2, and sometimes as Dynamic SHA-224/256 or Dynamic SHA-384/512.

2.1 Functions
Dynamic SHA-2 includes three functions. The functions are used in compression
function.

2.1.1 Function G(x1, x2, x3, t)
Function G operates on three words x1, x2, x3 and an integer t, produces a word y as
output. And function G as follow:

⎪
⎪
⎩

⎪
⎪
⎨

⎧

¬∧∨⊕∨¬
⊕∧∨∨¬

⊕∧
⊕⊕

==

)x3(x1)))32(1((
x3))x2((x1))31((

3)21(
321

)3,2,1(

xxx
xx

xxx
xxx

xxxGy t

3
2
1
0

=
=
=
=

t
t
t
t

Table 1.1. function G for Dynamic SHA-2

x1 x2 x3 f1 f2 f3 f4
0 0 0 0 0 1 1
0 0 1 1 1 0 0
0 1 0 1 0 1 0
0 1 1 0 1 0 1
1 0 0 1 0 0 1
1 0 1 0 1 1 0
1 1 0 0 1 1 1
1 1 1 1 0 0 0

Table 1.2 Truth table for logical functions

2.1.2 Function R(x1,x2,x3,x4,x5,x6,x7,x8,t)
Function R operates on eight words x1, x2, x3, x4, x5, x6, x7, x8 and an integer t.
produces one word y as output. Function R as follow:

)8)7)6)5)4)3)21(((((((xxxxxxxxROTRy t ⊕+⊕+⊕+⊕=

2.1.3 Function R1(x1,x2,x3,x4,x5,x6,x7,x8)
Function R1 operates on eight words x1, x2, x3, x4, x5, x6, x7, x8. produces one word
y as output. Function R1 as follow:

Dynamic
SHA-224/256

)8(
31t2)t2)((t

1)-(2t1)t1)((t2
1)-(2t0)t0)((t1

7)6)5)4)3)2x1(((((t0

5

1010

1717

xROTRy
SHR

SHR
SHR

xxxxxx

t=

∧⊕=

∧⊕=

∧⊕=

⊕+⊕+⊕+=

Dynamic
SHA-384/512

)8(
63t3)t3)((t

1)-(2t2)t2)((t3
1)-(2t1)t1)((t2
1)-(2t0)t0)((t1

7)6)5)4)3)2x1(((((t0

6

1212

1818

3636

xROTRy
SHR

SHR
SHR
SHR

xxxxxx

t=

∧⊕=

∧⊕=

∧⊕=

∧⊕=

⊕+⊕+⊕+=

Table 1.3. function R1 for Dynamic SHA-2

2.1.4 Function COMP(hv1,hv2, …,hv8,w(0),w(1),…,w(7),t)
Function ME1 operates on sixteen words hv1,hv2, …,hv8,w(0),w(1),…,w(7) and an
integer t. Function COMP is defined as table 2.

2.2 Dynamic SHA-2 Constants
Dynamic SHA-2 does not use any constants.

2.3 Preprocessing
Preprocessing in Dynamic SHA-2 is exactly the same as that of SHA-2. That means
that these three steps: padding the message M, parsing the padded message into
message blocks, and setting the initial hash value, 0H are the same as in SHA-2.
Thus in the parsing step the message is parsed into N blocks of 512 bits (resp. 1024
bits), and the i-th block of 512 bits (resp. 1024 bits) is a concatenation of sixteen
32-bit (resp. 64-bit) words denoted as)(. 15

)(
1

)(
0 ,.....,, iii MMM

Dynamic SHA-2 may be used to hash a message, M, having a length of l bits,
where 0≤ l < . 642

2.3.1 Padding
Suppose that the length of the message M is L bits. Append the bit “1” to the end of
the message, followed by k zero bits, where k is the smallest, non-negative solution to
the equation L+1+k ≡ 448 mod 512 (resp. L+1+k ≡ 960 mod 1024). Then append the
64-bit block that is equal to the number L expressed using a binary representation.

Dynamic
SHA-224/256

7)4)w((tThv1
hv1hv2

w(t)hv2hv3
7)5)w((t3)thv3,hv2,G(hv1,hv4

(hv4)ROTRhv5

7)6)w((thv5hv6
(hv6)ROTRhv7

7)7)w((thv7hv8
31)(w(t)))(SHRhv8,hv7,hv6,hv5,hv4,hv3,hv2,R(hv1,T

7)1)w((tThv1
hv1hv2
hv2hv3

7)2)w((t(w(t)))SHRhv3,hv2,G(hv1,hv4
(hv4)ROTRhv5

7)3)w((thv5hv6
(hv6)ROTRhv7

hv7hv8
31)w(t)hv8,hv7,hv6,hv5,hv4,hv3,hv2,R(hv1,T

31w(t))(SHR

31w(t))(SHR

15

30

31(w(t)))(SHR

31(w(t)))(SHR

25

20

10

5

∧++=
=

+=
∧++∧=

=

∧++=
=

∧++=
∧=

∧++=
=
=

∧++=

=

∧++=
=

=
∧=

∧

∧

∧

∧

Dynamic
SHA-384/512

7)4)w((tThv1
(hv1)ROTRhv2

w(t)hv2hv3
7)5)w((t3)(w(t)))(SHRhv3,hv2,G(hv1,hv4

(hv4)ROTRhv5

7)6)w((t(hv5)ROTRhv6

(hv6)ROTRhv7

7)7)w((thv7hv8
63)(w(t)))(SHRhv8,hv7,hv6,hv5,hv4,hv3,hv2,R(hv1,T

7)1)w((tThv1
hv1hv2

(hv2)ROTRhv3

7)2)w((t(w(t)))SHRhv3,hv2,G(hv1,hv4
(hv4)ROTRhv5

7)3)w((t(hv5)ROTRhv6

(hv6)ROTRhv7

hv7hv8
63)w(t)hv8,hv7,hv6,hv5,hv4,hv3,hv2,R(hv1,T

63(w(t)))(SHR

60

63(w(t)))(SHR

63(w(t)))(SHR

63(w(t)))(SHR

30

63(w(t)))(SHR

62

63(w(t)))(SHR

63(w(t)))(SHR

63(w(t)))(SHR

54

48

42

36

24

18

12

6

∧++=
=

+=
∧++∧=

=

∧++=

=

∧++=
∧=

∧++=
=
=

∧++=

=

∧++=

=

=
∧=

∧

∧

∧

∧

∧

∧

∧

∧

Table 2 function COMP for Dynamic SHA-2

2.4 Initial Hash Value 0H
The initial hash value, 0H for Dynamic SHA is the same as that of SHA-2 (given in
Table 3.1).

Dynamic
SHA-224

Dynamic
SHA-256

Dynamic SHA-384 Dynamic SHA-512

,fabefaH

,fafH

,H

,bffcH

,efH

,ddH

,cdH

,edcH

)(

)(

)(

)(

)(

)(

)(

)(

44

79864

68581511

3100

593970

173070

507367

81059

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

=

=

=

=

=

=

=

=

5be0cd19,

1f83d9ab,

9b05688c,

510e527f,

a54ff53a,

3c6ef372,

,bb67ae85

,6a09e667

)0(
7

)0(
6

)0(
5

)0(
4

)0(
3

)0(
2

)0(
1

)0(
0

=

=

=

=

=

=

=

=

H

H

H

H

H

H

H

H

fa4fa4,47b5481dbe

f98fa7,db0c2e0d64

581511,8eb44a8768

c00b31,67332667ff

0e5939,152fecd8f7

70dd17,9159015a30

,7cd507629a292a36

,059ed8cbbb9d5dc1

)0(
7

)0(
6

)0(
5

)0(
4

)0(
3

)0(
2

)0(
1

)0(
0

=

=

=

=

=

=

=

=

H

H

H

H

H

H

H

H

7e2179,5be0cd1913

41bd6b,1f83d9abfb

3e6c1f,9b05688c2b

e682d1f,510e527fad

1d36f1,a54ff53a5f

94f82b,3c6ef372fe

,caa73bbb67ae8584

,bcc9086a09e667f3

)0(
7

)0(
6

)0(
5

)0(
4

)0(
3

)0(
2

)0(
1

)0(
0

=

=

=

=

=

=

=

=

H

H

H

H

H

H

H

H

Table 3.1 The initial hash value, 0H for Dynamic SHA
For i = 1 to N:
{
1.Initialize eight working variables a, b, c, d, e, f, g and h with the hash
value:

thi)1(−

)1(
0
−= iHa , , ,))

)1(
1
−= iHb)1(

2
−= iHc)1(

3
−= iHd ,)1(

4
−= iHe , , ,

)1(
5
−= iHf 1(

6
−= iHg 1(

7
−= iHh

2. Iterative part
2.1 The first iterative part

)0,,,,,,,,,,,,,,,,(
)0,,,,,,,,,,,,,,,,(

15141312111098

76543210

wwwwwwwwhgfedcbaCOMP
wwwwwwwwhgfedcbaCOMP

2.2 The second iterative part
For t=0 to 8
{

),,,,,,,(1 hgfedcbaRT =
gh =
fg =
ef =
de =
cd =
bc =
ab =
Ta =

}
2.3 The third iterative part
For t=1 to 7
{

),,,,,,,,,,,,,,,,(
),,,,,,,,,,,,,,,,(

15141312111098

76543210

twwwwwwwwhgfedcbaCOMP
twwwwwwwwhgfedcbaCOMP

}

3.Compute the intermediate hash value thi)(iH :

)1(
0

)(
0

−+= ii HaH , , , ,)1(
1

)(
1

−+= ii HbH)1(
2

)(
2

−+= ii HcH)1(
3

)(
3

−+= ii HdH
)1(

4
)(

4
−+= ii HeH , , ,)1(

5
)(

5
−+= ii HfH)1(

6
)(

6
−+= ii HgH)1(

7
)(

7
−+= ii HhH

}
Table 3.2 Algorithmic description of Dynamic SHA-2 hash function.

2.5 Dynamic SHA-2 Hash Computation
The Dynamic SHA-2 hash computation uses functions and initial values defined in

previous subsections. So, after the preprocessing is completed, each message block,
)() , is processed in order, using the steps described

algorithmically in Table 3.2.
1()0(,.....,, NMMM

The algorithm uses 1) a message schedule of forty-eight 32-bit (resp. 64-bit)

words, 2) eight working variables of 32 bits (resp. 64 bits) , and 3) a hash value of
eight 32-bit (resp. 64-bit) words. The final result of Dynamic SHA-256 is a 256-bit
message digest and of Dynamic SHA-512 is a 512-bit message digest. The final
result of Dynamic SHA-224 and Dynamic SHA-384 are also 256 and 512 bits, but the
output is then truncated as in SHA-2 to 224 (resp. 384 bits). The words of the
message schedule are labeled 4710 . The eight working variables are labeled

 and and sometimes they are called “state register”. The words of
the hash value are labeled)(

71
(
0 , which will hold the initial hash value,

,...,, WWW
gfedcba ,,,,,, h

)() ,...,, iii HHH
)0(H , replaced by each successive intermediate hash value (after each message

block is processed),)(iH , and ending with the final hash value,)(NH .
Dynamic SHA-2 also uses one temporary words T.

3 Security of Dynamic SHA-2

In this section I will make an initial analysis of how strongly collision resistant,
preimage resistant and second preimage resistant Dynamic SHA-2 is. I will start by
describing our design rationale, then I will analyze the properties of the message
expansion part and finally I will discuss the strength of the function against known
attacks for finding different types of collisions.

3.1 Properties of iterative part
The iterative part includes three parts.

3.1.1 Properties of iterative part one
In iterative part one, all message bits have been mixed. And function COMP is called
twice. All bits in message words have been used as parameters of function G,
R and ROTR operation.

80 ,WW

3.1.2 Properties of iterative part two
It is relatively easy to prove the following Theorem:

Theorem 1: The iterative part two of Dynamic SHA-2 is a bijection

. working variables are w-bit words. ww ×× → 88 }1,0{}1,0{:ξ
Proof. Let hv(1)=(a(1), b(1), c(1), d(1),e(1), f(1), g(1), h(1)). where a(1), b(1), c(1),
d(1),e(1), f(1), g(1), h(1) are working variables before iterative part two. And hv(1a)=
(a(1a), b(1a), c(1a), d(1a),e(1a), f(1a), g(1a), h(1a)) are working variables before
iterative part two.

The working variables are b-bit words. Then we have the function F(hv(1))=hv(1a)
and . wwF ×× → 88 }1,0{}1,0{:

It is enough to known that, to a given hv(1)’, there is a hv(1a) make
F(hv(1)’)=hv(1a).

To a given hv(1a)’, it is easy to backward the iterative part two and compute the
unique value for hv(1). So to a given hv(1a)’, there is a hv(1) make F(hv(1))=hv(1a)’.

So Dynamic SHA-2 is a bijection □ ww ×× → 88 }1,0{}1,0{:ξ

After iterative part one, all bits in message have been mixed. From the definition of
function R1, it is enough to known that all bits in working variables a,b,c,d,e,f,g will
affect all bits in temporary words T. After call function R1 9 times, all bits in working
variables that before iterative part two will affect all bits in working variables that after
iterative part two. If there is iterative part two, some bits in message will not affect all

bits in last hash value. So all message bits will affect all bits in last hash value.

3.1.3 Properties of iterative part three
In iterative part three, all message bits have been mixed seven times. And function
COMP is called fourteen times. All bits in message words 7654321

1211109 have been used as parameters of function G, R and
ROTR operation.

,,,,,,, WWWWWWW
,,,,,, WWWWWWW 151413

In iterative part one and three, all bits in message have been used as parameters of
function G, R and ROTR operation. This will divide message space into (resp.

) parts.
5122

10242

3.2 Design rationale

The reasons for principle: When message is changed, the calculation will be
different.

From the definition of function G, R and ROTR operations, it is easy to know all
bits in message have been used as parameters of function G, R and ROTR operation.
One bit different in message, different logical function or different ROTR operation will
be done, and it will make the calculation different. Different message will lead to
different calculation, these different calculations divide message space into (resp.

) parts. In a part there is
5122

10242 12 512512 =− (resp. 12 10241024 =−) message value.

Why Dynamic SHA-2 does not have constants?
The reasons why I decided not to use any constants is that Dynamic SHA-2 is secure
enough.

Controlling the differentials is hard in Dynamic SHA-2:

In Dynamic SHA-2, it is known that when message is changed, the calculation will
be different. To analyze Dynamic SHA-2, it need the unchangeable formulas that
represent function describe function G, R and data-depend ROTR operation. There
are three ways to analyze Dynamic SHA-2:

1. Guess the parameters of function G, R and ROTR operation. The parameters of
function G, R and ROTR operation divide message space into (resp.)
parts. This way is select a part in the message value space. And there is only
one message value in a part. It can not find collisions in the same part.

5122 10242

2. Someone can use Algebraic Normal Form (ANF) to represent Dynamic SHA-2,
but the ANFs that represent function R has up to (resp.) monomials.
If constitute the Arithmetic function based on ANF, the degree of the Arithmetic
function represents function R and G is 261(resp. 518) and 5.

2612 5182

3. Someone can constitute Arithmetic functions to represent Dynamic SHA-2 as in
Appendix 2. But the Arithmetic function that represents function R and G is
complex exponential function with round-off instruction. After iterative parts, the
Arithmetic function that represents function R and G will be very huge.

3.3 Finding Preimages of Dynamic SHA-2
To a hash function f(·), it need satisfy:

Given hash value H=f(M), it is hard to find message M that meet H=f(M).

There are two ways to find preimages of a hash function:

1,From the definition of Dynamic SHA-2 (similarly as with SHA-2) it follows that
from a given hash digest it is possible to perform backward iterative steps by
guessing values that represent some relations between working variables of the
extension part.

To do this, it needs the parameter of the ROTR operation and function G, R in
Dynamic SHA-2. But in Dynamic SHA-2, when message changed, the parameter of
the ROTR operation and function G, R will change. So attacker had to guess the
parameter that will be used in Dynamic SHA-2. From the definition of Dynamic SHA-2,
it is know that all bits in message are used as the parameter of the ROTR operation

and function G, R. When attacker completes guessing parameters, he has guessed
all bits in message.

2, The probability of random guess of finding preimages is (resp. ,
,).

2242− 2562−

3842− 5122−

3.4 Finding Second Preimages of Dynamic SHA-2
To a hash function f(·), it need satisfy:

Given M, it is hard to find M’ s.t. f(M) = f(M’).

There are five ways to find second preimages of a hash function:
1, Get hash value H of message M, and find different message M’ that has hash

value H. then the problem become find Preimages of the hash function.
2, Given M, and find out the relationship between the difference M=(M1△ -M) and

the difference H=f(M1)△ -f(M). And find out M≠0 that make H=0. To do this, △ △
someone will set up some system of equations obtained from the definition of
the hash function, then trace forward and backward some initial bit differences
that will result in fine tuning and annulling of those differences and finally obtain
second preimages. It need know the unchangeable formulas that represent
hash function f. In Dynamic SHA-2, when message is changed, the calculation
is different. To get unchangeable formulas that represent hash function f, it need
get ANFs for Dynamic SHA-2. And the ANFs that represent function R has up
to, (resp.) monomials. 2612 5182

3. To get unchangeable formulas that represent hash function f. It can constitute
Arithmetic functions to represent Dynamic SHA-2. And the Arithmetic functions
that represent function R and G are exponential functions with round-off
instruction. Or someone had to constitute 261-degree(resp. 518-degree)
Arithmetic function to represent function R.

4. Guess the parameters of function G, R and ROTR operation. This way is select
a part in the message value space. And there is only one message value in a
part. It can not find second preimages in the same part.

5. The probability of random guess of finding second preimages is (resp.
, ,).

2242−

2562− 3842− 5122−

3.5 Finding Collisions in Dynamic SHA-2
To a hash function f(·), it need satisfy:

It is hard to find different M and M’ s.t. f(M) = f (M’).

There are five ways to find collisions of a hash function:

1, Fix message M, and find different message M’ that has hash value H=f(M). then
the problem become find Second Preimages of the hash function.

2. Find out the relationship between the (M, M’) and the difference H=f(M)△ -f(M’).
And find out (M,M’) that make H=0. To do this, someone will set up some △
system of equations obtained from the definition of the hash function, then trace
forward and backward some initial bit differences that will result in fine tuning
and annulling of those differences and finally obtain collisions. It need know the
unchangeable formulas that represent hash function f. In Dynamic SHA-2, when
message is changed, the calculation is different. To get unchangeable formulas
that represent hash function f, it need get ANFs for Dynamic SHA-2. And the
ANFs that represent function R has up to, (resp.) monomials. 2612 5182

3. To get unchangeable formulas that represent hash function f. It can constitute
Arithmetic functions to represent Dynamic SHA-2. And the Arithmetic functions
that represent function R and G are exponential functions with round-off
instruction. Or someone had to constitute 261-degree(resp. 518-degree)
Arithmetic function to represent function R.

4. Guess the parameters of function G, R and ROTR operation. This way is select
a part in the message value space. And there is only one message value in a
part. It can not find collisions in the same part.

5. The attack base on the birthday paradox. the workload for birthday attack is of
O() (resp. O() O() O()). 1122 1282 1922 2562

3.6 Finding collisions in the reduced compression function of Dynamic SHA-2
If the message bits are mixed less twice. The system will be weak, someone can
backward Dynamic SHA-2 as table 6 show.

If the message bits are mixed at least twice, and attacker backward Dynamic SHA-2,
he will have a system of more than 32 equation with 16 unknown variables, The
probability of there is solution for the system is less than (resp.). And the
message space is divided into more that (resp.) parts. In a part, the average
number of message values is less than (resp.). The average number of
collisions is less than (resp. , ,). If an algorithm is developed to find
collision for a calculation, then the probability of find the collision is less than

(resp. , ,).

5122− 10242−

1282 2562
3842 7682

1602 1282 3842 2562
1282− 1282− 2562− 2562−

4 Improvements
There are some improvements for Dynamic SHA-2:

1. There is no any constant in Dynamic SHA-2. Use constants will increase system
security.

2. In HMAC, the initial hash value is random variable to attacker. If Dynamic SHA-2 is
used in HMAC, by theorem 4, it is easy know that the probability of hash value is

(resp.). 2242− 2562− 3842− 5122−

There are some ways that we can adopt to get random initial hash value, for
example: ii −1 , i is i-th initial hash value, c is constant and c is odd
number. To do this, it need new communication protocol.

cIVIV += IV

3. If some algorithms that based on Arithmetic functions and differential analysis are
developed. The message expansions will increase the degree of the Arithmetic
function that represents Dynamic SHA-2. If the message expansions is data depend
function, the degree of the Arithmetic function that represents the message
expansions maybe be up to 512(resp.1024). It will increase the ability that resists
differential analysis

The message expansion maybe makes some hash values have more probability
than other hash value. With improvement 2, all hash value will have same probability.

5 Conclusions

William Stallings[14] has mentioned that data-depend function will make cipher
system nonlinear, and composite function of Boolean functions and Arithmetic
functions also make cipher system nonlinear. Dynamic SHA-2 carries out the two
suggestions.

Function G, R and ROTR operations divided the message space into many parts,
in different part, the calculation is different. At the same time, the ANFs for function R
have huge number monomials. And the Arithmetic functions represent function R, G
is complex exponential function with round-off instruction. So there are three ways to
analyses:

1. Constitute Boolean functions to represent Dynamic SHA-2. It needs deal with
a big formula. The ANFs that represent function R has up to ,(resp.)
monomials. The degree of Arithmetic function represents function R is up to 261
(resp.518).

2612 5182

2. Constitute Arithmetic functions to represent Dynamic SHA-2. It needs deal with
complex exponential function or 261-degree(resp. 518-degree) Arithmetic function.

3. Guess the parameters of function G, R and ROTR operations. It needs deal

with divided message space. The message space is divided into (resp.)
parts. In a part, there is one message value. It can not find the collision in one part..

5122 10242

And based on components from the family SHA-2, I have introduced the principle

in the design of Dynamic SHA-2: When message is changed, the calculation will be
different. And I bring in data depend function G, R, and use bits in message as
parameters of function G, R and ROTR operations. These steps realize the principle.
The principle enabled us to build a compression function of Dynamic SHA-2 that has
not new variable, the iterative part include three iterative parts, it is more robust and
resistant against generic multi-block collision attacks, and it is resistant against
generic length extension attacks.

References
1. E. Biham and R. Chen, “Near-collisions of SHA-0,” Cryptology ePrint Archive,
Report 2004/146, 2004. http://eprint.iacr.org/2004/146
2. B. den Boer, and A. Bosselaers: “An attack on the last two rounds of MD4”,
CRYPTO 1991, LNCS, 576, pp. 194-203, 1992.
3. B. den Boer, and A. Bosselaers: “Collisions for the compression function of MD5”,
EUROCRYPT 1993, LNCS 765, pp. 293-304, 1994.
4. F. Chabaud and A. Joux, “Differential collisions in SHA-0,” Advances in Cryptology,
Crypto98, LNCS, vol.1462, pp.56-71, 1998.
5. H. Dobbertin: “Cryptanalysis of MD4”, J. Cryptology 11, pp. 253-271, 1998.
6. NIST, Secure Hash Signature Standard (SHS) (FIPS PUB 180-2), United States of
American, Federal Information Processing Standard (FIPS) 180-2, 2002 August 1.
7. NIST Tentative Timeline for the Development of New Hash Functions,
http://csrc.nist.gov/groups/ST/hash/timeline.html
8. S. Vaudenay, “On the need for multipermutations: Cryptanalysis of MD4 and
SAFER”, Fast Software Encryption- FSE95, LNCS 1008, pp. 286–297, 1995.
9. X. Wang, X. Lai, D. Feng, H. Chen and X. Yu, “Cryptanalysis of the Hash Functions
MD4 and RIPEMD”, EUROCRYPT 2005, LNCS 3494, pp. 1–18, 2005.
10. X. Wang and H. Yu , “How to Break MD5 and Other Hash Functions”,
EUROCRYPT 2005, LNCS 3494, pp. 19–35, 2005.
11. X. Wang, H. Yu, Y. L. Yin “Effcient Collision Search Attacks on SHA-0”, CRYPTO
2005, LNCS 3621, pp. 1–16, 2005.
12. X. Wang, Y. L. Yin, H. Yu, “Collision Search Attacks on SHA-1”, CRYPTO 2005,
LNCS 3621, pp. 17–36, 2005.
13. Gupta and Sarkar “Computing Walsh Transform from the Algebraic Normal Form
of a Boolean Function” http://citeseer.ist.psu.edu/574240.html
14. William Stallings “Cryptography and Network Security Principles and Practices,
Third Edition”, ISBN 7-5053-9395-2

Appendix 1: Constitute Boolean functions to represent function.
We can use Algebraic Normal Form (ANF) to represent function. Gupta and Sarkar[13]
have studied it.
Let n≥r≥1 be integers and let be a vector valued Boolean function.
The vector valued function can be represented as an r-tuple of Boolean functions

, where , and the value of
21 n equals the value of the s-th component of 21 n . The

Boolean functions 21
)(

n can be expressed in the Algebraic Normal Form
(ANF) as polynomials with n variables n of kind

nnnnnnnn 21,...,2,11,121110

rnF }1,0{}1,0{: →
F

),...,,()()2()1(rFFFF =),...,2,1}(1,0{}1,0{:)(rsF ns =→
),...,,()(s xxxF xxxF

s xxxF
),...,,(

),...,,(
xxx ,...,, 21

xxxaxxaxxaxaxaa ,...,,......... 2,1⊕ ⊕⊕ ⊕ ⊕⊕⊕⊕
n2

−− ,where .
Each ANF has up to monomials, depending of the values of the coefficients .

}1,0{∈λa
λa

Function R
Function R operates on six words x1,x2,x3,x4,x5,x6,x7,x8 and an integer t and
produces a word y as output, where wt<≤0 . So we have ,
It is easy to know that one-bit different in words x1,x2,x3,x4,x5,x6,x7,x8. Because
the parameter of the rotate right operation is depend on message, with different
message different rotate right operation will be done. So the bit in output maybe
changed.

ww w

R }1,0{}1,0{: 2log8 →+×

So the ANFs to represent function R have up to monomials, where
is bit length of the word.

ww ××82 w

Function G
Function G operates on six words x1,x2,x3 and an integer t and produces a word y
as output, where . So we have . 40 <≤ t wwR }1,0{}1,0{: 23 →+×

If function G is not data depend function, the integer t is constant. When i-th bit in
words x1,x2,x3 change, i-th bit in output maybe change. Then the ANFs to
represent function R have up to monomials. 32

If function G is not data depend function, the integer t is variable. It is easy to know
that one-bit different in integer t, different logical will be called, every bit in output
maybe change. One-bit different in words x1,x2,x3, a bit in output maybe change.
Then the ANFs to represent function R have up to 523 22 =+ monomials.

Appendix 2: Constitute Arithmetic functions to represent function.
Gupta and Sarkar [13] had studied how to use Algebraic Normal Form (ANF) to
represent function. In this way, all function will be represented as polynomials.

In appendix 2, the following operations are used:
1. is absolute value of)(xabs x
2. x is round-off instruction on x
3. “+” is arithmetic addition.
4. “-” is arithmetic subtraction.
5. “× ” is arithmetic multiplication.

1. Constitute Arithmetic functions to represent Boolean function:
In Boolean function, 1 is True, 0 is False.

1. one bit word.
The Boolean function can represented with arithmetic functions as follow:

operand function arithmetic function
x,y yxz ⊕= yxyxz ××−+= 2
x,y yxz ∧= yxz ×=
x,y yxz ∨= yxyxz ×−+=
x xz ¬= xz −=1

Tables 4 represent Boolean function with arithmetic function
To Boolean polynomial, it can replace every calculation of polynomial base on table 4.

2. n-bit word.
If there are three n-bit words x, y, z. if there exist),(yxfz = where f is Boolean
function that in table 4.
x, y, z are n-bit words. Let

∑
∑
∑

−

=

−

=

−

=

×=

×=

×=

1

0

1

0

1

0

2

2

2

n

i
i

i

n

i
i

i

n

i
i

i

zz

yy

xx

where i is i-th bit of word x, y, z. There exists ii zyx ,,),(iii yxfz = , where
. 10 −≤≤ ni

To Boolean polynomial, it can replace every calculation base on table 4 for every bit of
variables.

3. If function F includes a series functions as follow: 10 ,..., −tff

⎪
⎩

⎪
⎨

⎧

−=

=
=

− 1),(
...

0),(
),,(

1

0

tkyxf

kyxf
kyxz

t

Then it can represent function F as follow:

)),(()2
2

22(),,(1

0

)(
)(yxfkyxz i

t

i

ikabs
kiabs ××−=∑ −

=

−
−

Base on above-mentioned three ways, it can represent Boolean function with
arithmetic functions. And there exists:
Theorem 2. In GF(2), there exists . 0>= kxxk

Proof. In GF(2), }1,0{∈x .
If x=0, xx kk === 00

If x=1, □ xx kk === 11

2. Constitute Arithmetic functions to represent function with ANF
rFunctions can be expressed in the ANF as polynomials with n

variables n of kind nnnnnnnn 1,...,2,11,1212,1110

nF }1,0{}1,0{: →
xxx ,...,, 21 xxaxxaxxaxaxaa⊕ ⊕ ⊕ ⊕ ⊕ ⊕⊕⊕ −− ,

where . If replace every calculation in the ANF base on table 4 and simplified
by theorem 2, it can constitute Arithmetic functions to represent ANF. The Arithmetic
functions will be polynomials with n variables n21 of kind

}1,0{∈λa

xxx ,...,, +×++×+ nn110
nnnnn

xbxbb ...
xxbxxbxxb n × ×++××++××+ 1n2

−− 1,...,2,1,1212,1 , where λb are integer. The Arithmetic
functions have up to monomials. The degree of Arithmetic functions is up to n.
And there exists , where f is r-bit word. ∑−

=
×=

1

0 21
)(2),...,,(r

i
i

n
s xxxFf

3. Constitute Arithmetic functions to represent SHR operation:
The shift right operation can be represented as follow:)(xSHRk

)0.1(
2

)(k
k xxSHRy ==

If operation is not data-depend operation, the k in equation (1.0) is
constant, and equation (1.0) is linear equation. The derivative function of linear
equation is constant.

)(xSHRy k=

If operation is data-depend operation, the k in equation (1.0) is
variable. And equation (1.0) will be exponential function with round-off instruction. It is
hard to represent exponential function with linear equation.

)(xSHRy k=

4. Constitute Arithmetic functions to represent data-depend function R:
There are two ways to constitute Arithmetic functions to represent data-depend
function R:
1. Constitute ANFs that represent function R. And replace the Boolean function base
on table 4. In this way, it will constitute huge Arithmetic function. The ANFs represents
function R has up to (resp.) monomials. By theorem 2 and the input has
261(resp. 518) bits, so the highest degree monomial of the Arithmetic function is

=0i i (resp. ∏=0i i), where i is i-th input bit. The degree of the Arithmetic
function represents function R is up to 261(resp. 518). There exists:

2612 5182

∏260 x x517 x

c
xdxdxd

yd

bni

bn

=
−)()....()....(

)(

10

where c is constant, is i-th input bit of function R, bn is bit number of input, and bn
equal 261(resp. 518).

ix

2. At first, there exist rotate right (circular right shift) operation , where x is
n-bit word, and

)(xROTRk

nk <≤0 . It can represent as follow:)(xROTRy k=

)1.1(2
2

2)2
2

(
2

)(

kn
k

knk
kk

k

xx

xxx
xROTRy

−

−

×+=

××−+=

=

If function is not data-depend function, the k in equation (1.1) is
constant, and equation (1.1) is linear equation. The derivative function of linear
equation is constant. This means the difference of function value depend on the
difference of input, and the difference of function value dose not depend on the input.
In SHA-2, the ROTR operation is not data-depend function, it can constitute linear
equation to represent the ROTR operation in SHA2.

)(xROTRy k=

If function is data-depend function, the k in equation (1.1) is)(xROTRy k=

variable. And equation (1.1) will be exponential function with round-off instruction. It is
hard to represent exponential function with linear equation. The derivative function of
exponential function is exponential function. This means the difference of function
value depend the difference of input and input. When the input changes, the different
of function value maybe change. In Dynamic SHA-2, function R is data-depend
function. And if use equation (1.1) represents function R, the equation (1.1) will be
complex exponential function. After several rounds, equation (1.1) will be iteration
function with equation (1.1), it will be very huge and complex, and there exists no
mathematical theory that reduces the size of equation (1.1). It is hard to analyses
Dynamic SHA-2 that includes function R.

5. Constitute Arithmetic functions to represent data-depend function G:
There are two ways to constitute Arithmetic functions to represent data-depend
function G:
1. Constitute ANFs that represent function G. And replace the Boolean function base
on table 4. The ANFs represents function G has up to monomials. By theorem 2
and the input has 5 bits, so the highest degree monomial of the Arithmetic function is

=0i i , where i is i-th input bit. The degree of the Arithmetic function represents
function G is up to 5.

52

∏4 x x

2. The function G can be represented as follow:

)2.1())3,2,1(()2
2

22(),3,2,1(3

0

)(
)(xxxGtxxxy ii

itabs
tiabs ××−=∑ =

−
−

By Theorem 2 and table 4, function can be represented as follow:)3,2,1(xxxGi

)3.1(

32)321231322321(

22)321221312311(

12)3212321(

0
2)3214322

312212321(

)3,2,1(

1

0

1

0

1

0

1

0

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

=××××−×+××+−−

=××××−×+××+−−

=××××−+×

=
××××+××

−××−××−++

=

∑
∑
∑

∑

−

=

−

=

−

=

−

=

txxxxxxxxx

txxxxxxxxx

txxxxxx

t
xxxxx

xxxxxxx

xxxG

w

i
i

iiiiiiiii

w

i
i

iiiiiiiii

w

i
i

iiiiii

w

i i
iiiii

iiiiiii

t

iii is i-th bit of x1, x2, x3. In system (1.3), it is known that are cubic
equations.

xxx 3,2,1 iG

If function G is not data-depend function. the t in equation (1.2) is constant. It can

look the equation (1.2) as cubic equation. It is hard to represented equation (1.2) with
linear function. And there exists:

 c
xdxdxd

yd

iii

=
)3()2()1(

)(3

And c is constant.

If function G is data-depend function, the t in equation (1.2) is variable, and

equation (1.2) will include exponential function monomial. And equation (1.2) will be
exponential function with round-off instruction. The derivative function of exponential
function is exponential function. There is not any high order derivative function of
exponential function will be constant. It is hard to analyze equation (1.2) with
differential analysis.

In Dynamic SHA-2, function G is data-depend function. And if use equation (1.2)

represents function G, the equation (1.2) will be complex exponential function. After
several rounds, equation (1.2) will be iteration function with equation (1.2), it will be
very huge and complex, and there exists no mathematical theory that reduces the
size of equation (1.2).

Compare the Arithmetic function that represent SHA-2, The Arithmetic function that
represent Dynamic SHA-2 include exponential function. Or the Arithmetic function
that represents Dynamic SHA-2 has higher degree than the Arithmetic function that
represents SHA-2. This make it is harder to analyses Dynamic SHA-2.

Appendix 3: Function G and Function R

Let is probability of)(xp x .

1, Function G:
Function y=G(x1, x2, x3, t) operates on tree words x1,x2,x3 and an integer t, .
Function G use the integer t select a logical function from 1 , 2 , 3 . And y, x1,
x2, x3 are w-bit word. So the bit-length of (x1,x2,x3,t) is

30 ≤≤t
0f , f f f

23 +×w , the bit-length of y is
w.

To a given value y’=G(x1,x2,x3,t), there is 4-tuple (y’,x1,x2,t). To a given
4-tuple (y’,x1’,x2’, t’). There is the relation:

222 +×w

⎪
⎪
⎩

⎪
⎪
⎨

⎧

∧¬∨⊕∨¬
⊕∧∨∨¬

⊕∧
⊕⊕

=

)''1()))''2('1((
))''2('1())''1((

')'2'1(
''2'1

'4

yxyxx
yxxyx

yxx
yxx

x

3
2
1
0

=
=
=
=

t
t
t
t

To given 4-tuple (y’,x1’,x2’,t’), it can compute the value for x3’. So there are
4-tuple (x1,x2,x3,t) have the same value y’. x1, x2, x3, t are random and uncorrelated
variable, there is:

222 +×w

wxpxpxp −=== 2)3()2()1(and 22)(−=tp

wwwww
i i i i iiiiiiii

i i i i iiiiiiii

yp

txxxyptpxpxpxpyp

tpxpxpxptxxxypyp
w w w

w w w

−+×−−−−

−

=

−

=

−

= =

−

=

−

=

−

= =

=××××=

××××=

××××=

∑ ∑ ∑ ∑
∑ ∑ ∑ ∑

222222)(

)),3,2,1(|()()3()2()1()(

)()3()2()1()),3,2,1(|()(

222

12

01

12

02

12

03

3

04 43214321

12

01

12

02

12

03

3

04 43214321

If x1, x2, x3, t are random and uncorrelated, function G will produce random word and

 wyp −=2)(

2, Function R:
Function y=R(x1,x2,x3,x4,x5,x6,x7,x8,t) operates on eight words x1,x2,x3,x4,x5,x6,
x7, x8 and an integer t. To a given value y’=R(x1,x2,x3,x4,x5,x6,x7,x8,t), there is

 9-tuple (y’,x1’,x2’,x3’,x4’,x5’,x6’,x7’,t’). To a given 9-tuple (y’,x1’,x2’,x3’,x4’,
x5’, x6’, x7’,t’). There is the relation:

ww××72

)'()'7)'6)'5)'4)'3)'2'1((((((8 ' yROTRxxxxxxxx tw−⊕+⊕+⊕+⊕=

To given 9-tuple (y’,x1’,x2’,x3’,x4’,x5’,x6’,x7’,t’), it can compute the value for x8, So
there are 9-tuple (y’,x1’,x2’,x3’,x4’,x5’,x6’,x7’,t’) have the same value y’.
x1,x2,x3,x4,x5,x6,x7,x8,t are random and uncorrelated variable, there is:

ww××72

1)(
2)8()7()6()5()4()3()2()1(

−

−

=

========

wtp
xpxpxpxpxpxpxpxp w

wwwwwwwwww
i i i

w

i iiii

wwyp

tpxpxptxxxypyp
w w w

−×−−−−−−−−−

−

=

−

=

−

=

−

=

=××××××××××=

××××= ∑ ∑ ∑ ∑
2222222222)(

)()8(...)1()),8,...,2,1(|(...)(
71

12

01

12

02

12

08

1

09 9821

If x1,x2,x3,x4,x5,x6,x7,x8, t are random and uncorrelated, function R will produce
random word and wyp −=2)(

Appendix 4: Some thing about Dynamic SHA-2

1. Why Dynamic SHA-2 use function G and function R

The reason Dynamic SHA-2 use function G and function R is:
1. When the variables are random and uncorrelated, function G and R will

produce random output. This makes the last hash values has close probability.
2. Function G and R are data-depend function, it is hard to describe data-depend

function with linear function, and it is hard to analyze data-depend function
with differential analysis. It needs construction arithmetic function that the
degree is up to 261(resp. 518) to describe function R and 5-degree arithmetic
function to describe function G, or construction exponential function to
describe function R and G. And the ANFs that describe function R has up to

 monomials.
ww 2log82 +×

2. It is hard analysis Dynamic SHA-2 with linear function and differential
analysis

To analyze the relationship between message and hash value, it need the
unchangeable formulas that represent hash function. And when message is changed,
the calculation will be different.

The ANFs that describe function R has up to monomials.
ww 2log82 +×

The degree of the arithmetic function that describe function R is up to
261(resp.518). Or it needs construction exponential function to describe function R
and G.

So it is hard analysis Dynamic SHA-2 with linear function and differential analysis.

3. There is 8 rounds in Dynamic SHA-2
From the definition of Dynamic SHA-2, it is easy to know that after 8 rounds, all

bits in message had been used as parameter of function G, R and ROTR operations.
And the message value space had been divided into (resp.) parts, in a part,
there is only one message value.

5122 10242

From the definition of function COMP, it is easy to backward function COMP. If
the message is mixed only one time, the system will be weak. In 8 rounds, the
message bits are mixed 8 times, if attacker backward Dynamic SHA-2 as table 6 show,
he will have a system of 128 equations with 16 unknown variables. The probability of
there exist solution for the system is (resp.). Or attacker can use
random guessing. The probability of random guess of finding preimages is (resp.

, ,).

51272 ×− 102472 ×−

2242−

2562− 3842− 5122−

4. Avalanche of Dynamic SHA-2.
After the first iterative part, all bits in message have been mixed. The second iterative
part includes function R1. It is easy to know that one bit different in working variables
a, b, c, d, e, f, g will lead to different ROTR operation been done. And after the second
iterative part, every bit in working variables that before the second iterative part will
affect all bits in working variables that after the second iterative part.

Appendix 5: Spreading of Dynamic SHA
To simplification, Let:

1.MW1=(W(0),W(1),W(2),W(3),W(4),W(5),W(6),W(7)),
MW2=(W(8),W(9),W(10),W(11),W(12),W(13),W(14),W(15))
W(j) is the message word.

2. hv(i)=(a(i), b(i), c(i), d(i),e(i), f(i), g(i), h(i)). where a(i), b(i), c(i), d(i),e(i), f(i), g(i),
h(i) are working variables at i-th function COMP called.

3. 15i1hv(i)MW2)MW1,(hv(-1),H = ≤ ≤ i
4. Message word and working variables are b-bit words.

From the definition of Dynamic SHA-2, it is easy know that function COMP had been
called sixteen times, when function COMP is called, MW1 or MW2 will be mixed. So it
can describe Dynamic SHA-2 as follow:

MW2

MW2

MW1

MW1
hv(-1) hv(0)

hv(1a)

hv(2) hv(15)
MW2 ….

hv(1) The first
iterative part

The second
iterative part

The third
iterative part

Table 5 data processing of Dynamic SHA-2

At first there are two theorems:

Theorem 3:
To function , there is:),7,6,5,4,3,2,1,0,,,,,,,,(twwwwwwwwhgfedcbaCOMP
1.MW=(W0,W1,W2,W3,W4,W5,W6,W7), where W0,…,W7 are words that mixed.
2. hva=(a0, b0, 0c, d0, e0, 0f, g0, h0). Where a0, b0, c0, d0,e0, f0, g0, h0 are working
variables that before call function COMP.
3. hvb=(a1, b1, c1, d1, e1, f1, g1, h1). Where a1, b1, c1, d1,e1, f1, g1, h1 are working
variables that after call function COMP.
working variables are b-bit word. hva, MW are random and uncorrelated.

Then there exist:

(1),p(hvb)= b×−82
(2),p(hvb|MW)=

b×−82
(3),p(hvb|hva)=

b×−82

Proof.
The integer t in function COMP is decided by which round function COMP be. So

the integer t can be look as constant. And we can use function
describe function COMP. And we have . hva, MW are random
and uncorrelated. So there is p(hva)= and p(MW)=

),(MWhvaFhvb=
bbF ×× → 816 }1,0{}1,0{:

b×−82 b×−82

There are MW. To a given MW’, there exist: b×82

To a given hva’, from the definition of F, there is only a hvb that make
.)','(MWhvaFhvb =

And to a given hvb’, it can backward function F, and there is only a hva that
make . So there exist:)',(' MWhvaFhvb =

∑

∑ ∑
∑ ∑

−

=

×−××−×−

−

=

−

=

−

=

−

=

×=

=××=

××=

××=

12
01

8888

12
01

12
02

12
01

12
02

))1(())1(|)|(()|(

2222)(

)))2(),1((|()()()(

))2(())1(()))2(),1((|()(

b

b b

b b

i

bbbb
i i

i i

ihvapihvaMWhvbpMWhvbp

hvbp

iMWihvahvbpMWphvaphvbp

iMWpihvapiMWihvahvbphvbp

b
i

MWhvbp

ihvaMWhvbphvapMWhvbp
b

×−

−

=

=

×= ∑
8

12

01

2)|(

))1(|)|(()()|(

 Dynamic
SHA-224/256

)31))0((,0,',',',',0,0,1(14

)('

30'
61'

)1('

)310,0,0,0,0,0,0,0,0(11
)0,0,0,0()1(2

0)1(3

)0(17

)0(16

)3,0,0,1(15
010

15

)31)0((32

31)0(32

3031)0(32

31)0(32

31)0(32

31)0(32

5

25

25

20

5

10

∧−=

=

+=
−=

=

∧−=
−=

−=

−=

−=

∧−=
−=

∧−

∧−

∧−

∧−

∧−

∧−

wSHRggfedbabRaw

eROTRg

wef
wfe

eROTRd

whgfedcbaRbw
wSHRcbaGeROTRw

egROTRw

fROTRhw

dROTRfw

tbabGdw
acw

wSHR

wSHR

wSHR

wSHR

wSHR

wSHR

Dynamic
SHA-384/512

)31))0((,0,',',',',',0,'(14

)0('

)1('

)0('

)1('

)630,0,0,0,0,0,0,0,0()1(1

)0,0,0,0()1(2

0)1(3

)0(17

)0(16

)3,',0,'(15
0'

1'

010

15

)63)0((64

63)0(64

63)0(64

63)0(64

31)0(64

6231)0(64

)63)0(()63)0((128

63)0(64

)63)0(()63)0((128

)63)0((64

)63)0((64

6

36

18

48

54

48

1236

6

1842

24

54

∧−=

=

=

=

=

∧−=

−=

−=

−=

−=

∧−=
=

=

−=

∧−

∧−

∧−

∧−

∧−

∧−

∧−∧−

∧−

∧−∧−

∧−

∧−

wSHRggfedcaaRaw

fROTRg

gROTRf

dROTRe

eROTRd

whgfedcbaRbROTRw

wSHRcbaGeROTRw

egROTRw

fROTRhw

dROTRfw

tcaaGdw
bROTRc

bROTRa

acw

wSHR

wSHR

wSHR

wSHR

wSHR

wSHR

wSHRwSHR

wSHR

wSHRwSHR

wSHR

wSHR

Table 6. Relationship of hva, hvb
(3)
To given hva’, there exist:
To a given hvb’, there is the relationship as table 6, It is easy to compute the

value for MW that make . So there exist:),'(' MWhvaFhvb =

bb
i

b

iMWpiMWhvahvbphvahvbp ×−×−−

=
==×=∑ 8812

0
22))(())(|)|(()|(□

By theorem 3, to function COMP, it is easy to know that:
To a given hva’, mix different message words MW, the hvb will be different.
Mix given message words MW’, if the hva is different, the hvb will be different.

Theorem 4. In Dynamic SHA-2, there exist:
(1) p(hv(j))= b×−82
(2),p(hv(j)|MW1)=

b×−82
(3),p(hv(j)|MW2)=

b×−82
15,....,1=j

Proof.
hv(-1), MW1 and MW2 are random and uncorrelated, so there exist:

p(hv(-1)) = b×−82
p(MW1) = b×−82
p(MW2) = . b×−82

To simplification, Let F(hv(i-1),MW)=hv(i), MW is mixed words MW1 or MW2.

To a given hv(i)’ , there are 2-tuple(MW1,MW2).
To a given 2-tuple(hv(i)’,MW1’), there are MW2. To a given 2-tuple

(hv(i)’,MW2’), there are MW1.

15,....,1=i b×162
b×82

b×82
To a given 3-tuple(hv(i)’,MW1’,MW2’), It is easy to backward iterative steps, and it

is easy to compute the value for hv(-1), and the hv(-1) make
.

)MW2',MW1'(hv(-1),Hi
hv(i)'=

So there exist:

bbbb
i i ii

i i iiii

bbbb
i i ii

i i iiii

bbbbbb
i i i iii

i i i iiiiii

MWihvp

MWhvMWihvpMWhvpMWihvp

MWhvpMWhvMWihvpMWihvp

MWihvp

MWhvMWihvpMWhvpMWihvp

MWhvpMWhvMWihvpMWihvp

ihvp

MWMWhvihvpMWMWhvpihvp

MWMWhvpMWMWhvihvpihvp

b b

b b

b b

b b

b b b

b b b

×−××−×−

−

=

−

=

−

=

−

=

×−××−×−

−

=

−

=

−

=

−

=

×−×××−×−×−

−

=

−

=

−

=

−

=

−

=

−

=

=××=

−×−=

−×−=

=××=

−×−=

−×−=

=××××=

−×−=

−×−=

∑ ∑
∑ ∑

∑ ∑
∑ ∑

∑ ∑ ∑
∑ ∑ ∑

8888

12
00

12
01 10

12
00

12
01 1010

8888

12
00

12
01 10

12
00

12
01 1010

888888

12
00

12
01

12
02 210

12
00

12
01

12
02 210210

2222)2|)((

))1,)1((|)2|)((()1),1(()2|)((

)1,)1(())1,)1((|)2|)((()2|)((

2222)1|)((

))2,)1((|)1|)((()2),1(()1|)((

)2,)1(())2,)1((|)1|)((()1|)((

222222))((

))2,1,)1((|)(()2,1),1(())((

)2,1,)1(())2,1,)1((|)(())((

 □

Theorem 5. In Dynamic SHA-2, to a given hv(-1), there exist:

p(hv(2)| (hv(-1),MW1))=
b×−82

Proof. To simplification, Let F(hv(i-1),MW)=hv(i), MW is mixed words MW1 or MW2.

Let F1(hv(1))=hv(1a).
To a given 3-tuple (hv(2)’,hv(-1)’,MW1’). By theorem 3, there exist a 2--tuple

(hv(0),hv(1a)) that make F(hv(-1)’,MW1’)=hv(0) and F(hv(1a),MW1’)=hv(2)’.

To a given hv(1a)’, by theorem 3, there exist a hv(1) that make F1(hv(1))=hv(1a)’.
To a given 2-tuple (hv(0)’,hv(1)’) . By theorem 3, there exist a MW2 that make

F(hv(0)’,MW2)=hv(1)’.
So there exist:

bb
i i

i ii

MWhvhvp

MWMWhvhvpMWpMWhvhvp

MWpMWMWhvhvpMWhvhvp
b

b

×−×−

−

=

−

=

=×=−

−×=−

×−=−

∑
∑

88

12

0

12

0

212))1),1((|)2((

)2|))1),1((|)1((()2())1),1((|)2((

)2()2|))1),1((|)1((())1),1((|)2((

 □

By theorem 4 and 5, it is to know that:
1. When hv(-1) is random variable, the probability of hash value is , b×−82
2. To a given hv(-1), the probability of different hash value maybe different.

After first round, the bits in message have been mixed, the mixed bits and working
variables value are not uncorrelated, it is hard to analyze the probability of hash value.
To get better property of spreading, Dynamic SHA-2 adopt ways as follow:

1. When the variable of function COMP is random value. Function COMP will
produce random value.

2. To reduce the times that message bits mixed, there is no message expansion
part in Dynamic SHA-2.

