Full Cryptanalysis of LPS
and Morgenstern Hash Functions

Christophe Petit!*, Kristin Lauter? and Jean-Jacques Quisquater!**

1UCL Crypto Group* **, 2Microsoft Research.

e-mails: christophe.petit@uclouvain.be,klauter@microsoft.com,jjg@uclouvain.be

Abstract Collisions in the LPS cryptographic hash function of Charles,
Goren and Lauter have been found by Zémor and Tillich [16], but it was
not clear whether computing preimages was also easy for this hash function.
We present a probabilistic polynomial time algorithm solving this problem.
Subsequently, we study the Morgenstern hash, an interesting variant of LPS
hash, and break this function as well. Our attacks build upon the ideas of
Zémor and Tillich but are not straightforward extensions of it. Finally, we
discuss fixes for the Morgenstern hash function and other applications of our
results.

1 Introduction

Hash functions are widely used in cryptographic applications such as commitment
schemes, digital signatures schemes, message authentication codes or password en-
cryption. Typically, a hash function is required to be preimage and collision resistant
and to have nearly uniform output distribution. Due to the importance of crypto-
graphic hash functions, the SHA family was designed as a NIST standard [2]. How-
ever, recently discovered vulnerabilities in SHA-1 [14] prompted NIST to launch a
competition for a New Cryptographic Hash Algorithm [1].

The NIST competition is stimulating research on hash functions in the cryp-
tographic community and a lot of new schemes have been recently designed and
put forward. Particularly appealing from a theoretical point of view, some of these
schemes are provably secure, in the sense that their security relates to the hardness
of some mathematical problem [8,4,3,12]. A good reduction to a simply formulated
mathematical challenge facilitates the evaluation process and increases the confi-
dence once the function has resisted first cryptanalytic attempts. However, it also
gives the cryptanalyst a clue to break the scheme, and is especially problematic if
the mathematical challenge turns out to be easy.

* Research Fellow of the Belgian Fund for Scientific Research (F.R.S.-FNRS). Part of this
work was done while he was visiting Crypto Group at Computer Science Department,
UCSD.

** Part of this work was done while visiting MIT (CSAIL-Theory of Computation)
*** A member of BCRYPT and ECRYPT networks

The LPS hash function proposed by Charles, Goren and Lauter is one of these
constructions [3]. It has a particularly elegant design, as the hash computation can
be interpreted as a random walk in the optimal expander graphs of Lubotzky, Philips
and Sarnak [7]. Finding collisions for this function is finding cycles in the graphs,
which also amounts to finding a non-trivial factorization of the identity in terms of
some particular elements of a projective group of matrices (a problem we will call
the decomposition problem). Charles, Goren and Lauter proposed this problem as
potentially hard. A major step in the breaking of the LPS hash function has recently
been performed by Zémor and Tillich [16] who produced collisions by actually solving
this problem.

One of the main contributions of this paper is an efficient algorithm that finds
preimages for the LPS hash function. As Zémor and Tillich did, we actually solve
the underlying problem which was presumed hard. Both for efficiency considera-
tions and because of these new attacks, it also seemed worthwhile to study the
Morgenstern hash function, an interesting variant of the LPS hash relying on dif-
ferent graphs. A second main contribution of this paper is to adapt the Zémor and
Tillich attack to Morgenstern hashes, and as an example we give an efficient collision
finding algorithm. Combining the ideas of our two algorithms also gives a preimage
finding algorithm for Morgenstern hashes, that we do not present here due to space
limitations.

The paper is organized as follows: in Section 2 we describe the LPS and Morgenstern
hash functions; in Section 3 we recall the Zémor and Tillich algorithm; Section 4
presents our preimage algorithm for LPS hashes; in Section 5 we adapt Zémor and
Tillich’s algorithm to Morgenstern hashes and in Section 6 we discuss fixes for LPS
and Morgenstern hashes, as well as potential applications of our results. In the
appendix we give toy and 1024—bit examples of our algorithms.

2 LPS and Morgenstern hash functions

A Cayley graph Ca.s = (V, E) is a graph constructed from a group G and a subset
S of G as follows: V' contains a vertex v, associated to each element g € G, and E
contains the directed edge (v, ,vy,) iff there is some s € S such that go = g1s. The
elements of S are called the graph generators. The graph Cg g is |S|-regular; it is
connected iff S generates G it is undirected iff S = S~1.

A general construction for a cryptographic hash function from a Cayley graph
was introduced by Zémor and Tillich [15,12,13] in the directed case and by Charles,
Goren and Lauter [3] in the undirected case. In this paper, we focus on two instances
of the undirected graph construction, which we now recall following mainly the
description given in [16].

Let a :=|S| — 1. We will define a function 7 which orders the set of generators
(minus one generator to avoid back-tracking). Fix a function 7 : {0,1...a—1}xS — S
such that for any g € S the set 7({0,1...a — 1} x {g}) is equal to S\ {g~'}. Let go
and gry be arbitrary fixed elements of S and G respectively. The input message is
converted to a base a number x1...x and the elements g; = 7(z;, g;—1) are computed

recursively. The hashcode of the input message is the product of group elements
H(z) = grvgi...gk-

We will call hash functions constructed following this design strategy Cayley hashes.
These hash functions have some very interesting properties:

— The girth of the Cayley graph is the length of the smallest cycle, and no two
distinct messages of the same length can collide if their length is less than half
the girth.

— If the chosen graphs are good expanders (see [6] for precise definitions and
applications), the outputs tend to be uniformly distributed, and the convergence
to the uniform distribution is fast.

— Differential cryptanalysis (DC), which has been the most successful approach
against SHA-1, does not seem to apply to Cayley hashes. Indeed, DC typically
activates various portions of the message simultaneously, while in Cayley hashes
the bits (or k-its) are processed one at the time.

— Collision resistance is equivalent to the hardness of a simply-stated represen-
tation problem in the corresponding group: namely, this problem is to find a
factorization of the identity 1 = g¢1¢s...g; with g; € S and ¢;g;11 # 1 for all
ie€{1,2,..t -1}

— Preimage resistance and second preimage resistance follow from similar prob-
lems.

One proposal by Charles, Goren and Lauter [3] is to use the celebrated LPS graphs
of Lubotzky, Philips and Sarnak [7] that we now describe. Let p and [be primes, [
small and p large, both p and [equal to 1 mod 4, and [being a quadratic residue
modulo p. To [and p is associated an LPS graph X;, as follows. Let i be an
integer such that i2 = —1 mod p. The vertices of Xi,p are elements in the group
G = PSL(2,F,) (i.e. 2 x 2 matrices of determinant, modulo the equivalence relation

My ~ AMa, A € Fy). The set S'is S = {g;};=1...14+1, where

aj +if; vy +id; ; i
gj<_;;j+i6jjaj‘_iﬁ;>’ j=1,.,01+1
and (o, 8;,74,0;) are all the integer solutions of a? + 3% +~2 + §% = [, with a > 0
and 3, v, ¢ even. The Cayley graph X; , = C¢, s is undirected since S is stable under
inversion.

The choice of LPS graphs was very appealing : they are Ramanujan (i.e., they
have optimal expansion properties asymptotically [7,6]); they have no short cycles,
and computing the resulting hash functions turned out to be quite efficient compared
to other provable hashes [10]. Unfortunately, it turns out that LPS hash function is
neither collision nor preimage resistant (see Sections 3 and 4 below).

For efficiency reasons, we recently considered the use of Morgenstern graphs to
replace LPS graphs in Charles-Goren-Lauter’s construction [10]. Morgenstern’s Ra-
manujan graphs [9] generalize LPS graphs from an odd prime p = 1 mod 4 to any

power of any prime g. More specifically, we suggested the use of Morgenstern graphs
with ¢ = 2%, that we now describe.

Let g be a power of 2 and f(x) = 2% +z + € irreducible in Fy[z]. Let p(z) € F,[z]
be irreducible of even degree n = 2d and let F,» be represented by F,[z]/(p(z)).
The vertices of the Morgenstern graph I'; are elements of G = PSLy(Fyn) (i.e. 2% 2
matrices modulo the equivalence relation My ~ AMa, A € F}.). Let i € Fyn be a
root of f(z). The set S is taken to be S ={g;};=1....q+1, where

1 ")/j 531 .
o - =1,..,q+1;
g] ((’YJ+5JI+5J)£L' 1 ’ .] 9 »q 1)

where v;,0; € Iy are all the ¢+ 1 solutions in F, for 'y]z +7;0; +5.72'6 = 1. The Cayley
graphs I'; = Cg,s are also undirected as each g; has order 2.

An interesting property of Morgenstern hashes compared to LPS hashes is that
arithmetic is done in fields that are extensions of Fy rather than in finite prime fields,
potentially leading to faster hashes for some architectures. The total break of LPS
hashes leads to the question of whether similar attacks can be found for Morgenstern
hashes. This is indeed the case, and as an example we give a collision-finding attack
for ¢ = 2 in Section 5.

3 Zémor and Tillich algorithm

As our new attacks will build upon it, we now briefly recall Zémor and Tillich’s
algorithm that finds collisions for LPS hashes [16]. The algorithm lifts the graph
generators and the representation problem from PSL(2,F,) to an appropriate subset
£2 of SL(2,Z[i]) (in this section and the next one, ¢ is the complex imaginary number
satisfying 2 + 1 = 0 while i is a solution to i? + 1 = 0 mod p). The relevant set is

. a+bi c+di)
2= {(—c—i—dia—bi) |(a,b,c,d) € E. for some integer e > O}

where E, is the set of 4-tuples (a, b, ¢, d) € Z* such that

A+ 024+ d? =1
a>0,a=1mod 2
b=c=d=0mod 2.

We will call the first of these equations describing E. the norm equation, as the
left-hand side of this equation is the norm of the quaternion corresponding to the
quadruplet (a,b,c,d) (see [7]). The set 2 has two important properties: first, any
element of {2 admits a unique factorization in terms of the lifts of the graph genera-
tors, and second, there exists a multiplicative homomorphism from {2 to PSL(2,F,)
that allows translation of this factorization back to PSL(2,F)).

In their exposition, Zémor and Tillich decompose their attack into three steps.
The first step (lifting the decomposition problem to SL(2,Z[i])) amounts to finding

integers a, b, ¢, d and X\ satisfying the following conditions:

a,b,c,d) € E,
a,b,c,d) not divisible by 1
a,b,c,d) = \(1,0,0,0) mod p.

—~ T~

Putting every congruence condition into the norm equation leads to a diophantine
equation that was solved by Zémor and Tillich in their paper. The second step of
the attack is to factorize the lifted element I’ of {2 into products of lifted generators
g;-,j = 1...l+ 1. We know this factorization is unique and has size e, so let’s write it
I' =g} g},-.-g;.. Multiplying on the right by a lifted generator ¢’ gives a matrix that
is divisible by [if and only if ¢’ = (gg-e)_l, so by trying each of the graph generators
we get the last factor, and we then proceed recursively. The final step is to transpose
the factorization of I’ in {2 into a factorization of the identity in PSL(2,F,), but
using the homomorphism from {2 to PSL(2,F),), this last step is trivial. For details
on the attack we refer to [16].

4 Finding preimages for LPS hashes

My Mo
M3z My
determinant, and we are asked to find a preimage, that is a factorization of it with
the graph generators. By solving two linear equations in [F, we can write it in the

form
M= A+ Bi C+ Di
" \-C+DiA-Bi)"

Suppose we are given a matrix M = € PSL(2,F,) which has square

Our algorithm follows along the lines of Zémor and Tillich’s. We first lift the prob-
lem from PSL(2,F,) to the set {2 defined above, then factorize in {2 and finally
come back to PSL(2,F,). The only difference will be in the first step. Lifting the
representation problem now amounts to finding integers a, b, c,d and A\ satisfying
the following conditions:

(a,b,c,d) € E,
(a,b,c,d) not divisible by 1
(a,b,¢,d) = M(A, B,C, D) mod p.
We write a = A\ + wp, b = BA+ zp, c = CA+ yp and d = DA + zp with

w, x,Yy, 2z € Z. For convenience we choose e even, that is e = 2k for k an integer. The
norm equation becomes

(AN +wp)? + (BA + xp)? + (CX +yp)?® + (DX + 2p)? = 12, (1)

In the case B = C = D = 0 the norm equation is (AX + wp)? + (zp)? + (yp)? +
(zp)? = %! and was solved by Zémor and Tillich as follows: choose

AN 4+ wp = 1F + mp?

for small m and appropriate k, hence the equation is already satisfied modulo p?.
Simplifying by p? we get a quadratic diophantine equation of type z2 + y? + 22 =
m(I¥ — mp?) which Zémor and Tillich show has a solution either for m = 1 or for
m = 2. In Equation 1, when B, C, D are non-zero we cannot divide by p? because
of the term 2p(wA + B + yC + zD)\. Since we do not, the coeflicients of degree-2
terms are huge (at least p), and the equation is at first sight very hard to solve.

We overcome this difficulty with a new idea. In the remainder of this section, we
will solve the preimage problem for diagonal matrices with A and/or B non-zero,
and then we will write any matrix as a product of four diagonal matrices and up to
four graph generators. Altogether this leads to an efficient probabilistic algorithm
that finds preimages of the LPS hash function.

Preimages for diagonal matrices Now we show how to find a factorization of a
matrix
A+ Bi
M= (A- Bi)

such that A% 4 B? is a square modulo p. Write y = 2y and z = 22’ where ¢/, 2’ are
integers. We need to find integer solutions to

(AN 4+ wp)? + (BA + ap)? + 4p? (y'? + 2'%) = 1?F
AN+ wp =1mod 2
BA+ xp =0 mod 2

Fix k = [log;(8p?)]. As A% + B2 is a square, there are exactly two values for A
in {0,1,...p — 1} satisfying the norm equation modulo p:

(A% + B?)X? = I*! mod p.

Choose either of them, and let m := (12 — (A2 + B2?)A\2)/p. Our strategy will be to
pick random solutions to

128 — (AX + wp)? — (B + zp)? = 0 mod p?
AX+wp =1mod 2
BA+ xp=0mod 2

until the equation
4(y/2 + Z/2) —-n

has solutions, where
n = (1% — (AX + wp)? — (BA +zp)?) /p°.

A random solution to the congruence system is computed as follows: until you
get © with the correct parity, pick a random w € {0, 1,...p — 1} with the right parity
and compute r = 5% — %w mod p. By the way k, x and w are chosen we are
guaranteed that n > 0 so the equation 4(y"? + 2"?) = n has solution if and only

if 4 divides n and all prime factors of n congruent to 3 modulo 4 appear an even
number of times in the factorization of n. To avoid the factorization of n in the
algorithm, we will actually strengthen this condition to n being equal to 4 times a
prime congruent to 1 modulo 4. When it has solutions, the equation 4(y2 4 2'2) = n
is easily solved with the Euclidean algorithm, as recalled in [16]. After lifting the
problem to SL(2,Z[i]) the second and third steps of the algorithm are the same as in
Zémor-Tillich algorithm. So we are done with the factorization of diagonal matrices.

Reduction to the diagonal case Now we show how to decompose any matrix M €
PSL(2,F,) into a product of diagonal matrices and graph generators. We may
additionally assume that all the entries of M are nonzero: if they are not, just
multiply M by gg~! for some adequate g in S, and consider the factorization of
g~ M. We will show how to find (), o, w, 81, 32) with the last four being squares,

such that
M1 MQ . 10 f1 fg 10 o f1 u)fg
(h) =2 (om) (£ 5) (62) =2 (1 o2lh) @

fAfeY _[(12\[/10 12\/10 12
f3fa) =21 0 51 —21 0 (3 —21
_ < 1—481 — 482 — 48182 2—801 + 282 + 26152)
O\ 2201 4+80—26102 —4—401 — 4P+ (P2)
Lemma 1. Matriz equation (2) is equivalent to the following system:
MoMsf1fy — MiMyfofz =0
abMy f3 — Mz fi =0 (3)
WMz fy — Myf3 =0
Af1 — M, =0

and

Proof : (=) Fourth equation is entry (1,1) of the matrix equation. Third equation

is entry (2,1) times M; minus entry (1,1) times Ms. Second equation is entry (1,2)

times M; minus entry (1,1) times M. First equation is entry (1,1) times entry (2,2)

times My M3 minus entry (1,2) times entry (2,1) times M My.

(<) Last equation is M7 = Af; that is entry (1,1). We have My = %“fff by first
Mafs My _

equation so My = fgm f1 fowA by third and fourth equation, that is entry
(1,2). We have M5 = %;f?’ = a\f3 by second then fourth equation, that is entry
(2,1). We have My = wM;;,% by third equation, so using the already proved entry
(2,1) we have My = wa)\fg% = wfsa) that is entry (2,2). O

In the system of equations (3), the first equation only involves 8; and [s while
the other equations are linear once (3; and (5 are fixed. So we can concentrate on
solving the first equation, which is quadratic in both 3; and (s:

MoMsfy fy — My Myfafs = 4(MyMs — My My) (=37 + 381 + 4)53
+ (Mo M5 (1267 + 4981 + 12) + M1 My(—1267 + 761 — 12)) B2
+4(MyM;z — My My) (487 + 361 — 1) .

Our algorithm then proceeds as follows:

1. Pick a random [3; which is a square.

2. Compute the discriminant of the quadratic equation in (s, ;. If it is not a
square, go back to 1.

3. Solve the quadratic equation. If none of the roots is a square, go back to 1. Else,
assign a quadratic root to (s.

4. Compute fi1, f2, f3, fa.

5. Solve aMi f3 — M3 f1 = 0 to get «. If « is not a square, go back to 1.

6. Solve wM3fy — My f3 =0 to get w. If w is not a square, go back to 1.

This concludes the exposition of our algorithm.

Runtime analysis First consider the algorithm for diagonal matrices. Assuming n
behaves “as a random number” then according to the prime number theorem we
will need O(logn) = O(logp) trials before getting one n of the correct form. For
each trial, the most expensive computation is a primality test, which can be done in
polynomial time (in our implementation, we actually use the probabilistic function
mpz_probab_prime_p of GNU MP). So the algorithm for diagonal matrices is prob-
abilistic polynomial time. In the reduction algorithm, the probability for a random
number to be a square modulo p being one half, we estimate that a solution (), «,
w, B1, B2) with the last four being squares can be found in about 2% trials. Conse-
quently, the whole algorithm is probabilistic polynomial time. Our implementation
using GNU MP finds preimages in less than 2 minutes for 1024-bit parameters on
an Intel Pentium M processor 1.73GHz.

5 Collisions for the Morgenstern hash function

Now we show how to adapt Zémor and Tillich’s algorithm for finding collisions in
Morgenstern hashes when ¢ = 2. Our algorithm lifts the representation problem
from SL(2,Fan) to a subset £2 of SL(2,A) where A = Fa[x,y]/(y?> + vy + 1) (in this
section, 7 will denote a root of i2 +i + 1 = 0 in A while i is a root of the same
equation in Fon). The relevant set is

_ a+bi c+di .
0= {(z(c—l—di—i—d)a—i—bi—l—b) [(a,b,¢,d) € E, for some 1ntegere>0}

where E, is the set of 4-tuples (a,b, ¢, d) € Fa[z] such that

(a® +b% +ab) + (® + d* + cd)xr = (1 + 1)°
a=1modz
b =0 mod z.

Again call the first of these equations the norm equation. We point out that in
this section, small letters a, b, ¢, d, i, p are polynomials in x over Fy, while capitalized
letters will be used for elements of the field Fan. By [9], corollary 5.4 and 5.7, if we

restrict E. to tuples (a,b,c,d) not divisible by (1 + z), the elements of {2 have a
unique factorization in terms of the lifts of the graph generators:

;114 , (11 . 1 i
Yo=\iz 1)0 N7 \z1) 2T \+i21)

Moreover, the “reduction modulo p” (a,b,¢,d) — (A, B,C,D) = (a,b,¢,d) mod p
gives a homomorphism from 2 to SL(2,Fan):

a+bi c+di . A+ Bi C + Di
x(c+di+d)a+bi+b x(C+Di+D)A+Bi+B)’
From this it is now clear how the second and third steps of Zémor and Tillich
algorithm will work for Morgenstern hashes, so we now give details for first step.

This amounts to lifting the representation problem, that is finding a,b, ¢, d, A € Fan
satisfying the following conditions:

(a,b,c,d) € E,
(a,b,c,d) not divisible by x+1
(a,b,¢,d) = A(1,0,0,0) mod p.

Write b = apb’, ¢ = pc’, d = pd’ for ¥',c’,d’ € Fy[z] and arbitrarily choose e = 2k
and a = (1+2)¥ + xpm, with k € Z and m € Fa[z] still to be determined. Note that
such an a satisfies @ = 1 mod z. The norm equation becomes

2?p*m? + 2?0 + apt/ (1 + 2)* + map) + zp*(? +d? + d') = 0.
Simplifying by xp we get
zpm? + zpb? + ' (1 +)% + zpm) + p(c? + d? + d’) = 0.

Reducing this equation modulo p we get b’ ((1 +)k +xpm) = 0 which implies
b’ = pb” for some b” € F),. The norm equation becomes

zpm? + zp3b"? + pb” ((1 +z)F + mpm) +p(d?+d?+d)=0.
Simplifying again by p we get
4 d?+dd =nl m,k) = 2zm?® 4+ 2p?b"? + V(1 + 2)F + 0" zpm.

Our approach for step 1 will be to generate random m and b” (with 241t b”) until
the equation ¢’2 4+ d'? + ¢/d’ = n(b"”,m, k) has solutions, then to solve this equation
for ¢/,d’. As will be clear later, the equation has a solution if and only if all the
irreducible factors of n are of even degree. So in particular

— We will choose b = bz 4 1 for some b € Fy[z] to avoid an x factor.
— As the term zp?b’? is of odd degree, we will make another term of higher even
degree, with the following strategy:
e Choose " and m randomly of degree equal to or less than R.

e Choose k = 2deg(p) + deg(b”’) + 2 + (deg(b”) + €) where € = 0 if deg(b”) is
even and € = 1 if deg(d”) is odd.

If R is large enough we get an n with the desired property after sufficiently many
random trials on " and m. In our implementation, we chose R = 10 which is more
than enough for 1024-bit parameters. It remains to show how to solve the equation
c?4+d?+c'd =n and to explain the condition on the degrees of irreducible factors
of n. We begin with the solution of the equation.

Solving ¢* 4+ d*> + c¢d = n. It is enough to have an algorithm solving it when n is
irreducible. Indeed, if c? + d% + ¢1dqy = ny and c% + d% + cady = ng then (c3,d3) =
(c1co + dida, cidy + cady + didg) satisfies ¢ + d3 + cadz = ning. So suppose n is
irreducible of even degree.

We describe a continued fraction algorithm for polynomials over Fo and then we
use it to solve the equation. For a fraction ¢ = £ where P and Q are polynomials,
Let P = apQ+ro where degrg < deg Q. Let Q = a1ro+7r1 with degr; < degrg, then
recursively for ¢ = 2, ..., define r;_o = a;1;_1 +7; with degr; < degr;_1. (This is the
Euclidean algorithm applied to the ring Fo[z]). Define py = ag, go = 1, p1 = apa1+1,
g1 = a1, and then recursively p; = a;p;—1 + pi—2 and ¢; = a;qi—1 + ¢i—2. (The
fraction p;/q; is the i*" truncated continued fraction of P/Q.) We see recursively

that ¢ip;—1 + gi—1pi = 1, s0 B + f]’%i = g and
— = Qg +
; qi+19i

where n is the first ¢ such that p;/¢; = P/Q. Define a “norm” v on quotients of
polynomials as follows: v() = dega — degb if a,b # 0, v() =0if b =0, and
v (%) = —o0 if a = 0. Note that v(gi+1) > v(¢:), v(pi+1) > v(pi), and that

=0 qi+19i i qi+19i

IN

—0(gnr+1) = v(gn)

As n has even degree, we can compute o € Fo[z] such that a?+a+1 =0 mod n
(see next paragraph). We apply a continued fraction expansion to £ = ¢ and let

pi/qi be the successive approximations. Let j be such that

v(n)

v(g;) < < v(gj+1)-

We have
qu- + (gja +pjn)2 +q(gja+pjn) = qu + qJZOz2 + q?a = 0 mod n.

On the other hand, as

deg(g;atp;n) = v(n)+o(g;)+v (5 n {j) < v(n)o(g;)—v(g;)—v(gj41) < v(n)/2 = deg(n)/2

we have
v (¢} + (gjr + pin)? + qi(gja + pjn)) < 2max (deg(q;), deg(q;o + p;n)) < degn.

Consequently,
@} + (gja +pjn)* + gj(gja +pjn) =n
and (c,d) = (gj, gjo + pjn) is a solution to ¢ + d* + ¢d = n.

Solutions to o> +a+1 = 0mod n. As the map x — 2%+ z is linear in F, solutions
to this equation, if there are any, are found easily by writing down then solving a
linear system of equations. We conclude the exposition of our algorithm by showing
the following lemma.

Lemma 2. For n irreducible, a®> + o + 1 = 0 mod n has solutions if and only if
d := deg(n) is even.

(=) Suppose « satisfies a? +a+1 = 0 mod n. Then 1 = a + a?. Squaring each side
we get 1 = o? + a22, then squaring again and again we get 1 = o + azs,... until
1=0a +a2" =a+a?"". Summing up these equations we get d = 0, so d must
be even.)

(<) Now suppose d is even. Let 3 be a generator of F3, and let o = 52 5. Then
ad=landa#1lsoa?+a+1=0.0

Runtime analysis We give some estimates for the complexity of our algorithm.
Assuming the polynomial n generated from random (b”,m) behaves like random
polynomials of degree k, the number of its irreducible factors is asymptotically
K = O(logdegn) [5]. For n of degree even, we can reasonably approximate the
probability that all its factors are of even degree by (1/ 2)K, hence we will need
2K = O(logn) = O(degp) random trials. The factorization of n can be done in
O(log® ™ n) [11] and the continued fraction algorithm is of complexity O(degn),
so the global complexity of our algorithm is probabilistic polynomial time in deg p.
Our implementation of the algorithm finds collisions for 1024-bit parameters in a
few seconds on a Pentium Intel M processor 1.73GHz.

6 Discussion and Further Work

In this paper, we presented efficient algorithms finding preimages for the LPS hash
function and collisions for the Morgenstern hash function with ¢ = 2. Similar al-
gorithms with the same complexity can be derived for finding preimages for the
Morgenstern hash function and for different ¢ values. Our algorithms build upon
the Zémor and Tillich algorithm [16] although they are not trivial extensions of it.

The modified version of LPS hashes proposed by Zémor and Tillich remains
unbroken so far regarding both the collision and the preimage properties, as well
as their original scheme [12] (with carefully chosen parameters) that used as graph

)andA1:<zx+1

generators Ay = T é 11 . To avoid our new attack, we suggest

modifying the Morgenstern hash function as follows: multiply by gog; if the bit is 0
and by gogs if the bit is 1. However, it is not clear what would be the advantages
of such a scheme compared to Zémor and Tillich’s, as it would not necessarily have
better expansion properties, and comparing the graph generators, it will certainly
be slower.

In further work, we would like to study the applicability of our algorithm to the
Zémor-Tillich (ZT) hash function. The Cayley graphs used in ZT hashes can be
naturally embedded into Morgenstern graphs, so our cryptanalysis of Morgenstern
hashes might actually open new perspectives on breaking the ZT scheme. Our results
may also have applications outside the cryptographic community. The preimage
finding algorithm actually solves the diophantine equation (1) which at first sight
seems to be a very hard problem. Our path-finding and Zémor and Tillich cycle-
finding may improve understanding of LPS graphs when considering their Thara
Zeta-function. Finally, expander graphs have numerous applications in computer
science [6], some of which could benefit from our new path-finding algorithm.

Because of all these actual and potential applications, we stress that our algo-
rithms and their running time estimates still may and should be improved in many
ways. The algorithm of Section 4 gives paths of length about 8logp while the di-
ameter of LPS graphs is known to be 2logp. Choosing a smaller k value in the
algorithm will decrease this length and may also improve the running time. Finding
other decompositions with less than 4 diagonal matrices is another interesting ap-
proach. Finally, adapting our algorithms to make them deterministic is a particularly
interesting open problem.

References

1. http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf.

2. FIPS 180-2 secure hash standard.

3. D. X. Charles, E. Z. Goren, and K. E. Lauter. Cryptographic hash functions from
expander graphs. To appear in Journal of Cryptology.

4. S. Contini, A. K. Lenstra, and R. Steinfeld. VSH, an efficient and provable collision-
resistant hash function. In S. Vaudenay, editor, FEUROCRYPT, volume 4004 of Lecture
Notes in Computer Science, pages 165—182. Springer, 2006.

5. P. Flajolet and M. Soria. Gaussian limiting distributions for the number of components
in combinatorial structures. J. Comb. Theory Ser. A, 53(2):165-182, 1990.

6. S. Hoory, N. Linial, and A. Wigderson. Expander graphs and their applications. Bull.
Amer. Math. Soc., 43:439-561, 2006.

7. A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan graphs. Combinatorica, 8:261—
277, 1988.

8. V. Lyubashevsky, D. Micciancio, C. Peikert, and A. Rosen. Provably secure FFT
hashing. In NIST 2nd Cryptogaphic Hash Workshop, 2006.

9. M. Morgenstern. Existence and explicit construction of g+1 regular Ramanujan graphs
for every prime power q. Journal of Combinatorial Theory, B 62:44-62, 1994.

10. C. Petit, K. E. Lauter, and J.-J. Quisquater. Cayley hashes: A class of efficient graph-
based hash functions. Preprint, 2007.

11. V. Shoup. On the deterministic complexity of factoring polynomials over finite fields.
Inf. Process. Lett., 33(5):261-267, 1990.

12. J.-P. Tillich and G. Zémor. Hashing with SLs. In Y. Desmedt, editor, CRYPTO,
volume 839 of Lecture Notes in Computer Science, pages 40—49. Springer, 1994.

13. J.-P. Tillich and G. Zémor. Group-theoretic hash functions. In Proceedings of the
First French-Israeli Workshop on Algebraic Coding, pages 90-110, London, UK, 1993.
Springer-Verlag.

14. X. Wang, Y. L. Yin, and H. Yu. Finding collisions in the full SHA-1. In V. Shoup,
editor, CRYPTO, volume 3621 of Lecture Notes in Computer Science, pages 17-36.
Springer, 2005.

15. G. Zémor. Hash functions and Cayley graphs. Des. Codes Cryptography, 4(4):381-394,
1994.

16. G. Zémor and J.-P. Tillich. Collisions for the LPS expander graph hash function. To
appear in the proceedings of Advances in Cryptology - EUROCRYPT 2008, 2008.

A Toy example of the preimage-finding (path-finding)
algorithm in the LPS graph

As an example of our preimage algorithm, we now give a second preimage for the
message m = “This is not for NIST”, when the parameters are p = 1125899906842769
and [= 5. The ASCII code for m is 01010100 01101000 01101001 01110011 00100000
01101001 01110011 00100000 01101110 01101111 01110100 00100000 01100110 01101111
01110010 00100000 01001110 01001001 01010011 01010100 which in base 5 gives
302323144300003231210400124403013421040324420122212133431310442432021. We
start at the identity, with gy the identity and go = M;. We identify the six graph
generators

1£2i 0 1 +2 12i
Mﬂ_(0 1¢2i>’ Mﬂ_(;Ql) Mi3_(2i1)

with their indices. The function 7 we choose is given in figure A. The hash value

obtained is
M (1113908155375639 815055784352014>

485525153198538 30164330826615

=W N = O
1

N = =N W
|

Figure 1. Table for the function 7: the table gives the index of the next matrix for a given
current matrix and a given base 5 digit.

We apply our path-finding algorithm on M. First, we get a matrix decomposition
as in Section 4. After 11 trials, the resulting A\, «, w, B and (2 values are

A = 1051846637406052
a = 698130975272599

w = 846326642296745
81 = 150389273084944
B2 = 480539407839455.

Then we factorize

Moo (1 0> _ (349065487636300 + 795285597612250i 0 >
T\ 0a /) 0 349065487636300 — 7952855976122501 /

We choose k = 48, resulting in A = 222458048101540 and

m = 11210387681441600668869823936886993015607319565640625. After 234 ran-

dom trials for x, we finally get x = 523712450310834, w = 207632734870715, and

n = 4.2489205976128525372183128649803320961. The Euclidean algorithm gives us

the solution y = 2782001231666122912, z = 1489057773063985790. So the lift of M,,

is

311426103887630914544037511835 3132254927569356406015273012423328

M- +i766565480745454184887163124346 |+i1676530007976242663293697980252510

@ —3132254927569356406015273012423328 311426103887630914544037511835
+i1676530007976242663293697980252510| —i766565480745454184887163124346

We multiply M/, by each of the lifts of the graph generators. Since M, ¢4 is divisible
by I =5, ¢’ 5 is the last (right-hand) factor of M/,. After 2k steps, we get the whole
factorization of M/, which we translate into a factorization of M, whose indices are
3-12231131333223-1211-31113-12-3231-2-2-21211-321
21-23-132-3-231-2332-3-1222-1-3-1-32312-3-132213-2-3
13-2-1-231321-2-1-1-3211-2-3. We get the factorizations of M,,, Mg,
and Mg, the same way. Finally, we put all the pieces of information together and
get the sequence -3-2112-3-1-1-212313-2-1-231-3-231223-1-321
32-3-1-3-1222-1-3233-213-2-323-13-21212-31121-2-2-213
2-32-13111-3112-13223331311322-1323-1-3-2-2132-3-32
3-2-3-3-2-1-231123211-31221-2112-3-23-2-3113121-3-1-3
3-1231-3-3-1-12-13-21-3-3-1-211-2-1-13-23221-3-2-1-3-1-3
-132-133-2-1-21122-3-1322-3-2-3-1-31-3-2-131-23-23213-2
-2-3-3-2-23-2-2-3-1313-1-3-3-3-3-21331-23-1-212-31-2-21-2
-2-1222221-31121133-133-2-1312-123-12-3-21-2113-22-2
3-2-133-2-132-323-21111-2112-13-1-2-1-2-1-2-23213-2-2
3-3-2332111132-1-323-2-1-31-2-2-21-2-1-2-12-1-3-1-3-2
-1-2-3-1-3-12233-2-2-2-3-1-1-12-3-13-12-3- 3 that collides with the
original message “This is not for NIST”.

B Second preimage of “This is not for NIST” for LPS
hashes with 1024-bit parameters

Now we repeat what we did in Appendix A, this time for

p = 179769313486231590772930519078902473361797697894230657273430081157732675805
50096313270847732240753602112011387987139335765878976881441662249284743063947412
43777678934248654852763022196012460941194530829520850057688381506823424628814739
13110540827237163350510684586298239947245938479716304835356329624224139329,
which has 1024 bits. The sequence we get IS31332323-2-1-21-312-1-3-2-3-12-1-1-3
-2-2-312-3-32-13222-3-3112-13-2-211-2-32-3-31313-2323233-211-2313-2131-31331
22111-23-1-1-2323131-311-32213-1-3123-2321321233-212-131313-132-3-1-2-32-3
-1-2312-3-3-1-3-3-3-1-3-31333-2-1-2-2331-2-2-21-231-32-1233211-3-2-31-3-3-2-1-1-2
-2-3-2-12-3-3-312-3-2-12133-21-323-231-3-2-13313-1-212-3-133-13-1-23322-3212-12
2-3-2-21-3-3122-3-1-312-322-3-3-1-1-12123-1-1322-3-213-23-13-2-212112-1-1-13-12
22-1-3-3-31-3-1-1-13333-2-23-132-3122-1-13-23-2-13-23-23-2-12131-23223-1-13223
-23-1-323-231-3-3-2-212131-3-2-1222-133222233-1-1-1-3-2312-1-21-3-13-2-31-3-2-2
-1-1-1-1-3-3221-3-3-2-3-1-32-31-211-3-1-3-2-1-3-1-13313-23-2-3-1223-13-2-31332231
1-3-1-3-1-2-2-1-3-31-2-2-1331-3-1-1-323-13-2-32-3-21-3-1-1-23-2-2-31-2-2-23-123-123
-1-2-13-2122312-121-3-3-23312-3121-2-12-312-3-3-1-1-3213-1233-2-3131-3-1-32-1
-3-3-133-2-1-213-2-321-2-13-212-1231-2-31-2-2-1-2-2-23212-3-2-1-31-3-2-2-1-23-2-2-1
-3-31-3132-3-2331-3-213213-23-12-3-3231-2-1-3-313-2-3-2121-3-1-2-3-3123211-3-3
-23332-31-21-23-21333213132112-1-213-1-3-1332-3131-3-2-122-31333-233113-21
1121-3-3-3-2-1-2-1332-3121-31-3-3-2-23223-2-2-12-3-322-3-32-1-1-32-31213-2-31-21
32-3-3-3-2-212-312-1-1-3-23222-1-3-121-2-233223-1-1-2-323-211-2-1-1-211-3-2111
-3-3-3221-21-2-31-3-1-23-231-3-12-12-1-1311-3-1-3231-3-1212-31-3-21-2-1-3-2-1-2-3
-1-1-21-21313-2313333-1-2-3-133-2-2-1-13-1-231-31323-2-2-3-2-2-1-2-3-13212-312-3
-21333-132-1-21-3-1-2-2-321122212-1-211223-2133-2-1-3233-2-12-3111-2-2-31-23-1
3233-2121-3-2-2-2-13-1-3-3-2-1-31-32-12121333-1-1-212-1-13-2123-13-12-3-2-31-2
-32332-1-21-2-1-3-2-1-23-132-3-3-131-32-1-12-3-31-21-3-12311-2-3-23-1-1-1-3-1-1-2-2
-3-31-2-322332132-3-2-21223-232-133123-23-21-31321122-121231-2113-21-2-3-23
1-3-31121-2-23-12-1-2-3-21331-32-12-323111323-21-21-213-2-12-3-132-31-2-1-2-2
-121-3-12-1-32-1-122-3-31213-13122-32-12211-3-1-1-133-2-23-1-2-13133-21-3-2-21
-21-2-1-322-1-2-1-2-1-3-2-1-12222-3-2-2-2131-2-3-1-1-2323-132-1-23-12-3-2-2-23-132
-122-1-31-3-321-2-1-21-2-2121-3-3-1-1-12-3-2-31-2111-2-2-1-131213-2-1-23222-3131
3-23-2-2-3-2-3-323-21131-2-3-2-212-3-2-2-1-12-1-2323-1-2323-2-2-2121-2323-1-3-1-1
3-1-21-2123-1312-1211232-3-3-3-2-3-32-3-133221-3-2-3-3-13-2-2-13-1-32-322-32332
-1-23323221-3212222-3-21-3123333-2-212-3-32332-1-13222-12-1-23211-2-2-23113
-2122-3211-3-322-1-2-3-1-3-3-3-1-1-21-31-3-1-1-3-1-312-321-32-3-232-3131-2-3-3-1-3
-2-3222311211122-1-2-23-13-1-23-1-31331-3-2-1-3-123-2-1-2-1-3-1-3-1213-2-2321-2
3-131-2-1-1-3-21-31-3-2-13-1-2-13323-121-322-1-2-2-2333-1-3-1-23-1-132113333123
2-3-1-13-232-1-2-311-3-2-3-31-323-1-32-32-1311-31-232313-123-12-3-2-2-13-2-2323
-2-31321333-2-12-13-13-211-32323-2-3-2-3-3-3-1-3-3-3-32-12-13-211-3-1-3-2-1-1-3-12
22-1-1-2123-2-322-133-2-1-3-2-31-3-1212122-1322-3-313-12132-3-31-2112-122-121
131-21-2-1-3-1-2-1-313312311-2-21-2-2-1-3131-3-3-3-1-13-1-1-32-3-3-1-2-1-2112221

22-12133233-1-3-1-2131-21-21-3-3-211-3222313222-32-1-311-31-2312-3-311-2-32

-133-1-1-1-31-3-12-1-1-1-1-3-3-23111-2-12321-3113-2-32-3-2-233132-1313-1-3-3112
-1-3-313-21-322-3-3-232-32332-1-3212-3-31-3231-3-2-2-3-2-1-32-1-2-3-2-13-23-2-3-32
22122-1-3-1-3-1-12231-23-1-2131213-2-2-2322-1-2-1-32-3-3-233-122-132-313-2122
-1-2-2-2-2-32-3-23-233-1-21-2331-32122-13-1-3-13-1-131-31-3222-1-122-3-31-31-3-1
-31-3-2-2-3-3-2-1-2-3-31-2-3-3-1-1-3-3-1-1211-2-12221-32-1311-3-13-232-321-233-2-2
33-133-13311-2-1-13-1-12-3-1-32-3-32122-313-1-3-1-3-2-1-3-3212-32-3122-3-3-1223
1-3-1-23-211-211-3-32-3-1-2-2-2-1-1-3-3131132311-3-3-1-3-2-3-32-1-1-32-3-1-31-2-13
11-3113-2-2-3-1-23333-2-3-3122111-233-23-1-32-123132212311-3-3-12-3-3-1-12-12
3212231113-1-3-1323-1-1-231-32123-211-2-1-3-13223-1-31-3-2-23-1-1-133-231-3-23
-2-13-121-3-3-32-133-23213-2-3-2-322131-21231-2-3-2-3222-1-3-3-3-1-23322-323-21
-2-232-3-1-3-1-12221121332-311-3-3-2133-23-2-1-1333-2-311-3-32-1-2-2-2-121-31-2
-1-2-2133122221-3223-1-3-13-21-3-2-1-13-21-2131-31313-2123-12-1-3-21313132-3
1131-3-2-3-322113-23133-1-131-2-211-3-2-2-1-2-3-31-2322-1-12-132-131-3-21-2-32
-1-12-32-31313-12322-31222223-212-3-2-1-23-1-2-3-212-32-1-2-233-2-3-3-3-2-3-2-21
3-23-1-3-1-132231-2333-1-133-2-1-133-1212-12-1-3121-3-13-1-212-3-2-3-1-21-2-212
-3212-3-3-1-2-3-12-1-2-3-31-3-21231231-3-12-31-31113-1-1-2-322-1-1-3-13-1-133-23
-2-1-3-2-1-3-31122-31213-21-321-3-3-323133-131311123-2-31-23-2-3-3-3-3131-2-2-3
-13-1-1-2-21-2-32-3-23-2-1-2-23-2-3-3-1-32-13-2-1-3-2-1-2-31133-13-2-3-3-2-2-232-1-2
313-21-23113-213-1-3-31-2-23-1-2-2121-2-121-21-2-3-2-312-1-2-2-3-3-2-311131-3-3
-1-31-3-3-2-2-1-131-2-1-123-213-1-3-2-2-23-1-3-3-3-1-1-32132-3-1-1-3-2-13-2-3122-3-3
2-3-31-2-2-1-13-2-13-2-2-32-3-1-1-1-2-1-2-3213-1-3-131-3-1-2-1-2-32121122312-1-311
321232-13223-1-3-2-3-12-3-32-12-1-1-2-232212-3-3-3-2-2-12-3-121-21-2-3-13-21311
117-31-3-313-1-32-132211-2-2-32-31-23-1-311-2-233-121-3-23-1-233-1-2-2-1-321-32-1
-32-3-212-1212-1-2-3-3-1-323-2-211-32-3-31-3-32-12-3-1-211-3133-123133233-1-3-2
-3-3-3123-1-2-3-31-32-13121-3-2-1-1-3-2-2-233-12231-2-3-1-21312-3-3-13-21-2-2-12
-3-12-3-21-2-3-1-1-1-3-1-3-2-32-3-2321-3-31212-31-212-3131-2-1-2-2-2-3-21-231132-1
-3-3-2-1-12-3-13-13-1-121-2131-3-211-21232-312-12-3-3-32-3-1-3-2-1233333-1-12-1
-2-3-1-211211112331-2-212132-3-1-1-21132-3-231-31-2-2-233-21-21-2-2-2-3-2-2-121
3-2-3-1-23-1-2-12-3-13-2-321-23-1-3-123-1-212-12-3-2-313-21-3233-1-1-32-1-121331
1-2-3-3-12323-1-1-23-132-1-121-232-32-1-3-3-2183-2-23-23-2122-32323-132-31-313
-2-2-3-1-3131-3-21-2-3233-2-121-2-2-3-2-1-23-211-2-12-121-3-231-3-2-1-1-212-1-132
-3-3-3-2313-2-2-1-23-1-2-233-1-3-1-32-133-23-13-1-21-3-211-2-1-313-1-2-1-1-123-13-2
233-1-2-2-131-32-1-1-1-133-2-3-3132-1-32-1-3-2-3-2-1-1-23-2-3-2-2-12-3-1-12-32332
-323-2-3-3-3-2-3-1-2-23-21-31-3-2-232-31-2-12-32-1-3-1-32-1222-1213131112-3-1-21
13-1-2-2-23-2-232113-1-133-1-1-2322-31-2-2-1-12-3-1-3-21-32212-1-312-31-3-1-1-13
33-1-1-12212223-2-3-131-3-3-2-31-2-1-123-1-3-3-3-1-2-3-233-1-1-3132131-323-2312
2233-1-3-1-1-3-21-23-2332-1321-2-211123321311-2-3-2-12-1-132-3-1-2-3-2-1-3-3-31
32-3-21-2-32131-2112131-2-212-311-2-233-2123-211312-1-1-1-123-1-322-32223-1
-3-1-211-2133-2313-1-212-311113-2-21-2-12-31-32-122-1-233-23-1-1213-121-3-1-13
13-122-3-1-2-133-213-1-2-3122-3-3-2-1-31322-3-2-3122-3-31-21-3-32-3-31121-2313
-13-23-2333-12-1-1-31213-1-3-2-3131-2-3-3-212-1-3-1-2-1-21-2-3-3-133-12-31-3-3-31
-3221-3-2-3-1-3-313-1-1-3-2-2-3-1-13122-1-2-3-123-2-3-13-1-321-2-21-3-21132-323-1
3-1-2-231-3-2-2-21313-12233121-3-13-21-3-3113-131-212-12331223-1-323221322
-3-321133311-2-3232-3-1-1211-323-131-231-213-2-3-3-1-13-1-3-133313-23-2-1-1-13

3-1-121-2-31-2-2-1-2-321-2-3-23-1-1-3-1-3-21323-2-2-3-3-122233211-2331-3-2-3-2-12

131-213-1-3-23-1-122-3-3131331-3-3-122-1-2-3122-1223-1-3-12-32-1-2-2-32-3-1-1-2
-1-2-321123-13123-12-1-3-21-2-3-1-2-312-31-233-2-1-3-213-1-1-13-132-1-2-311-3-12
-1-21-2-3-3-1-2-23-232222-1-2-31183-121-232-12232-1-2-3122-3-1-31-3-3-122321322
13-2-1223-12-3232-3-2-12-1-2-2-3-2311232-1-2-311313233-2-2-2-23-1311-2-2-1-12-1
31-2-122222-31123-1-12-1312-3-2-3-21-2-3131-3-1312-1-12-3-132-3-2-321-3211133
-2-1233-23212131-3-3112-1-2-1-1-1-1-3-1-3-2-1-3-1-3-1-12-1231-2-23312-1-3-2-1-12-1
3-1-3-3-3-132-3-133-2-2-3-1-21-31-2-1-2-3-13-1-213111-32-1-1331-3-1-322-3-3-31133
-2-1-3-2-3-123-1-321-2-23221-3-211-231-2-3-21-31-2-31321-23-21-32-1-31212-3-212
2-1-3-32-31-31-2-1-3-1-322-123-212312-31-31-3-21-3-3-212-3-2-13-1-32-3-1-3-212-32
322-3-13332-31321-2-23131222122-1-21-2-2-12-13-13-1-23-12-3-1223-2122-1222-3
-3-132-13-2-2-2-1-13-1-2-1-2-21-3-3233-2-1-3-32-3-312-1312-3-3-32-12-1-211-3-32-12
1-21-2-1-213-2-2-3-123-2-323-1-2-2-2322-1-323-2-31-2-1-2-2-3133313-2-122132-12-3
-2-13311-2-3-1-232-3-123133-1-3112-122213-23-1-3-313-12-3-231-3-3-2-2-3-1313-1
-2-12111-283-1-1223-1-1-31-3-211-2-133113-1-212-31-3-2-1-3-1-3-2-231323-2-23-1-1
-2113-2-3-3-123-212-1-2-1-31-21-3-3-12-121323-122-1-32-3132-1-2-133-121-31-2333
2-1-2-123-1313-1-232-1213-1-1322-12-132223122331313-122-32311-232-122-311
313-21321-3-3-21313123-12-12-3-3-31311-3-31-3-2-1-32-3-3-21-2-312-1-31121-3-1-2
-321232-3-1-233-23-2-1-1-213-213-213323-13-2-2-3-213232-1-12323331-21-21-2-1-2
-2-2122122-13-1-1221-3-122-3-233-2-3121-2-231-3-1-3-2-1-31-31211-3-313132212-1
2-12-3-31111312-12-13-1-32-1-23-2-2132-1-2-2-1-1-2-3-12-1-211-3-2-313-232-13-1-2
-3-2-1-3-2-1-233-123-2-322-3-13-21-32212-3-3-211-3-2-12-1-3-131-2-23-2-3-321-2-311
-3113-22-2132-1-2-3132-1-1-1-231-2-12111232-1-3-32-31-3-3-1-123223-2-32212-32
-131-2-2-1-3232-1-2-1-1-2-3212-32-123-23-1-2-313-1-2-1-233-2-3-212222-3-23-2-2-3-3
-3-2-3-31-3-1-2-1312-122-1-1-1-31-2322-3-2-2-3-12-1-1-3-2-232-323-23-13-2331-2-3-3
113-21-3-2-2-1-21-2113-2-2-13-1-3-1-31-2-1-313212-1-2-322231331-3-232-1-3-2-121
212-1-1313-23-1-2-1-1-231-3-231231133-1-3-2-13331333-13-12-3-311-2-2-1-2-23-2-2
31-2-3-233-1-1-31-2322323-2-1-3223213-2-1-1323-1-2121-3-322-3-12311-31-2-1-2-1
23221-2-1-23-2-2-3-2-21-2-3-13-2-2-3-2-3-211-3-2113-233-1-231221-2-21-3-2-1-3-1-2
-2-1311-31-3-1-231-312-3-1-1-1-2-12-3-2-2-1-3-3-232333-1-2-2-1-31-3-1-2-31-3-32-3-3
2-1-1-2-323-2-311-3-1-2-2-3-321322213-1321112312-1-313-1-2-2-3-2-212-1-3-3-13-1
-31-3-1313-131321-21-2-3-2-31-2-2311-3-31-3-1-2-21-2-2-2-3-2-3-3-1-3223-1-23-2-1-2
-1-3-2-1-2-3-1-3-2-3-23-2-1-2-13-211-23-2-2-323-2131231-323-212-3-13-2-3-2-3123-2
-3-1-2-213-2312-1-1-213-1-2-3-21-2-13-2-13-1-132-1-1-1-2-3-2-21231-2-3-2-2-3-1-31-2
322-31-3-3-3-13133-1-1-2121-3-3-3-1-1-2-1-12122223-1-313-2-2-1-3-313-231-213-1-2
-2-213-1-1-3212-3-2-3-213-2-31321-2133-1-122-32312121-321-31-21-3-1-13-1-121-3
-3213-2-2131122-3121-3-21312332-311-23-1-12213-1-312-3-1-1-3-1-3-23313-2-1-23
3-122232-1-2-1-3233-2-132-32122-13-2-1-32-1-2-1-3211213-2-123-121-2-1331-3-3-2
-23232321-2-1-122-31-322-13-2113-133313-1-1-21322-1-321-3-3-21121-322-3-23-1
-3-233-133-2-233-1-322-1-3-1-1-1-3-1-3-2-1-2-1-1-231-2-1-2133-132-3-3-2-2311221-21
-2-2-2-13-1-3-3-131-31313-213-2-2-321-233-1-1-3222321-2-1-133123-2-2-1-3131-3-3
-1-1-2-1233-2-23113-2122-1-21321-3-323-132-123-2-2-2-1-2-121-23-21-3-3-32-3-3-3
-1-2-1-2-12-122-1-12-3-2-3-1-32-311-3-231-3-21231-2-23-12312-1333-2-2-1-3-1321-3
2-32-312332-321-3-2-311-3-2-2112-3-1-1-2-12-1-313332213-1-1-2-1-2-2-3-131-21-31
-31331323-2-32-12-13-2-2-321-32-3-1-231-3-3-121-21-2122-3211-23-2-1323-12-3-3-2

-1-3-211-32121-3-321-2-1-3-2112122-32-1-2-3-213333-1-23-2-2-1331-2122-1-3222-1

2-1-23113-2-3-3-3-2-1-1-1-2332312-1232233211312-3123-21-23-233333-1213113-2
-2-1-2-211-2-3122-1-3-3-1-321-21-3-21-32-1-1-121-2-21-3-1-2-2-122-13-21-3122-3-23
-2-211211-2-12-3-1-3-23-1-1-3231121-3-2-1-3-3-2-1-1223-133-2-311-2-3-3-3-1-12-1-2
-2-21-3-1212313-12-1-31113131-21-2-1-2-2-1-1-1-3-12-12-121-2-3-1-1-1-13-23-1-1-2
-2-13-1-2-3-2-322321-213-1-2-3-2-3-3-3-2-2-2-13-2-1-3-3-1-3-1-23-2-2-3-1321221-3-1-3
-1-3-1333-2-21-2-322-13-212-3-2-1-1-3-21-3213-2312-13-2-21232-1-2-3122-133-1322
11-31333-2-2-3-23-2-1222233-1233323-1-232-13-233-2-2-1-3233-2-2-1-121-2-31332
-1-3-1-312-1-3-23-21-31-3-21-32221-3-1-12-1-3-12112-13-2-31221-3-1-2-3-3-131231
-2-1-21-31-3-3-3-21-3-3-2-13131-231-2-2-2113-1-32-3-21-3-211-2333121-21-3-2-12-3
-31221-3-32-3-3112212-32-1-1-1-23-1-2-2-23-12123-2332-12323-12223131-231133

-13-1-21323321-2-13-1-21-21-2-23.

C Collisions for Morgenstern hashes, ¢ = 2 and
degp(x) = 20

Now we give a small example for our collision-finding algorithm. The polynomial we
choose to target is p(z) = 220 +2' 7+l +2 B+ a2 4o 2% 2"+t 2l a2 4o+ 1
We choose R = 10 and generate random m and b”. After 3 random trials we get
m=z4+284+2" +28+2°+2 V' =204+ 2B+ 25+ 22+ 150k =52, a =
252 4 48 4 36 4 32 4 80 4 025 4 024 4 022 4 020 4 o005 4 04y 012 4 a0l g 010
2 Lt 23 a1, b= 25 4 a0 48 T 46 A5 4 g4y 40 039 4
238 4 37 36 4 235 4 434 4 032 L 081 4 030 4 20 028 4 097 | 025 | 224 4 023
222 4 220 4 19 4 18 4 06 L o114 210 4 g0 4 a8 4 a5 L oad 4 08 L 02 L o
n o= 262 4 p61 4 259 4 057 4 55 | 53 4 52 | 051 4 050 4 249 4 048 L 046 | 45 | 40 4
237 431 294 284 264 025 4 024 23 L 016y 154 013 4 0124 10 064 05 3

The polynomial n has three factors n; = %6 + 254 + 53 4+ 250 4 248 4 246 1 244 +
240 4 36 4 g3 4 133 4 30 4 20 4 022 4 020 4 I8 G134 0Ty g Ty 6 4 05 4 08]
ne = 2+ 23+ 22+ 2 +1 and n3 = 22+ 2+ 1 which are all of even degrees. For each
factor n; we compute « such that o? +a+1 = 0 mod n; and use this value and the
continued fraction algorithm to recover (c;,d;) such that c? + d% + ¢;d; = 0 mod n;:
we get (c1,dp) = (220 + 22 + 224 + 221 4 220 4 18 4 216 4 14 4 g13 4 g1l 4 o8 4
28+ a0+ o+ 1,22 4 2B 422 4210 4215 4 213 410 4 T 4% gt p 2 f a4 1),
(co,d2) = (z,2% + 1) and (c3,d3) = (z,1).

Combining these partial results we get ¢ = x5! +2°0 4247 4 241 4240 4 236 4 231
2274264 2254 024 4 0234 022 4 020 4 218y 1T 4 016y p0d 124 11 104 0 4 0T L od
and d = 251 4 250 4 249 4 48 | AT 4 045 4 A4 | 43 | 42 4 039 L 86 4 033 4 031
230 4229 4 27 4 26 4 025 L 22 4 021 4 020 4 218 L 07 4 216 4 04y 018 0 L T L

We can verify that

(a* +b% + ab) + (* + d* + cd)x = (1 + x)?*

and (a,b,¢,d) = (14 2)*(1,0,0,0) mod p. We factorize the lifted matrix and, using
the indices of the generators given in Section 5, we get the following collision with
the void message: 02020121212120202020201020210210102
10121212102101201010102101202120201202010212
1020101202020201210202101.

D Collisions for Morgenstern hashes, g = 2 and
deg p(x) = 1024

Let p(z) = 21024 4 71023 4 51022 | 51020 4 41014 4 21013 4 41009 4 51006 4 1003 4
999 4 1993 | 092 | 1090 | 080 | (088 | 1087 4 1986 4 1983 4 1982 4 1081 080 | /079 |
977 4 1976 | 071 | 067 | 1,965 | (061 | 1,960 4 1,957 4 1,955 4 1953 4 1,946 | 045 | 043 |
941 4 1,937 | 1036 1935 4 1,034 | 1030 4 1925 4 1,923 | 1020 4 1919 4 (018 | (017 4 1915 4
914 4 1011 | 010 | 009 | /008 | 1006 | 1,904 4 2,901 4 2,900 4 899 898 | ;896 | /895 |
804, 880 | 888 | 885 | 884 | (882 (878 4 \876 4 ,875 4 872 4 /870 , 866 | 864 |
863 4 850 | 857 | /856 | /855 | (854 | 1851 4 1850 4 1849 4 846 838 | /83T | /834
831 830 820 | /828 | /827 | (821 4 ,818 4 ;813 4 1812 4 /810 4 809 808 | /807 |
806 4 ;805 | ;804 1803 4 1,802 | /800 4 1799 4 \\T98 | ,T96 4 1795 4 (793 | 791\ 788 |
785 | T84 | o783 | (T8l 4 0776 4 0775 4 0773 4 (771 L TT0 | o T69 | o T68 | 0766 4 0760 4
753 4 751 | o TAO | (TAT | 074 4 0743 4 0742 4 735 L T34 | T334 732 0730 4 0720 |
T26 4 724 4 0722 0719 4 (o TI8 4 0716 4 0715 4 0712 4 711 70T | TG 4 4705 4 0700 |
696 4 1,695 | 1693 4 1692 | 1690 | 1685 | 1,681 4 1,676 4 1,675 4 1,674 4 1673 4 /671 1 /670
669 4 1,664 | 1662 | 661 | 1658 | 1656 | 1,654 4 1652 4 2,651 4 1650 4 1,649 | 648 | 1646 1
645 4 1643 | 1641 | 640 | 1630 | 1637 | 1635 4 1634 4 1633 4 1632 4 1631 L 1629 | 628 |
626 4 1,624 | 1623 | 621 | 1610 | 1615 | 1612 4 1611 4 2,605 4 1,604 4 1,603 | 1600 | 598 |
596 | 594 | 1,590 | 1588 | 1586 4 1,585 4 0582 4 1579 4 57T L 571 4 0570 | 1564 4 0562 4
561 4 550 | /558 |)57 | 0,556 4 0,550 4 0,549 4 0545 4 544 4 541 | 540 | 0538 4 0537 |
535 | ;534 | 1528 | 1526 4 0,525 4 0524 4 0520 4 519 4 o518 4 516 4 0515 | 0513 4 0512 4
510 4 2,509 4 2,507 | 503 4 1,498 | (496 | 495 4 1,492 | 1491 | 490 4 1480 | 1484 | 483 |
481 4 1480 | AT8 | o ATT | (476 | (475 | (474 | (4T3 4 (468 4 1467 | 1465 L 464 | 463 |
450 4 1457 | 456 | 455 | 1454 | (449 | (44T | o444 4 0443 4 442 | 438 | o435 | o434 |
431 4 420 | 427 | 1425 | 0424 | 0415 4 (412 4 o411y 0409 406 404 | 403 | 1402 |
309 4 398 | 394 4 0393 | 1392 | 0390 | .38 4 1387 4 386 4 385 384 | 382 4 0381
380 4 379 4 /377 | 374 | 0373 | 1369 | 1,368 4 1,365 4 1,362 4 1357 4 354 351 1 /349 |
346 345 | 344 | 343 | 0340 | 0337 | 0331 4 0330 4 0328 4 326 324 323 322 |
321 4 319 | 317 | 0315 | 0314 | 0313 | 1312 4 2310 4 2,309 4 305 4 ;304 | ;303 | ;208 |
206 | ;294 | 1290 | 1280 | 1288 | 1283 4 1282 4 0281 4 279 4 276 | 275 | 4273 4 0271 |
268 | ;266 | 1265 | 1264 | 0263 4 2,260 4 0259 4 0253 4 ;252 4 250 | 249 | 0247 | 0246
245 | ;244 | 0242 | 0237 | 0235 4 0234 4 0231 4 208 | 0227 | 0225 | 0222 | 0218 4 0217 4
216 4 4215 | 2214 | 2211 4 2210 4 2208 4 2206 4 204 4 203 | 202 | 2201 | 2200 4 2199 |
198 | 2195 | 2194 4 2102 4 2101 4 189 4 187 | 185 | 184 | (181 4 1180 4 2179 4 2172 4
171 4 2170 4 2165 4 0164 4 0162 4 2161 4 159 4 157 | 153 4 (152 4 (151 | 149 | (148 |
146 4 145 4 1143 4 0140 4 0137 4 0134 4 183 | 128 4 127 4 0125 | 0123 | 0121 4 2120 4
119 4 115 4 113 4 2110 4 2108 4 107 4 0105 4 2103 4 102 4 100 4 299 4 196 | 94 |
289 4 87 4 86 4 283 4 082 L 081 L 07O L 7T L 76 L T3 4 70 4 69 | 68 | 64 4 62
261 59 4 5T 4 156 | 55 4 054 | 053 4 051 4 50 4 049 | 48 | 4T L 45 | odd 4 o4l
240 4 439 4 28T 4 034 4 081 4 007 092 4 08 L 014 4 010 4 09 L 08 L a5 4 2 gy
Then the following sequence collides with the void sequence:

8 8 8 8 38 8 888 8888888888888 8888888888R8

02010202012101021020120102102010210120202021020121201202012102

1012120202121201202012012121210210120101020212020120102120210202

0120102102012021212120201212021021010120101020202010202102120102

02012

1

0

1

0

1

1210210102

02021010 1.

