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Abstract. In this paper I describe the construction of Dynamic SHA-2 family of 
cryptographic hash functions. They are built with design components from the SHA-2 
family, but I use the bits in message as parameters of function G, R and ROTR 
operation in the new hash function. It enabled us to achieve a novel design principle:  
When message is changed, the calculation will be different. It makes the system can 
resistant against all extant attacks. 
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1 Introduction 
The SHA-2 family of hash functions was designed by NSA and adopted by NIST in 
2000 as a standard that is intended to replace SHA-1 in 2010 [6]. Since MD5, SHA-0 
and SHA-1 was brought out, people have not stopped attacking them, and they 
succeed. Such as: den Boer and Bosselaers [2,3] in 1991 and 1993, Vaudenay [8] in 
1995, Dobbertin [5] in 1996 and 1998, Chabaud and Joux [4] in 1998, Biham and 
Chen [1] in 2004, and Wang et al. [9–12] in 2005. Most well known cryptographic 
hash functions such as: MD4, MD5, HAVAL, RIPEMD, SHA-0 and SHA-1, have 
succumbed to those attacks. 

Since the developments in the field of cryptographic hash functions, NIST decided 
to run a 4 year hash competition for selection of a new cryptographic hash standard 
[7]. And the new cryptographic hash standard will provide message digests of 224, 
256, 384 and 512-bits. 

In those attacks, we can find that when different message inputted, the operation 
in the hash function is no change. If message space is divided many parts, in different 
part, the calculation is different, the attacker will not know the relationship between 
message and hash value. The hash function will be secure. To achieve the purpose, 
Dynamic SHA-2 use bits in message as parameter of function G, R and ROTR 
operation to realize the principle. 

 
My Work: By introducing a novel design principle in the design of hash functions, and 
by using components from the SHA-2 family, I describe the design of a new family of 
cryptographic hash functions called Dynamic SHA-2. The principle is: 

When message is changed, the calculation will be different. 
 
The principle combined with the already robust design principles present in SHA-2 
enabled us to build a compression function of Dynamic SHA-2 that has the following 
properties: 
 
1. There is not message expansion part. 
2. The iterative part includes three parts. 
3. The first part includes one round. Mix message words once. 
4. The second part includes 9 rounds. Mix no message word. 
5. The third part includes 7 rounds. Mix message words 7 times. 
 
 
2 Preliminaries and notation 
In this paper I will use the same notation as that of NIST: FIPS 180-2 description of 
SHA-2 [6]. 

The following operations are applied to 32-bit or 64-bit words in Dynamic SHA-2: 
 
1. Bitwise logical word operations:‘ ’∧ –AND ,‘ ’∨ –OR,‘ ’⊕ –XOR and ‘ ’–Negation. ¬
2. Addition ‘+’ modulo or modulo . 322 642



3. The shift right operation, , where x is a 32-bit or 64-bit word and n is an 
integer with 0≤n<32 (resp. 0≤n<64). 

)(xSHRn

4.The shift left operation, , where x is a 32-bit or 64-bit word and n is an 
integer with 0≤n<32 (resp. 0≤n<64). 

)(xSHLn

5. The rotate right (circular right shift) operation, , where x is a 32-bit or 
64-bit word and n is an integer with 0 ≤ n < 32 (resp. 0 ≤ n < 64). 

)(xROTR n

6. The rotate left (circular left shift) operation, , where x is a 32-bit or 64-bit 
word and n is an integer with 0 ≤ n < 32 (resp. 0 ≤ n < 64). 

)(xROTLn

 
Depending on the context I will sometimes refer to the hash function as Dynamic 
SHA-2, and sometimes as Dynamic SHA-224/256 or Dynamic SHA-384/512. 
 
2.1 Functions 
Dynamic SHA-2 includes three functions. The functions are used in compression 
function. 
 
2.1.1 Function G(x1, x2, x3, t) 
Function G operates on three words x1, x2, x3 and an integer t, produces a word y as 
output. And function G as follow: 
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Table 1.1. function G for Dynamic SHA-2 
 

x1 x2 x3 f1 f2 f3 f4 
0 0 0 0 0 1 1 
0 0 1 1 1 0 0 
0 1 0 1 0 1 0 
0 1 1 0 1 0 1 
1 0 0 1 0 0 1 
1 0 1 0 1 1 0 
1 1 0 0 1 1 1 
1 1 1 1 0 0 0 

Table 1.2 Truth table for logical functions 
 
2.1.2 Function R(x1,x2,x3,x4,x5,x6,x7,x8,t)  
Function R operates on eight words x1, x2, x3, x4, x5, x6, x7, x8 and an integer t. 
produces one word y as output. Function R as follow:  

)8)7)6)5)4)3)21((((((( xxxxxxxxROTRy t ⊕+⊕+⊕+⊕=  
 
2.1.3 Function R1(x1,x2,x3,x4,x5,x6,x7,x8)  
Function R1 operates on eight words x1, x2, x3, x4, x5, x6, x7, x8. produces one word 
y as output. Function R1 as follow:  
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Dynamic 
SHA-384/512 
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Table 1.3. function R1 for Dynamic SHA-2 
 

2.1.4 Function COMP(hv1,hv2, …,hv8,w(0),w(1),…,w(7),t)  
Function ME1 operates on sixteen words hv1,hv2, …,hv8,w(0),w(1),…,w(7) and an 
integer t. Function COMP is defined as table 2. 
 
2.2 Dynamic SHA-2 Constants 
Dynamic SHA-2 does not use any constants. 
 
2.3 Preprocessing 
Preprocessing in Dynamic SHA-2 is exactly the same as that of SHA-2. That means 
that these three steps: padding the message M, parsing the padded message into 
message blocks, and setting the initial hash value, 0H  are the same as in SHA-2. 
Thus in the parsing step the message is parsed into N blocks of 512 bits (resp. 1024 
bits), and the i-th block of 512 bits (resp. 1024 bits) is a concatenation of sixteen 
32-bit (resp. 64-bit) words denoted as )( . 15

)(
1

)(
0 ,.....,, iii MMM

 
Dynamic SHA-2 may be used to hash a message, M, having a length of l  bits, 
where 0≤ l < . 642
 
2.3.1 Padding 
Suppose that the length of the message M is L bits. Append the bit “1” to the end of 
the message, followed by k zero bits, where k is the smallest, non-negative solution to 
the equation L+1+k ≡ 448 mod 512 (resp. L+1+k ≡ 960 mod 1024). Then append the 
64-bit block that is equal to the number L expressed using a binary representation.  
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Dynamic 
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Table 2  function COMP for Dynamic SHA-2 
 
 
2.4 Initial Hash Value 0H  
The initial hash value, 0H  for Dynamic SHA is the same as that of SHA-2 (given in 
Table 3.1).  
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Table 3.1 The initial hash value, 0H  for Dynamic SHA 
For i = 1 to N: 
{ 
1.Initialize eight working variables a, b, c, d, e, f, g and h with the  hash 
value: 

thi )1( −
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2. Iterative part 
2.1 The first iterative part 
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2.2 The second iterative part 
For t=0 to 8 
{ 

),,,,,,,(1 hgfedcbaRT =  
gh =  
fg =  
ef =  
de =  
cd =  
bc =  
ab =  
Ta =  

} 
2.3 The third iterative part 
For t=1 to 7 
{ 
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} 
 
3.Compute the  intermediate hash value thi )(iH  : 
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} 
Table 3.2 Algorithmic description of Dynamic SHA-2 hash function. 



2.5 Dynamic SHA-2 Hash Computation 
The Dynamic SHA-2 hash computation uses functions and initial values defined in 

previous subsections. So, after the preprocessing is completed, each message block, 
)()  , is processed in order, using the steps described 

algorithmically in Table 3.2.  
1()0( ,.....,, NMMM

 
The algorithm uses 1) a message schedule of forty-eight 32-bit (resp. 64-bit) 

words, 2) eight working variables of 32 bits (resp. 64 bits) , and 3) a hash value of 
eight 32-bit (resp. 64-bit) words. The final result of Dynamic SHA-256 is a 256-bit 
message digest and of Dynamic SHA-512 is a 512-bit message digest. The final 
result of Dynamic SHA-224 and Dynamic SHA-384 are also 256 and 512 bits, but the 
output is then truncated as in SHA-2 to 224 (resp. 384 bits). The words of the 
message schedule are labeled 4710 . The eight working variables are labeled 

 and  and sometimes they are called “state register”. The words of 
the hash value are labeled )(

71
(
0 , which will hold the initial hash value, 

,...,, WWW
gfedcba ,,,,,, h

)() ,...,, iii HHH
)0(H , replaced by each successive intermediate hash value (after each message 

block is processed), )(iH , and ending with the final hash value, )( NH . 
Dynamic SHA-2 also uses one temporary words T. 

 
 

3 Security of Dynamic SHA-2 
 
In this section I will make an initial analysis of how strongly collision resistant, 
preimage resistant and second preimage resistant Dynamic SHA-2 is. I will start by 
describing our design rationale, then I will analyze the properties of the message 
expansion part and finally I will discuss the strength of the function against known 
attacks for finding different types of collisions. 
 
3.1 Properties of iterative part 
The iterative part includes three parts. 
 
3.1.1 Properties of iterative part one 
In iterative part one, all message bits have been mixed. And function COMP is called 
twice. All bits in message words  have been used as parameters of function G, 
R and ROTR operation. 

80 ,WW

 
3.1.2 Properties of iterative part two 
It is relatively easy to prove the following Theorem: 
 
Theorem 1: The iterative part two of Dynamic SHA-2 is a bijection 

. working variables are w-bit words. ww ×× → 88 }1,0{}1,0{:ξ
Proof. Let hv(1)=(a(1), b(1), c(1), d(1),e(1), f(1), g(1), h(1)). where a(1), b(1), c(1), 
d(1),e(1), f(1), g(1), h(1) are working variables before iterative part two. And hv(1a)= 
(a(1a), b(1a), c(1a), d(1a),e(1a), f(1a), g(1a), h(1a)) are working variables before 
iterative part two. 

The working variables are b-bit words. Then we have the function F(hv(1))=hv(1a) 
and .  wwF ×× → 88 }1,0{}1,0{:

It is enough to known that, to a given hv(1)’, there is a hv(1a) make 
F(hv(1)’)=hv(1a). 

To a given hv(1a)’, it is easy to backward the iterative part two and compute the 
unique value for hv(1). So to a given hv(1a)’, there is a hv(1) make F(hv(1))=hv(1a)’. 

So Dynamic SHA-2 is a bijection                     □ ww ×× → 88 }1,0{}1,0{:ξ
 
After iterative part one, all bits in message have been mixed. From the definition of 
function R1, it is enough to known that all bits in working variables a,b,c,d,e,f,g will 
affect all bits in temporary words T. After call function R1 9 times, all bits in working 
variables that before iterative part two will affect all bits in working variables that after 
iterative part two. If there is iterative part two, some bits in message will not affect all 



bits in last hash value. So all message bits will affect all bits in last hash value. 
 
3.1.3 Properties of iterative part three 
In iterative part three, all message bits have been mixed seven times. And function 
COMP is called fourteen times. All bits in message words 7654321  

1211109 have been used as parameters of function G, R and 
ROTR operation. 

,,,,,,, WWWWWWW
,,,,,, WWWWWWW 151413

 
In iterative part one and three, all bits in message have been used as parameters of 
function G, R and ROTR operation. This will divide message space into (resp. 

) parts. 
5122

10242
 
3.2 Design rationale 

The reasons for principle: When message is changed, the calculation will be 
different. 

From the definition of function G, R and ROTR operations, it is easy to know all 
bits in message have been used as parameters of function G, R and ROTR operation. 
One bit different in message, different logical function or different ROTR operation will 
be done, and it will make the calculation different. Different message will lead to 
different calculation, these different calculations divide message space into (resp. 

) parts. In a part there is 
5122

10242 12 512512 =−  (resp. 12 10241024 =− ) message value.  
 
Why Dynamic SHA-2 does not have constants?  
The reasons why I decided not to use any constants is that Dynamic SHA-2 is secure 
enough. 
 
Controlling the differentials is hard in Dynamic SHA-2: 

In Dynamic SHA-2, it is known that when message is changed, the calculation will 
be different. To analyze Dynamic SHA-2, it need the unchangeable formulas that 
represent function describe function G, R and data-depend ROTR operation. There 
are three ways to analyze Dynamic SHA-2: 

1. Guess the parameters of function G, R and ROTR operation. The parameters of 
function G, R and ROTR operation divide message space into (resp. ) 
parts. This way is select a part in the message value space. And there is only 
one message value in a part. It can not find collisions in the same part. 

5122 10242

2. Someone can use Algebraic Normal Form (ANF) to represent Dynamic SHA-2, 
but the ANFs that represent function R has up to  (resp. ) monomials. 
If constitute the Arithmetic function based on ANF, the degree of the Arithmetic 
function represents function R and G is 261(resp. 518) and 5. 

2612 5182

3. Someone can constitute Arithmetic functions to represent Dynamic SHA-2 as in 
Appendix 2. But the Arithmetic function that represents function R and G is 
complex exponential function with round-off instruction. After iterative parts, the 
Arithmetic function that represents function R and G will be very huge. 

 
3.3 Finding Preimages of Dynamic SHA-2 
To a hash function f(·), it need satisfy: 

Given hash value H=f(M), it is hard to find message M that meet H=f(M). 
 
There are two ways to find preimages of a hash function: 

1,From the definition of Dynamic SHA-2 (similarly as with SHA-2) it follows that 
from a given hash digest it is possible to perform backward iterative steps by 
guessing values that represent some relations between working variables of the 
extension part.  

To do this, it needs the parameter of the ROTR operation and function G, R in 
Dynamic SHA-2. But in Dynamic SHA-2, when message changed, the parameter of 
the ROTR operation and function G, R will change. So attacker had to guess the 
parameter that will be used in Dynamic SHA-2. From the definition of Dynamic SHA-2, 
it is know that all bits in message are used as the parameter of the ROTR operation 



and function G, R. When attacker completes guessing parameters, he has guessed 
all bits in message. 

 
2, The probability of random guess of finding preimages is (resp. , 
, ). 

2242− 2562−

3842− 5122−

 
3.4 Finding Second Preimages of Dynamic SHA-2 
To a hash function f(·), it need satisfy: 

Given M, it is hard to find M’ s.t. f(M) = f(M’). 
 

There are five ways to find second preimages of a hash function: 
1, Get hash value H of message M, and find different message M’ that has hash 

value H. then the problem become find Preimages of the hash function. 
2, Given M, and find out the relationship between the difference M=(M1△ -M) and 

the difference H=f(M1)△ -f(M). And find out M≠0 that make H=0. To do this, △ △
someone will set up some system of equations obtained from the definition of 
the hash function, then trace forward and backward some initial bit differences 
that will result in fine tuning and annulling of those differences and finally obtain 
second preimages. It need know the unchangeable formulas that represent 
hash function f. In Dynamic SHA-2, when message is changed, the calculation 
is different. To get unchangeable formulas that represent hash function f, it need 
get ANFs for Dynamic SHA-2. And the ANFs that represent function R has up 
to,  (resp. ) monomials.  2612 5182

3. To get unchangeable formulas that represent hash function f. It can constitute 
Arithmetic functions to represent Dynamic SHA-2. And the Arithmetic functions 
that represent function R and G are exponential functions with round-off 
instruction. Or someone had to constitute 261-degree(resp. 518-degree) 
Arithmetic function to represent function R. 

4. Guess the parameters of function G, R and ROTR operation. This way is select 
a part in the message value space. And there is only one message value in a 
part. It can not find second preimages in the same part. 

5. The probability of random guess of finding second preimages is (resp. 
, , ). 

2242−

2562− 3842− 5122−

 
3.5 Finding Collisions in Dynamic SHA-2 
To a hash function f(·), it need satisfy: 

It is hard to find different M and M’  s.t. f(M) = f (M’). 
 
There are five ways to find collisions of a hash function: 

1, Fix message M, and find different message M’ that has hash value H=f(M). then 
the problem become find Second Preimages of the hash function. 

2. Find out the relationship between the (M, M’) and the difference H=f(M)△ -f(M’). 
And find out (M,M’) that make H=0. To do this, someone will set up some △
system of equations obtained from the definition of the hash function, then trace 
forward and backward some initial bit differences that will result in fine tuning 
and annulling of those differences and finally obtain collisions. It need know the 
unchangeable formulas that represent hash function f. In Dynamic SHA-2, when 
message is changed, the calculation is different. To get unchangeable formulas 
that represent hash function f, it need get ANFs for Dynamic SHA-2. And the 
ANFs that represent function R has up to,  (resp. ) monomials. 2612 5182

3. To get unchangeable formulas that represent hash function f. It can constitute 
Arithmetic functions to represent Dynamic SHA-2. And the Arithmetic functions 
that represent function R and G are exponential functions with round-off 
instruction. Or someone had to constitute 261-degree(resp. 518-degree) 
Arithmetic function to represent function R. 

4. Guess the parameters of function G, R and ROTR operation. This way is select 
a part in the message value space. And there is only one message value in a 
part. It can not find collisions in the same part. 



5. The attack base on the birthday paradox. the workload for birthday attack is of 
O( ) (resp. O( ) O( ) O( )). 1122 1282 1922 2562

 
3.6 Finding collisions in the reduced compression function of Dynamic SHA-2 
If the message bits are mixed less twice. The system will be weak, someone can 
backward Dynamic SHA-2 as table 6 show. 
 
If the message bits are mixed at least twice, and attacker backward Dynamic SHA-2, 
he will have a system of more than 32 equation with 16 unknown variables, The 
probability of there is solution for the system is less than (resp. ). And the 
message space is divided into more that  (resp. ) parts. In a part, the average 
number of message values is less than  (resp. ). The average number of 
collisions is less than  (resp. , , ). If an algorithm is developed to find 
collision for a calculation, then the probability of find the collision is less than 

(resp. , , ). 

5122− 10242−

1282 2562
3842 7682

1602 1282 3842 2562
1282− 1282− 2562− 2562−

 
 
4 Improvements 
There are some improvements for Dynamic SHA-2: 
 
1. There is no any constant in Dynamic SHA-2. Use constants will increase system 
security. 
 
2. In HMAC, the initial hash value is random variable to attacker. If Dynamic SHA-2 is 
used in HMAC, by theorem 4, it is easy know that the probability of hash value is 

(resp. ).  2242− 2562− 3842− 5122−

There are some ways that we can adopt to get random initial hash value, for 
example: ii −1 , i  is i-th initial hash value, c is constant and c is odd 
number. To do this, it need new communication protocol. 

cIVIV += IV

 
3. If some algorithms that based on Arithmetic functions and differential analysis are 
developed. The message expansions will increase the degree of the Arithmetic 
function that represents Dynamic SHA-2. If the message expansions is data depend 
function, the degree of the Arithmetic function that represents the message 
expansions maybe be up to 512(resp.1024). It will increase the ability that resists 
differential analysis 

The message expansion maybe makes some hash values have more probability 
than other hash value. With improvement 2, all hash value will have same probability. 

 
 
5 Conclusions 

William Stallings[14] has mentioned that data-depend function will make cipher 
system nonlinear, and composite function of Boolean functions and Arithmetic 
functions also make cipher system nonlinear. Dynamic SHA-2 carries out the two 
suggestions. 
 

Function G, R and ROTR operations divided the message space into many parts, 
in different part, the calculation is different. At the same time, the ANFs for function R 
have huge number monomials. And the Arithmetic functions represent function R, G 
is complex exponential function with round-off instruction. So there are three ways to 
analyses: 

1. Constitute Boolean functions to represent Dynamic SHA-2. It needs deal with 
a big formula. The ANFs that represent function R has up to ,(resp. ) 
monomials. The degree of Arithmetic function represents function R is up to 261 
(resp.518). 
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2. Constitute Arithmetic functions to represent Dynamic SHA-2. It needs deal with 
complex exponential function or 261-degree(resp. 518-degree) Arithmetic function. 

3. Guess the parameters of function G, R and ROTR operations. It needs deal 



with divided message space. The message space is divided into  (resp. ) 
parts. In a part, there is one message value. It can not find the collision in one part.. 

5122 10242

 
And based on components from the family SHA-2, I have introduced the principle 

in the design of Dynamic SHA-2: When message is changed, the calculation will be 
different. And I bring in data depend function G, R, and use bits in message as 
parameters of function G, R and ROTR operations. These steps realize the principle. 
The principle enabled us to build a compression function of Dynamic SHA-2 that has 
not new variable, the iterative part include three iterative parts, it is more robust and 
resistant against generic multi-block collision attacks, and it is resistant against 
generic length extension attacks. 
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Appendix 1: Constitute Boolean functions to represent function. 
We can use Algebraic Normal Form (ANF) to represent function. Gupta and Sarkar[13] 
have studied it. 
Let n≥r≥1 be integers and let  be a vector valued Boolean function. 
The vector valued function  can be represented as an r-tuple of Boolean functions 

, where , and the value of 
21 n  equals the value of the s-th component of 21 n . The 

Boolean functions 21
)(

n  can be expressed in the Algebraic Normal Form 
(ANF) as polynomials with n variables n  of kind 

nnnnnnnn 21,...,2,11,121110

rnF }1,0{}1,0{: →
F

),...,,( )()2()1( rFFFF = ),...,2,1}(1,0{}1,0{:)( rsF ns =→
),...,,()(s xxxF xxxF

s xxxF
),...,,(

),...,,(
xxx ,...,, 21

xxxaxxaxxaxaxaa ,...,,......... 2,1⊕ ⊕⊕ ⊕ ⊕⊕⊕⊕
n2

−− ,where . 
Each ANF has up to  monomials, depending of the values of the coefficients .  

}1,0{∈λa
λa

 
 
Function R 
Function R operates on six words x1,x2,x3,x4,x5,x6,x7,x8 and an integer t and 
produces a word y as output, where wt<≤0 . So we have , 
It is easy to know that one-bit different in words x1,x2,x3,x4,x5,x6,x7,x8. Because 
the parameter of the rotate right operation is depend on message, with different 
message different rotate right operation will be done. So the bit in output maybe 
changed.  

ww w

R }1,0{}1,0{: 2log8 →+×

So the ANFs to represent function R have up to  monomials, where  
is bit length of the word. 

ww ××82 w

 
Function G 
Function G operates on six words x1,x2,x3 and an integer t and produces a word y 
as output, where . So we have . 40 <≤ t wwR }1,0{}1,0{: 23 →+×

If function G is not data depend function, the integer t is constant. When i-th bit in 
words x1,x2,x3 change, i-th bit in output maybe change. Then the ANFs to 
represent function R have up to  monomials. 32

If function G is not data depend function, the integer t is variable. It is easy to know 
that one-bit different in integer t, different logical will be called, every bit in output 
maybe change. One-bit different in words x1,x2,x3, a bit in output maybe change. 
Then the ANFs to represent function R have up to 523 22 =+  monomials. 



Appendix 2: Constitute Arithmetic functions to represent function. 
Gupta and Sarkar [13] had studied how to use Algebraic Normal Form (ANF) to 
represent function. In this way, all function will be represented as polynomials. 
 
In appendix 2, the following operations are used: 
1.  is absolute value of )(xabs x  
2. x  is round-off instruction on x  
3. “+” is arithmetic addition. 
4. “-” is arithmetic subtraction. 
5. “× ” is arithmetic multiplication. 
 
1. Constitute Arithmetic functions to represent Boolean function: 
In Boolean function, 1 is True, 0 is False. 
 
1. one bit word.  
The Boolean function can represented with arithmetic functions as follow: 

operand function arithmetic function 
x,y yxz ⊕=  yxyxz ××−+= 2
x,y yxz ∧=  yxz ×=  
x,y yxz ∨=  yxyxz ×−+=  
x xz ¬=  xz −=1  

Tables 4 represent Boolean function with arithmetic function 
To Boolean polynomial, it can replace every calculation of polynomial base on table 4.  
 
2. n-bit word. 
If there are three n-bit words x, y, z. if there exist ),( yxfz =  where f is Boolean 
function that in table 4. 
x, y, z are n-bit words. Let 
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where i  is i-th bit of word x, y, z. There exists ii zyx ,, ),( iii yxfz = , where 
. 10 −≤≤ ni

To Boolean polynomial, it can replace every calculation base on table 4 for every bit of 
variables. 
 
3. If function F includes a series functions  as follow: 10 ,..., −tff

⎪
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⎪
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Then it can represent function F as follow: 

)),(()2
2

22(),,( 1

0

)(
)( yxfkyxz i

t

i

ikabs
kiabs ××−=∑ −

=

−
−  

 
Base on above-mentioned three ways, it can represent Boolean function with 
arithmetic functions. And there exists: 
Theorem 2. In GF(2), there exists . 0>= kxxk

Proof. In GF(2), }1,0{∈x .  
If x=0,  xx kk === 00



If x=1,                                         □ xx kk === 11
 

2. Constitute Arithmetic functions to represent function with ANF 
rFunctions  can be expressed in the ANF as polynomials with n 

variables n  of kind nnnnnnnn 1,...,2,11,1212,1110

nF }1,0{}1,0{: →
xxx ,...,, 21 xxaxxaxxaxaxaa ............⊕ ⊕ ⊕ ⊕ ⊕ ⊕⊕⊕ −− , 

where . If replace every calculation in the ANF base on table 4 and simplified 
by theorem 2, it can constitute Arithmetic functions to represent ANF. The Arithmetic 
functions will be polynomials with n variables n21  of kind 

}1,0{∈λa

xxx ,...,, +×++×+ nn110  
nnnnn

xbxbb ...
xxbxxbxxb n × ×++××++××+ ......... 1n2

−− 1,...,2,1,1212,1 , where λb  are integer. The Arithmetic 
functions have up to  monomials. The degree of Arithmetic functions is up to n. 
And there exists  , where f is r-bit word. ∑−

=
×=

1

0 21
)( 2),...,,(r

i
i

n
s xxxFf

 
3. Constitute Arithmetic functions to represent SHR operation: 
The shift right operation  can be represented as follow: )(xSHRk

)0.1(
2

)( k
k xxSHRy ==  

If operation  is not data-depend operation, the k in equation (1.0) is 
constant, and equation (1.0) is linear equation. The derivative function of linear 
equation is constant. 

)(xSHRy k=

If operation  is data-depend operation, the k in equation (1.0) is 
variable. And equation (1.0) will be exponential function with round-off instruction. It is 
hard to represent exponential function with linear equation.  

)(xSHRy k=

 
4. Constitute Arithmetic functions to represent data-depend function R: 
There are two ways to constitute Arithmetic functions to represent data-depend 
function R: 
1. Constitute ANFs that represent function R. And replace the Boolean function base 
on table 4. In this way, it will constitute huge Arithmetic function. The ANFs represents 
function R has up to (resp. ) monomials. By theorem 2 and the input has 
261(resp. 518) bits, so the highest degree monomial of the Arithmetic function is 

=0i i  (resp. ∏=0i i ), where i  is i-th input bit. The degree of the Arithmetic 
function represents function R is up to 261(resp. 518). There exists: 
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∏260 x x517 x

c
xdxdxd

yd

bni

bn

=
− )()....()....(

)(

10

 

where c is constant,  is i-th input bit of function R, bn is bit number of input, and bn 
equal 261(resp. 518).  

ix

 
2. At first, there exist rotate right (circular right shift) operation , where x is 
n-bit word, and 

)(xROTRk

nk <≤0 . It can represent  as follow: )(xROTRy k=

)1.1(2
2

2)2
2

(
2

)(

kn
k

knk
kk

k

xx

xxx
xROTRy

−

−

×+=
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=

 

If function  is not data-depend function, the k in equation (1.1) is 
constant, and equation (1.1) is linear equation. The derivative function of linear 
equation is constant. This means the difference of function value depend on the 
difference of input, and the difference of function value dose not depend on the input. 
In SHA-2, the ROTR operation is not data-depend function, it can constitute linear 
equation to represent the ROTR operation in SHA2. 

)(xROTRy k=

If function  is data-depend function, the k in equation (1.1) is )(xROTRy k=



variable. And equation (1.1) will be exponential function with round-off instruction. It is 
hard to represent exponential function with linear equation. The derivative function of 
exponential function is exponential function. This means the difference of function 
value depend the difference of input and input. When the input changes, the different 
of function value maybe change. In Dynamic SHA-2, function R is data-depend 
function. And if use equation (1.1) represents function R, the equation (1.1) will be 
complex exponential function. After several rounds, equation (1.1) will be iteration 
function with equation (1.1), it will be very huge and complex, and there exists no 
mathematical theory that reduces the size of equation (1.1). It is hard to analyses 
Dynamic SHA-2 that includes function R.  
 
5. Constitute Arithmetic functions to represent data-depend function G: 
There are two ways to constitute Arithmetic functions to represent data-depend 
function G: 
1. Constitute ANFs that represent function G. And replace the Boolean function base 
on table 4. The ANFs represents function G has up to  monomials. By theorem 2 
and the input has 5 bits, so the highest degree monomial of the Arithmetic function is 

=0i i , where i  is i-th input bit. The degree of the Arithmetic function represents 
function G is up to 5. 

52

∏4 x x

 
2. The function G can be represented as follow: 

)2.1())3,2,1(()2
2

22(),3,2,1( 3

0

)(
)( xxxGtxxxy ii

itabs
tiabs ××−=∑ =

−
−  
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iii  is i-th bit of x1, x2, x3. In system (1.3), it is known that  are cubic 
equations. 

xxx 3,2,1 iG

 
If function G is not data-depend function. the t in equation (1.2) is constant. It can 

look the equation (1.2) as cubic equation. It is hard to represented equation (1.2) with 
linear function. And there exists: 

 c
xdxdxd

yd

iii

=
)3()2()1(

)(3

 

And c is constant. 
 
If function G is data-depend function, the t in equation (1.2) is variable, and 

equation (1.2) will include exponential function monomial. And equation (1.2) will be 
exponential function with round-off instruction. The derivative function of exponential 
function is exponential function. There is not any high order derivative function of 
exponential function will be constant. It is hard to analyze equation (1.2) with 
differential analysis. 

 
In Dynamic SHA-2, function G is data-depend function. And if use equation (1.2) 



represents function G, the equation (1.2) will be complex exponential function. After 
several rounds, equation (1.2) will be iteration function with equation (1.2), it will be 
very huge and complex, and there exists no mathematical theory that reduces the 
size of equation (1.2). 
 
Compare the Arithmetic function that represent SHA-2, The Arithmetic function that 
represent Dynamic SHA-2 include exponential function. Or the Arithmetic function 
that represents Dynamic SHA-2 has higher degree than the Arithmetic function that 
represents SHA-2. This make it is harder to analyses Dynamic SHA-2. 



Appendix 3: Function G and Function R 
 
Let  is probability of )(xp x . 
 
1, Function G: 
Function y=G(x1, x2, x3, t) operates on tree words x1,x2,x3 and an integer t, . 
Function G use the integer t select a logical function from 1 , 2 , 3 . And y, x1, 
x2, x3 are w-bit word. So the bit-length of (x1,x2,x3,t) is 

30 ≤≤t
0f , f f f

23 +×w , the bit-length of y is 
w. 
 
To a given value y’=G(x1,x2,x3,t), there is  4-tuple (y’,x1,x2,t). To a given 
4-tuple (y’,x1’,x2’, t’). There is the relation: 
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To given 4-tuple (y’,x1’,x2’,t’), it can compute the value for x3’. So there are  
4-tuple (x1,x2,x3,t) have the same value y’. x1, x2, x3, t are random and uncorrelated 
variable, there is: 
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If x1, x2, x3, t are random and uncorrelated, function G will produce random word and 

 wyp −=2)(

 
2, Function R: 
Function y=R(x1,x2,x3,x4,x5,x6,x7,x8,t) operates on eight words x1,x2,x3,x4,x5,x6, 
x7, x8 and an integer t. To a given value y’=R(x1,x2,x3,x4,x5,x6,x7,x8,t), there is 

 9-tuple (y’,x1’,x2’,x3’,x4’,x5’,x6’,x7’,t’). To a given 9-tuple (y’,x1’,x2’,x3’,x4’, 
x5’, x6’, x7’,t’). There is the relation:  

ww××72
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To given 9-tuple (y’,x1’,x2’,x3’,x4’,x5’,x6’,x7’,t’), it can compute the value for x8, So 
there are  9-tuple (y’,x1’,x2’,x3’,x4’,x5’,x6’,x7’,t’) have the same value y’. 
x1,x2,x3,x4,x5,x6,x7,x8,t are random and uncorrelated variable, there is: 
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If x1,x2,x3,x4,x5,x6,x7,x8, t are random and uncorrelated, function R will produce 
random word and  wyp −=2)(
 



Appendix 4: Some thing about Dynamic SHA-2 
 
1. Why Dynamic SHA-2 use function G and function R 

The reason Dynamic SHA-2 use function G and function R is: 
1. When the variables are random and uncorrelated, function G and R will 

produce random output. This makes the last hash values has close probability. 
2. Function G and R are data-depend function, it is hard to describe data-depend 

function with linear function, and it is hard to analyze data-depend function 
with differential analysis. It needs construction arithmetic function that the 
degree is up to 261(resp. 518) to describe function R and 5-degree arithmetic 
function to describe function G, or construction exponential function to 
describe function R and G. And the ANFs that describe function R has up to 

 monomials.  
ww 2log82 +×

 
2. It is hard analysis Dynamic SHA-2 with linear function and differential 
analysis 

To analyze the relationship between message and hash value, it need the 
unchangeable formulas that represent hash function. And when message is changed, 
the calculation will be different. 

The ANFs that describe function R has up to  monomials. 
ww 2log82 +×

The degree of the arithmetic function that describe function R is up to 
261(resp.518). Or it needs construction exponential function to describe function R 
and G.  

So it is hard analysis Dynamic SHA-2 with linear function and differential analysis. 
 

3. There is 8 rounds in Dynamic SHA-2  
From the definition of Dynamic SHA-2, it is easy to know that after 8 rounds, all 

bits in message had been used as parameter of function G, R and ROTR operations. 
And the message value space had been divided into  (resp. ) parts, in a part, 
there is only one message value. 

5122 10242

From the definition of function COMP, it is easy to backward function COMP. If 
the message is mixed only one time, the system will be weak. In 8 rounds, the 
message bits are mixed 8 times, if attacker backward Dynamic SHA-2 as table 6 show, 
he will have a system of 128 equations with 16 unknown variables. The probability of 
there exist solution for the system is (resp. ). Or attacker can use 
random guessing. The probability of random guess of finding preimages is (resp. 

, , ). 

51272 ×− 102472 ×−

2242−

2562− 3842− 5122−

 
4. Avalanche of Dynamic SHA-2. 
After the first iterative part, all bits in message have been mixed. The second iterative 
part includes function R1. It is easy to know that one bit different in working variables 
a, b, c, d, e, f, g will lead to different ROTR operation been done. And after the second 
iterative part, every bit in working variables that before the second iterative part will 
affect all bits in working variables that after the second iterative part. 

 



Appendix 5: Spreading of Dynamic SHA  
To simplification, Let: 

1.MW1=(W(0),W(1),W(2),W(3),W(4),W(5),W(6),W(7)), 
MW2=(W(8),W(9),W(10),W(11),W(12),W(13),W(14),W(15)) 
W(j) is the message word. 

2. hv(i)=(a(i), b(i), c(i), d(i),e(i), f(i), g(i), h(i)). where a(i), b(i), c(i), d(i),e(i), f(i), g(i), 
h(i) are working variables at i-th function COMP called. 

3. 15i1hv(i)MW2)MW1,(hv(-1),H = ≤ ≤  i
4. Message word and working variables are b-bit words. 

From the definition of Dynamic SHA-2, it is easy know that function COMP had been 
called sixteen times, when function COMP is called, MW1 or MW2 will be mixed. So it 
can describe Dynamic SHA-2 as follow: 

MW2 

MW2 

MW1 

MW1
hv(-1) hv(0) 

hv(1a) 

hv(2) hv(15) 
MW2 ….

hv(1) The first 
iterative part 

The second 
iterative part 

The third 
iterative part 

 
Table 5  data processing of Dynamic SHA-2 

 
At first there are two theorems: 
 
Theorem 3:  
To function , there is: ),7,6,5,4,3,2,1,0,,,,,,,,( twwwwwwwwhgfedcbaCOMP
1.MW=(W0,W1,W2,W3,W4,W5,W6,W7), where W0,…,W7 are words that mixed. 
2. hva=(a0, b0, 0c, d0, e0, 0f, g0, h0). Where a0, b0, c0, d0,e0, f0, g0, h0 are working 
variables that before call function COMP. 
3. hvb=(a1, b1, c1, d1, e1, f1, g1, h1). Where a1, b1, c1, d1,e1, f1, g1, h1 are working 
variables that after call function COMP. 
working variables are b-bit word. hva, MW are random and uncorrelated. 

 
Then there exist: 

(1),p(hvb)= b×−82  
(2),p(hvb|MW)=  

b×−82
(3),p(hvb|hva)=  

b×−82
 

Proof.  
The integer t in function COMP is decided by which round function COMP be. So 

the integer t can be look as constant. And we can use function  
describe function COMP. And we have . hva, MW are random 
and uncorrelated. So there is p(hva)=  and p(MW)=  

),( MWhvaFhvb=
bbF ×× → 816 }1,0{}1,0{:

b×−82 b×−82
 
There are  MW. To a given MW’, there exist: b×82

To a given hva’, from the definition of F, there is only a hvb that make 
. )','( MWhvaFhvb =

And to a given hvb’, it can backward function F, and there is only a hva that 
make  . So there exist: )',(' MWhvaFhvb =
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 Dynamic 
SHA-224/256 
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SHA-384/512 
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Table 6. Relationship of hva, hvb 
(3) 
To given hva’, there exist: 
To a given hvb’, there is the relationship as table 6, It is easy to compute the 

value for MW that make . So there exist:  ),'(' MWhvaFhvb =
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By theorem 3, to function COMP, it is easy to know that: 
To a given hva’, mix different message words MW, the hvb will be different. 
Mix given message words MW’, if the hva is different, the hvb will be different. 
 
 

Theorem 4. In Dynamic SHA-2, there exist: 
(1) p(hv(j))=  b×−82
(2),p(hv(j)|MW1)=  

b×−82
(3),p(hv(j)|MW2)=  

b×−82
15,....,1=j  

 
Proof.  
hv(-1), MW1 and MW2 are random and uncorrelated, so there exist: 

p(hv(-1)) =  b×−82
p(MW1) =   b×−82
p(MW2) = . b×−82

 
To simplification, Let F(hv(i-1),MW)=hv(i), MW is mixed words MW1 or MW2. 
 

To a given hv(i)’ , there are  2-tuple(MW1,MW2).  
To a given 2-tuple(hv(i)’,MW1’), there are  MW2. To a given 2-tuple 

(hv(i)’,MW2’), there are  MW1. 

15,....,1=i b×162
b×82

b×82
To a given 3-tuple(hv(i)’,MW1’,MW2’), It is easy to backward iterative steps, and it 

is easy to compute the value for hv(-1), and the hv(-1) make   
.  

)MW2',MW1'(hv(-1),Hi
hv(i)'=

So there exist: 

bbbb
i i ii

i i iiii

bbbb
i i ii

i i iiii

bbbbbb
i i i iii

i i i iiiiii

MWihvp

MWhvMWihvpMWhvpMWihvp

MWhvpMWhvMWihvpMWihvp

MWihvp

MWhvMWihvpMWhvpMWihvp

MWhvpMWhvMWihvpMWihvp

ihvp

MWMWhvihvpMWMWhvpihvp

MWMWhvpMWMWhvihvpihvp

b b

b b

b b

b b

b b b

b b b

×−××−×−

−

=

−

=

−

=

−

=

×−××−×−

−

=

−

=

−

=

−

=

×−×××−×−×−

−

=

−

=

−

=

−

=

−

=

−

=

=××=

−×−=

−×−=

=××=

−×−=

−×−=

=××××=

−×−=

−×−=

∑ ∑
∑ ∑

∑ ∑
∑ ∑

∑ ∑ ∑
∑ ∑ ∑

8888

12
00

12
01 10

12
00

12
01 1010

8888

12
00

12
01 10

12
00

12
01 1010

888888

12
00

12
01

12
02 210

12
00

12
01

12
02 210210

2222)2|)((

))1,)1((|)2|)((()1),1(()2|)((

)1,)1(())1,)1((|)2|)((()2|)((

2222)1|)((

))2,)1((|)1|)((()2),1(()1|)((

)2,)1(())2,)1((|)1|)((()1|)((

222222))((

))2,1,)1((|)(()2,1),1(())((

)2,1,)1(())2,1,)1((|)(())((

 

                                                                    □ 
 
 
Theorem 5. In Dynamic SHA-2, to a given hv(-1), there exist: 

p(hv(2)| (hv(-1),MW1))=  
b×−82

 
 
Proof. To simplification, Let F(hv(i-1),MW)=hv(i), MW is mixed words MW1 or MW2. 

Let F1(hv(1))=hv(1a). 
To a given 3-tuple (hv(2)’,hv(-1)’,MW1’). By theorem 3, there exist a 2--tuple 

(hv(0),hv(1a)) that make F(hv(-1)’,MW1’)=hv(0) and F(hv(1a),MW1’)=hv(2)’. 



To a given hv(1a)’, by theorem 3, there exist a hv(1) that make F1(hv(1))=hv(1a)’. 
To a given 2-tuple (hv(0)’,hv(1)’) . By theorem 3, there exist a MW2 that make 

F(hv(0)’,MW2)=hv(1)’. 
So there exist: 
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                                                                      □ 
 
 

By theorem 4 and 5, it is to know that: 
1. When hv(-1) is random variable, the probability of hash value is ,  b×−82
2. To a given hv(-1), the probability of different hash value maybe different.  

 
After first round, the bits in message have been mixed, the mixed bits and working 
variables value are not uncorrelated, it is hard to analyze the probability of hash value. 
To get better property of spreading, Dynamic SHA-2 adopt ways as follow: 

1. When the variable of function COMP is random value. Function COMP will 
produce random value. 

2. To reduce the times that message bits mixed, there is no message expansion 
part in Dynamic SHA-2. 


