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Abstract. Efficiently computable homomorphisms allow elliptic curve point multiplication to be ac-
celerated using the Gallant-Lambert-Vanstone (GLV) method. Iijima, Matsuo, Chao and Tsujii gave
such homomorphisms for a large class of elliptic curves by working over Fp2 . We extend their results
and demonstrate that they can be applied to the GLV method.
In general we expect our method to require about 0.75 the time of previous best methods (except for
subfield curves, for which Frobenius expansions can be used). We give detailed implementation results
which show that the method runs in between 0.70 and 0.83 the time of the previous best methods for
elliptic curve point multiplication on general curves.
This is the full version of a paper published at Eurocrypt 2009.
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1 Introduction

Let E be an elliptic curve over a finite field Fq and let P, Q ∈ E(Fq) have order r. The fundamental
operations in elliptic curve cryptography are point multiplication [n]P and multiexponentiation [n]P +[m]Q
where n,m ∈ Z. There is a vast literature on efficient methods for computing [n]P and [n]P + [m]Q (a good
reference is [3]). There is a significant difference between computing [n]P for varying n and a fixed point P ,
and computing [n]P where both n and P vary; this paper focusses on the latter case.

The Gallant-Lambert-Vanstone (GLV) method [21] is an important tool for speeding up point multi-
plication. The basic idea is as follows. If the elliptic curve E has an efficiently computable endomorphism
ψ (other than a standard multiplication by n map) such that ψ(P ) ∈ 〈P 〉 then one can replace the com-
putation [n]P by the multiexponentiation [n0]P + [n1]ψ(P ) where |n0|, |n1| ≈

√
r. The integers n0 and n1

are computed by solving a closest vector problem in a lattice, see [21] for details. In principle this compu-
tation requires only around 0.6 to 0.7 the time of the previous method (the precise details depend on the
relative costs of doubling and addition, the window size being used, etc, and there are other costs which
are usually ignored in such rough estimates). Some examples allow higher degree decompositions such as
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[n0]+ [n1]ψ(P )+ · · ·+[nm−1]ψm−1(P ) where |ni| ≈ r1/m which can give further speedups. We call the latter
approach the m-dimensional GLV method.

Gallant, Lambert and Vanstone [21] only gave examples of suitable efficiently computable endomorphisms
in two cases, namely subfield curves (i.e., groups E(Fqm) where E is defined over Fq; these do not have prime
or nearly prime order unless q is very small) and curves with special endomorphism structure (essentially, that
the endomorphism ring has small class number). In particular, [21] proposes curves with CM discriminants
D = −3 and D = −4 (equivalently, j-invariants 0 and 1728). Explicit descriptions for the cases D = −7 and
D = −8 are given by Rostovtsev and Markovenko [41].

One might wonder whether it matters in practice that only special curves can be used with the GLV
method. The answer is that for efficient elliptic curve cryptography one wants to work with special primes
(e.g., p = 2255 − 19). The problem is that if one only has a small set of possible curves and a small set of
desired fields then one cannot always expect a nice group order. For example, with p = 2255 − 19 the best
group order for D = −3 curves is 7 · 13 · 19 · 31 · 877 · r1 where r1 is a 230-bit prime, while for D = −4 curves
the best group order is 2 · 52 · 372 · r2 where r2 is a 239-bit prime. These groups are not too bad, but we
would prefer groups of prime order (or perhaps 4 times a prime).

Hence, if one is using randomly chosen prime-order elliptic curves over finite fields for cryptography (or
if one wants to use special primes such as NIST primes, see Section 2.2.6 of [26]) then the GLV method is
not usually available. Indeed, it seems to have been believed that the GLV method is only applicable to very
special elliptic curves (e.g., see the remarks in Section 7 of [45]).

In fact, Iijima, Matsuo, Chao and Tsujii [29] constructed an efficiently computable homomorphism on
elliptic curves E(Fp2) with j(E) ∈ Fp arising from the Frobenius map on a twist of E. Apparently they
did not realise the application of their results to the GLV method. In this paper we give a generalisation of
the Iijima-Matsuo-Chao-Tsujii (IMCT) construction and analyse it in the context of the GLV method. The
construction applies to all elliptic curves over Fp2 such that j(E) ∈ Fp and, as noted in [29, 38, 39], can be
used with curves of prime order.

The curves considered in this paper are not completely general: the number of Fq2-isomorphism classes of
elliptic curves over Fq2 is approximately 2q2 whereas the construction in Section 2 gives only approximately
q isomorphism classes of curves. Similarly, the number of Fq2 -isogeny classes of elliptic curves over Fq2 is
approximately 4q whereas the construction in Section 2 gives only approximately 2

√
q isogeny classes of

curves. However, this is a major improvement over earlier papers on the GLV method which, in practice,
were only applied to a finite number of Fq-isomorphism classes for any given q.

The basic idea is somewhat analogous to subfield curves: We take elliptic curves E with j(E) ∈ Fq and
consider the group E(Fqm). However a crucial difference is that E is defined over Fqm , not Fq. This means
that it is possible to obtain curves of prime order and so there is no need to restrict attention to q being
small. Our method can be used with any prime power q and any elliptic curves E over Fq and always gives
rise to a GLV method of dimension at least two.

We give experimental results comparing the cost of our algorithm for point multiplication [n](x, y) with
previous methods for this operation (indeed, we compare with optimised implementations due to Bernstein [4]
and Gaudry-Thomé [23], which, based on ideas of Montgomery [37], use x-coordinate-only arithmetic). The
purpose of our implementation experiments is to give a good picture of the speedup obtained with the new
method compared with using curves over prime fields; we stress that our implementation is not claimed to
be the best possible and that one could possibly achieve further speedups from a different choice of curve
coordinates or different exponentiation methods.

We find that the new method runs in between 0.70 and 0.83 the time of the previous best methods. The
exact performance depends on the platform being used; our best result is for 8-bit processors. Our methods
(unlike methods using Montgomery ladders, such as [4, 23]) can also be used for signature verification. Our
experimental results in Table 4 show that Schnorr signature verification runs in around 0.73 the time of the
best previous methods for the same curve.

Note that our techniques can be implemented on elliptic curves given by any equation (e.g., Edwards or
Jacobi-quartic form, see [7–9]) and exploit their benefits. The original paper gave timings for Weierstrass
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curves using Jacobian coordinates. This full version of the paper gives timings using twisted inverted Edwards
coordinates. We also generalise the method to hyperelliptic curves.

The focus in this paper is on curves over fields of large prime characteristic, since in small characteris-
tic one might prefer to use subfield curves and Frobenius expansions. However, Hankerson, Karabina and
Menezes [27] have experimented with the method in characteristic 2 and they report that the new method
runs in about 0.74 to 0.77 the time of the best standard method for general curves.

We now give an outline of the paper. First we describe the homomorphism and explain how it leads to
a 2-dimensional GLV method. Section 3 gives a specific key generation algorithm which may be convenient
for some applications. Section 4 shows how to get a 4-dimensional GLV method for y2 = x3 + B over Fp2 .
Section 5 discusses twists of Edwards curves and sketches how the homomorphism looks when using twisted
and/or inverted Edwards coordinates. Section 6 shows how to achieve similar speedups using hyperelliptic
curves. Section 7 gives some details about our implementation. The proof of the pudding is the timings in
Section 8. Section 9 discusses known security threats from using the construction and explains how to avoid
them.

This paper is the full version of [19].

2 The Homomorphism

We consider elliptic curves defined over any field Fq with identity point OE (for background on elliptic curves
we refer to [3, 26, 46]). Recall that if E is an elliptic curve over Fq with q +1− t points then one can compute
the number of points #E(Fqm) efficiently. For example, #E(Fq2) = q2 + 1 − (t2 − 2q) = (q + 1)2 − t2. As
usual we define

E(Fqm)[r] = {P ∈ E(Fqm) : [r]P = OE}.
When we say that a curve or mapping is ‘defined over Fqk ’ we mean that the coefficients of the polynomials

are all in Fqk . The implicit assumption throughout the paper is that when we say an object is defined over
a field Fqk then it is not defined over any smaller field, unless explicitly mentioned.

The following result gives the main construction. Novices can replace the words ‘separable isogeny’ with
‘isomorphism’, set d = 1 and replace φ̂ by φ−1 without any significant loss of functionality (in which case
one essentially obtains the result of Iijima et al [29]). Recall that if r is a prime we write r‖N to mean r | N
but r2 - N .

Theorem 1. Let E be an elliptic curve defined over Fq such that #E(Fq) = q + 1 − t and let φ : E → E′

be a separable isogeny of degree d defined over Fqk where E′ is an elliptic curve defined over Fqm with m | k.
Let r | #E′(Fqm) be a prime such that r > d and such that r‖#E′(Fqk). Let π be the q-power Frobenius map
on E and let φ̂ : E′ → E be the dual isogeny of φ. Define

ψ = φπφ̂.

Then

1. ψ ∈ EndF
qk

(E′) (i.e., ψ is a group homomorphism).
2. For all P ∈ E′(Fqk) we have ψk(P )− [dk]P = OE and ψ2(P )− [dt]ψ(P ) + [d2q]P = OE.
3. There is a unique λ ∈ Z/rZ such that λk − dk ≡ 0 (mod r) and λ2 − dtλ + d2q ≡ 0 (mod r) such that

ψ(P ) = [λ]P for all P ∈ E′(Fqm)[r].

Proof. First note that φ̂ is an isogeny from E′ to E and is defined over Fqk , that π is an isogeny from E to
itself defined over Fq, and that φ is an isogeny from E to E′ defined over Fqk . Hence ψ is an isogeny of E′

to itself, and is defined over Fqk (or maybe a subfield). Therefore, ψ is a group homomorphism.
Since φφ̂ = d on E′ it follows that

ψ2 = φπφ̂φπφ̂ = φπdπφ̂ = dφπ2φ̂

3



and, by induction, ψk = dk−1φπkφ̂. For P ∈ E′(Fqk) we have φ̂(P ) ∈ E(Fqk) and so πk(φ̂(P )) = φ̂(P ).
Hence ψk(P ) = [dk]P .

Similarly, writing Q = φ̂(P ) for P ∈ E′(Fqk) we have π2(Q) − [t]π(Q) + [q]Q = OE and so [d]φ(π2 −
[t]π + [q])φ̂(P ) = OE . Using the previous algebra, this implies

(ψ2 − [dt]ψ + [qd2])P = OE .

Finally, let P ∈ E′(Fqm) have order r. Since ψ(P ) ∈ E′(Fqk) also has order r and r‖#E′(Fqk) it follows
that ψ(P ) = [λ]P for some λ ∈ Z. Since ψ is a homomorphism, ψ([a]P ) = [a]ψ(P ) = [λ]([a]P ) for all a ∈ Z.
Since ψk(P )− [dk]P = [λk]P − [dk]P = OE it follows that λk−dk ≡ 0 (mod r). Similarly, λ2−dtλ+d2q ≡ 0
(mod r). ut

We stress that there is nothing unexpected in the above construction. Consider the case when φ is
an isomorphism: Then E′ ∼= E implies End(E′) ∼= End(E). We know that End(E) contains the p-power
Frobenius map and hence End(E′) contains a corresponding endomorphism. The above Theorem simply
writes down this endomorphism explicitly.

The proof generalises immediately to hyperelliptic curves (see Section 6 or Kozaki, Matsuo and Shim-
bara [31]).

2.1 Special Case of Quadratic Twists

We now specialise Theorem 1 to elliptic curves over Fp where p > 3 and the case m = 2.

Theorem 2. Let p > 3 be a prime and let E be an elliptic curve over Fp with p+1−t points. Let E′ over Fp2

be the quadratic twist of E(Fp2). Then #E′(Fp2) = (p−1)2 + t2. Let φ : E → E′ be the twisting isomorphism
defined over Fp4 . Let r | #E′(Fp2) be a prime such that r > 2p. Let ψ = φπφ−1. For P ∈ E′(Fp2)[r] we have
ψ2(P ) + P = OE.

Proof. Let E : y2 = x3 + Ax + B with A,B ∈ Fp. We have #E(Fp2) = p2 + 1 − (t2 − 2p). Let u ∈ Fp2 be
a non-square in Fp2 , so u(p2−1)/2 = −1. Define A′ = u2A,B′ = u3B and E′ : y2 = x3 + A′x + B′. Then
E′ is the quadratic twist of E(Fp2) and #E′(Fp2) = p2 + 1 + (t2 − 2p) = (p − 1)2 + t2. The isomorphism
φ : E → E′ is given by

φ(x, y) = (ux,
√

u
3
y)

and is defined over Fp4 .
If r | #E′(Fp2) is prime such that r > 2p then r - #E(Fp2) = (p + 1− t)(p + 1 + t) and so r‖#E′(Fp4) =

#E(Fp2)#E′(Fp2). Hence we may apply Theorem 1. This shows that ψ = φπφ−1 is a group homomorphism
such that ψ(P ) = [λ]P for P ∈ E′(Fp2)[r] where λ4 − 1 ≡ 0 (mod r). We now show that, in fact, λ2 + 1 ≡ 0
(mod r).

By definition, ψ(x, y) = (uxp/up,
√

u
3
yp/

√
u

3p) where u ∈ Fp2 (i.e., up2
= u) and

√
u 6∈ Fp2 (and so,

√
u

p2

= −√u). If P = (x, y) ∈ E′(Fp2) then xp2
= x, yp2

= y and so

ψ2(x, y) = (uxp2
/up2

,
√

u
3
yp2

/
√

u
3p2

)
= (x, (−1)3y)
= −(x, y).

This completes the proof. ut
The above result applies to any elliptic curve over Fp (with p > 3) and shows that the 2-dimensional

GLV method can be applied. Note that it is possible for #E′(Fp2) to be prime, since E′ is not defined over
Fp (for further analysis see Nogami and Morikawa [38, 39]). One feature of this construction is that, since p
is now half the size compared with using elliptic curves over prime fields, point counting is much faster than
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usual (this was noted in [38, 39]). Since we are dealing with elliptic curves over Fp2 , where p is prime, Weil
descent attacks are not a threat (see Section 9).

An exercise for the reader is to show that if E is an elliptic curve over Fp and if E′ over Fp is the quadratic
twist of E then the map ψ satisfies ψ(P ) = −P for all P ∈ E′(Fp). The homomorphism is therefore useless
for the GLV method in this case.

Lemma 1. Let p ≡ 5 (mod 8) be a prime and let E be an elliptic curve over Fp with p + 1 − t points. Let
E′ over Fp2 be the quadratic twist of E(Fp2). Then the map ψ : E′ → E′ in Theorem 2 may be chosen to be

ψ(x, y) = (−xp, iyp)

where i ∈ Fp satisfies i2 = −1.

Proof. We have 4‖(p − 1) and 2‖(p + 1). Since 2 is not a square in Fp one can define Fp2 = Fp(u) where
u =

√
2. Note that up = −u and that up−1 ≡ 2(p−1)/2 ≡ −1 (mod p). It follows that u(p2−1)/2 = −1 and so

u is not a square in Fp2 .
Since −1 is a square in Fp the equation x4 = 1 has solutions x = 1,−1, i,−i ∈ Fp. Let w ∈ Fp4 satisfy

w2 = u. Since w 6∈ Fp2 and (w/wp)4 = 1 we have wp = ±iw.
Finally, the homomorphism ψ is defined to be

ψ(x, y) = (uxp/up, w3yp/w3p) = (−xp,±iyp).

Renaming i if necessary gives the result. ut
Lemma 2. Let p > 3 be a prime and let E be an elliptic curve over Fp with p + 1 − t points. Let E′ over
Fp2 be the quadratic twist of E(Fp2) and let ψ : E′ → E′ be as in Theorem 2. Let P ∈ E′(Fp2) have prime
order r. Then ψ(P ) = [λ]P where λ = t−1(p− 1) (mod r).

Proof. Theorem 1 shows that ψ(P ) = [λ]P for some λ ∈ Z. Since ψ2(P ) = −P we have λ2 + 1 ≡ 0 (mod r).
Similarly, ψ2(P )− [t]ψ(P ) + [p]P = OE , so λ2 − tλ + p ≡ 0 (mod r). Subtracting the second equation from
the first gives tλ + (1− p) ≡ 0 (mod r). ut

We now give some remarks about the lattice which arises in the GLV method when decomposing [n]P as
[n0]P + [n1]ψ(P ). Recall from [21] that we consider the lattice

L = {(x, y) ∈ Z2 : x + yλ ≡ 0 (mod r)}.
It is easy to prove that {(r, 0), (−λ, 1)} is a basis for L; this shows that the determinant of L is r. The GLV
method uses Babai’s rounding method to solve the closest vector problem (CVP), and this method requires
a reduced basis.

Lemma 3. Let notation be as in Theorem 2. The vectors {(t, p− 1), (1− p, t)} are an orthogonal basis for a
sublattice L′ of L of determinant #E′(Fp2). Given a point (a, b) ∈ R2 there exists a lattice point (x, y) ∈ L′

such that ‖(a, b)− (x, y)‖ ≤ (p + 1)/
√

2.

Proof. By Lemma 2 we have that tλ + (1 − p) ≡ 0 (mod r), which proves that (1 − p, t) ∈ L. Multiplying
by λ and using λ2 ≡ −1 (mod r) gives (t, p− 1) ∈ L. It is easy to check that the vectors are orthogonal and
thus linearly independent. The vectors both have length

√
#E′(Fp2) ≤

√
p2 + 2p + 1 = p + 1. This basis

has determinant (p− 1)2 + t2 = #E′(Fp2) so generates a sublattice L′ ⊆ L (if #E′(Fp2) = r then L = L′).
Finally, simple geometry shows that the maximum distance from a lattice point is

√
#E′(Fp2)/2 ≤

(p + 1)/
√

2. ut
Computing the coefficients n0, n1 for the GLV method is therefore particularly simple in this case (one

does not need to use lattice reduction or the methods of [40, 30, 45]). Further, one knows that |n0|, |n1| ≤
(p+1)/

√
2. As always, an alternative to the decomposition method which can be used in some cryptographic

settings is to directly choose random values n0, n1 ∈ Z such that |n0|, |n1| ≤
√

r rather than choosing a
random 0 ≤ n < r and then computing the corresponding (n0, n1).
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2.2 Higher Dimension Decompositions

The GLV method can be generalised to m-dimensional decompositions [n]P = [n0]P + [n1]ψ(P ) + · · · +
[nm−1]ψm−1(P ) (for examples with m = 4 and m = 8 see [18]). Such a setting gives improved performance.
As we have found 2-dimensional expansions using E′(Fp2) it is natural to try to get an m-dimensional
decomposition using E′(Fpm).

In general, to obtain an m-dimensional decomposition it is required that ψ does not satisfy any polynomial
equation on E′(Fpm)[r] of degree < m with small integer coefficients. Note that ψ always satisfies a quadratic
polynomial equation but that the coefficients are not necessarily small modulo r.

The following result gives a partial explanation of the behaviour of ψ on E′(Fpm).

Corollary 1. Let p > 3 be a prime and let E be an elliptic curve over Fp. Let E′ over Fpm be the quadratic
twist of E(Fpm). Write φ : E → E′ for the twisting isomorphism defined over Fp2m . Let r | #E′(Fpm) be a
prime such that r > 2pm−1 Let ψ = φπφ−1. For P ∈ E′(Fpm)[r] we have ψm(P ) + P = OE.

Proof. As in Theorem 2, we have r‖#E′(Fp2m) = #E′(Fpm)#E(Fpm) so Theorem 1 applies. Using the same
method as the proof of Theorem 2 we have ψm(x, y) = (uxpm

/upm

,
√

u
3
ypm

/
√

u
3pm

) = −P . ut
A problem is that the polynomial xm + 1 is not usually irreducible, and it is possible that ψ satisfies a

smaller degree polynomial. For example, in the case m = 3 one sees that #E′(Fp3) cannot be prime as it is
divisible by N = #E(Fp2)/#E(Fp). If r | #E′(Fp3)/N and P ∈ E′(Fp3)[r] then ψ2(P ) − ψ(P ) + 1 = OE .
Hence one only gets a 2-dimensional decomposition in the case m = 3.

Indeed, the interesting case is when m is a power of 2, in which case xm + 1 is irreducible and one
can obtain an m-dimensional GLV decomposition. Indeed, Nogami and Morikawa [38, 39] already proposed
exactly this key generation method (choosing E over Fp and then using a quadratic twist over Fp2c ) as a
method to generate curves of prime order. Note that [38, 39] does not consider the GLV method.

Therefore, the next useful case is m = 4, giving a 4-dimensional GLV method. On the downside, this case
is potentially vulnerable to Weil descent attacks (see Section 9) and so the prime p must be larger than we
would ideally like.

The other way to get higher dimension decompositions is to have maps φ defined over larger fields than
a quadratic extension. An example of this is given in Section 4.

3 Key Generation

Let p > 3 be prime. We present a key generation algorithm for the quadratic twist construction. Our
algorithm is designed so that the resulting curve is given in Weierstrass form E′ : y2 = x3 + A′x + B′ over
Fp2 has coefficient A′ = −3, which is convenient for efficient implementation when using Jacobian coordinates
(see Section 13.2.1.c of [3] or Section 3.2.2 of [26]). The key generation algorithm can be modified to work
with other models for elliptic curves and one can always choose at least one coefficient to have a special
form. The modification to other models is straightforward.

We use Lemma 1, which gives a particularly simple map ψ. It should be clear that the algorithm can be
used in more general cases. Our algorithm produces curves of prime order (or order 4 times a prime for the
case of Edwards curves), but this can be relaxed by requiring only h < H for some bound H in line 7.

As remarked earlier, key generation is fast compared with standard ECC, since the point counting for
#E(Fp) is over a field half the usual size (this is precisely the point of the papers [38, 39]).

4 Using Curves with Large Automorphism Group

We have seen that one can obtain a 2-dimensional GLV method for any elliptic curve E over Fp, by working
with a twist E′ over Fp2 . However, 2-dimensional GLV methods were already known for some special curves
(i.e., those with a non-trivial automorphism or endomorphism of low degree). We now show how one can get
higher-dimensional expansions using elliptic curves E over Fp2 with #Aut(E) > 2.
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Algorithm 1 Key generation for quadratic twist construction
Output: p, E′, ψ, λ
1: Choose a prime p = 5 (mod 8) . e.g., a NIST prime (Section 2.2.6 of [26])
2: Set u =

√
2 ∈ Fp2

3: Set A′ = −3 and A = A′/2 ∈ Fp

4: repeat
5: Choose random B ∈ Fp and let E : y2 = x3 + Ax + B
6: Compute t = p + 1−#E(Fp).
7: until (p− 1)2 + t2 = hr where r is prime and h = 1 or h = 4
8: Set B′ = Bu3 ∈ Fp2 and E′ : y2 = x3 + A′x + B′

9: Set λ = t−1(p− 1) (mod r)
10: Compute i ∈ Fp so that i2 = −1
11: Define ψ(x, y) = (−xp, iyp).
12: return p, (A′, B′), ψ, λ

The basic principle is to use a twist φ : E → E′ where E′ is defined over Fp2 and φ is defined over
Fpk , and not defined over any subfield of Fpk , for some even integer k > 4. Applying Theorem 1 gives a
homomorphism ψ such that ψk − 1 = 0. In practice, one has Φk(ψ) = 0 and one can get a ϕ(k)-dimensional
GLV method. If k = 8 or k = 12 then one therefore gets a 4-dimensional GLV method.

First we recall a result on twists. Let E be an elliptic curve over Fq. We say that a twist φ : E → E′ has
degree d if the minimal field of definition of φ is Fqd .

Theorem 3. Let E be an ordinary elliptic curve over Fq. There is a twist φ : E → E′ of degree d if and
only if Aut(E) contains an element of order d.

Proof. See Section 4.1 of Hess, Smart and Vercauteren [28].

As already mentioned, to get 4-dimensional expansions it is necessary to have an isomorphism over Fpk

where ϕ(k) = 4. If one wants to use elliptic curves over Fp2 it is necessary to take use twists of degree d = 4
or d = 6. Hence, the only two examples of interest are E : y2 = x3 +B and y2 = x3 +Ax. We give the details
in the former case. The latter is analogous.

Let p ≡ 1 (mod 6) and let B ∈ Fp. Define E : y2 = x3 + B. There are six possible group orders
for E(Fq); three pairs of the form (p + 1 − t, p + 1 + t). Choose u ∈ Fp12 such that u6 ∈ Fp2 and define
E′ : Y 2 = X3 + u6B over Fp2 . Repeat the construction (choosing p,B, u) until #E′(Fp2) is prime (or nearly
prime). Of the six possible group orders for y2 = x3 + B′ over Fp2 three of them are never prime as they are
products (p + 1− t)(p + 1 + t) corresponding to group orders of curves defined over Fp.

The isomorphism φ : E → E′ is given by φ(x, y) = (u2x, u3y) and is defined over Fp12 . The homomorphism
ψ = φπφ−1, where π is the p-power Frobenius on E, is given by ψ(x, y) = (u2pxp/u2, u3pyp/u3). Write
v1 = u2p/u2 and v2 = u3p/u3. Since u6 = 1 one can verify that v3

1 , v2
2 ∈ Fp2 and so ψ is defined over Fp2 .

Write w1 = vp
1v1 and w2 = vp

2v2 so that ψ2(x, y) = (w1x
p2

, w2y
p2

). Then w3
1 = 1 and w2

2 = 1. Indeed, if
w1, w2 6= 1 (i.e., u2, u3 6∈ Fp2) then ψ satisfies the characteristic equation

ψ4 − ψ2 + 1 = 0

corresponding to the 12-th cyclotomic polynomial. Hence one obtains a 4-dimensional GLV method for these
curves. This leads, once again, to a significant speedup of these curves compared with previous techniques.

Note that −ψ2 satisfies the characteristic equation x2 + x + 1 and so acts as the standard automorphism
(x, y) 7→ (ζ3x, y) on E.

It would be interesting to consider whether the lattice arising for these examples has any special properties.
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5 Using Edwards Curves

The GLV method using the homomorphism discussed above can be used with any model for elliptic curves.
For efficient elliptic curve implementations it is natural to use Edwards (or twisted and/or inverted Edwards)
curves [7–10]. We give a brief summary of the details here.

A twisted Edwards curve over Fq is an equation of the form

E : ax2 + y2 = 1 + dx2y2.

The points (x, y) ∈ E(Fq) form a group with identity element (0, 1). We refer to [10] for the addition formulae
for twisted Edwards curves. The inverse of a point (x, y) is (−x, y), the point (0,−1) has order 2 and if a is a
square then the points (±1/

√
a, 0) have order 4. An elliptic curve E over Fq is either birationally equivalent

over Fq or 2-isogenous over Fq to a curve in twisted Edwards form if and only if 4 | #E(Fq) (Theorems 3.3
and 5.1 of [10]).

The quadratic twist of a twisted Edwards curve E : ax2 + y2 = 1 + dx2y2 is

E′ : uax2 + y2 = 1 + udx2y2 (1)

where u ∈ F∗q is a non-square. The corresponding isomorphism φ : E → E′ defined over Fq2 is given by
(x, y) = (x/

√
u, y); note that this does map the identity element of E to the identity element of E′.

Suppose a, d ∈ Fp and write π(x, y) = (xp, yp) for the p-power Frobenius on E : ax2 + y2 = 1 + dx2y2.
Suppose u ∈ Fp2 is such that

√
u 6∈ Fp2 and define the twist E′ as in equation (1). One can show that if

P ∈ E′(Fp2) then Q = πφ−1(P ) ∈ E(Fp4) is such that φ(Q) ∈ E′(Fp2). One can therefore apply Theorem 2
directly to twisted Edwards curves.

Corollary 2. Let E be an elliptic curve over Fq in twisted Edwards form with q + 1 − t points such that
4 | (q + 1− t). Let π be the q-power Frobenius map on E. Write E′ for the quadratic twist of E over Fq2 and
let φ : E → E′ be the twisting isomorphism. Let ψ = φπφ−1. Let r | #E′(Fq2) be a prime such that r > 2q.
Let P ∈ E′(Fq2)[r]. Then ψ(P ) = [λ]P where λ ∈ Z/rZ satisfies λ2 + 1 ≡ 0 (mod r). Also,

ψ(x, y) = (
√

u
p
xp/

√
u, yp).

Proof. The proof is essentially the same as the proof of Theorem 2. Since φ and π are group homomorphisms
it follows that ψ is too. We have E(Fp4) ∼= E′(Fp4) as groups and #E(Fp4) = #E(Fp)#E′′(Fp)#E′(Fp2)
where E′′ is the non-trivial quadratic twist over Fp of E. Hence, r‖#E(Fp2) and so ψ(P ) ∈ 〈P 〉. One easily
verifies that ψ has the stated form. Finally,

ψ2(x, y) = ψ(
√

u
p
xp/

√
u, yp) = (

√
u

p√
u

p2

xp2
/(
√

u
p√

u), yp2
) = (

√
u

p2

xp2
/
√

u, yp2
).

Since up2
= u we have

√
u

p2

= −√u and it follows that ψ2(x, y) = (−x, y) = −(x, y). ut

Hence, the above map can be used for the GLV method on elliptic curves in Edwards form.
For implementation we use inverted twisted Edwards curves. If E : ax2 + y2 = 1 + dx2y2 is a twisted

Edwards curve then E is isomorphic to the inverted twisted Edwards curve (in projective coordinates)

(X2 + aY 2)Z2 = dZ4 + X2Y 2

by the map φ(X,Y, Z) = (Z/X, Z/Y ). Hence in our application we choose a, d ∈ Fp, u ∈ Fp2 and have the
curve (X2 + auY 2)Z2 = duZ4 + X2Y 2. The homomorphism is φ(X, Y, Z) = (

√
uXp/

√
u

p
, Y p, Zp), which is

typically applied to points with Z = 1. For arithmetic on twisted inverted Edwards curves we refer to [8].
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5.1 Edwards curves with CM by D = −3 or D = −4

It would be natural to use Edwards elliptic curves with CM by D = −3 or D = −4 to get 4-dimensional
decompositions, as in Section 4. For completeness we now write down these curves in Edwards form.

The case D = −4 is the “classical” Edwards curve

x2 + y2 = 1− x2y2

which appears in the work of Euler and Gauss (Edwards [17] gives the historical background and references).
The automorphism ρ(x, y) = (ix, 1/y) (which fixes the identity point (0, 1)) for i =

√−1 satisfies ρ2 = −1
and hence corresponds to the usual automorphism on the j-invariant 1728 curve y2 = x3 + x.

Elliptic curves with CM by D = −3 (equivalently, j-invariant 0) can only be written in Edwards form if√
3 ∈ Fq. Taking d = (

√
3 + 2)/(

√
3− 2) gives the Edwards curve

E : x2 + y2 = 1 + dx2y2

which has j-invariant 0. Writing the automorphism corresponding to ζ3 is unnattractive, so we do it in stages.
First we give the isomorphism φ : E → M where M : BY 2 = X3 + AX2 + X is the curve in Montgomery
form with A = 2(1+d)/(1−d) and B = 4/(1−d). This map is φ(x, y) = ((1+ y)/(1− y), (1+ y)/(x(1− y)))
as usual. The action of ζ3 on M is given by

ζ(X, Y ) = (ζ3X + (1− ζ3)/
√

3, Y ).

Then we apply φ−1(X, Y ) = (X/Y, (X − 1)/(X + 1)).
To use these curves as in Section 4 one needs an isomorphism φ : E → E′ over Fp8 or Fp12 . Note that

there is no such map for which both E and E′ are in twisted Edwards form. Instead, E′ should be chosen to
be in twisted Edwards form and E in Weierstrass form. One can still compute the map ψ = φπφ−1 on the
curve E′ in (twisted) Edwards form.

6 Hyperelliptic curves

Afficionados will have noticed that Theorem 1 holds (with minor modifications to the second part of property
(2)) for arbitrary abelian varieties. This has been noted by Kozaki, Matsuo and Shimbara [31], but they do
not use it for the GLV method. We now present an analogue of Theorem 2 for hyperelliptic curves.

Let C : y2 = x2g+1 + f2gx
2g + · · · + f1x + f0 be a genus g curve over Fq with a single point at infinity.

Consider the Jacobian of C over Fqm and take a quadratic twist C ′ : y2 = x2g+1+uf2gx
2g+· · ·+u2gx+u2g+1f0

where u ∈ Fqm is a non-square. The isomorphism ψ : C → C ′ is given by

φ(x, y) = (ux,
√

u
2g+1

y)

This map induces an isomorphism φ : Jac(C) → Jac(C ′) over Fq2m which can be explicitly calculated on the
Mumford representation (see [31] or Section 4.3 of [16]).

The number of group elements in the Jacobian of C over Fpm is given as P (1) where P (T ) is the
characteristic polynomial of the pm-power Frobenius on C (and similarly for C ′). The following result is
straightforward.

Lemma 4. Suppose the characteristic polynomial of the pm-power Frobenius for C over Fpm is P (T ) =
T 4 + a1T

3 + a2T
2 + pma1T + p2m. Then the characteristic polynomial of the pm-power Frobenius for the

quadratic twist C ′ over Fpm is P ′(T ) = T 4 − a1T
3 + a2T

2 − pma1T + p2m.

Our construction gives the homomorphism ψ = φπφ−1 which satisfies both the characteristic polynomial
of the p-power Frobenius map on C and the polynomial ψm(D) + D = 0 for D ∈ Jac(C ′)(Fqm). Therefore,
when m is a power of 2, one obtains an m-dimensional GLV method. In particular, if one works with genus 2
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curves over Fp2 then one only gets a 2-dimensional GLV method, even though the characteristic polynomial
of Frobenius has degree 4 for genus 2 curves.

In this case, the speedup for key generation is significant as counting the number of points on random
Jacobians of cryptographic size in large characteristic is currently extremely time-consuming. The current
record, due to Gaudry and Schost [25], computes N = #Jac(C)(Fp) where p = 2127 − 1. This is a 254-bit
group order, but the largest prime divisor of N only has 169 bits and so does not provide a very high
security level. The entire computation took about one month of CPU time (of course, the computation can
be distributed). To generate a curve whose group order has a very large prime factor would therefore take
many years of CPU time. In contrast, our new approach is quite feasible in practice.

On the other hand, Weil descent attacks are much more successful in higher genus. Indeed, as discussed
in Section 9, even the case m = 2 is potentially vulnerable to Weil descent attacks. Hence one needs to
increase the size of q to attain the required security level. A careful implementation is required to determine
the advantages (if any) in this case.

One can also use the ideas of Section 4 with hyperelliptic curves. For example, taking C : y2 = x5 + 1
over Fp, p ≡ 1 (mod 5) one can already obtain a 4-dimensional GLV method using the endomorphism
ζ5(x, y) = (ζ5x, y) where ζ5 ∈ Fp is a root of Φ5(T ) = T 4 + T 3 + T 2 + T + 1. Considering now C over Fp2

and taking u ∈ Fp20 such that u10 ∈ Fp2 one can define the isomorphism φ(x, y) = (u2x, u5y) such that

φ : C → C ′ : y2 = x5 + u10.

One can show that φ satisfies Φ20(T ) = T 8 − T 6 + T 4 − T 2 + 1 = 0 for divisors on C ′ over Fp2 . Hence one
gets an 8-dimensional GLV method for this curve.

7 Remarks on our Implementation

In this section we briefly describe the implementation we used for our experiments. As mentioned in the
introduction, we do not claim that our implementation is the best possible. We believe that, for the parame-
ters and implementation platforms considered in this paper, it gives a fair estimate of the speedup obtained
by using the GLV method.

The main point of the GLV method is to replace a large point multiplication [n]P by a multiexponenti-
ation [n0]P + [n1]ψ(P ). There are numerous algorithms for multiexponentiation, all built on a fundamental
observation by Straus, and much has been written on the topic. One approach is to use ‘interleaving’; this
idea seems to have been independently discovered in [21] and [33].4 We refer to Section 3.3.3 of [26] for
details. Other approaches to multiexponentiation are the joint sparse form (see Solinas [48]) and its higher-
dimensional analogues and the Euclidean Montgomery ladder.

Two fundamental ideas used to speed up the computation of [n]P on elliptic curves are the use of signed
binary expansions (for example, non-adjacent forms, see Definition 3.28 [26] or Definition 9.13 of [3]) and
sliding window methods. A very efficient method (as it only uses a few word operations) to compute the NAF
of an integer n is to compute 3n (using standard integer multiplication), then form the signed expansion
(3n) − n and discard the least significant bit. The natural extension of non-adjacent forms to windows is
called width-w NAFs (see Section IV.2.5 of [11], Definition 3.32 of [26] or Definition 9.19 of [3]). The average
density (i.e., proportion of non-zero coefficients) of a width-w-NAF is 1/(w + 1) and the precomputation
requires 2w−2 elliptic curve operations.

Instead of using width-w NAFs one can use sliding windows over NAF expansions (see Section IV.2.4 of
[11] or Algorithm 3.38 on page 101 of [26]). This is convenient since it is slightly cheaper to compute a NAF
than a width-w NAF. One precomputes ≈ 2w/3 points and the average density (i.e., proportion of non-zero
coefficients in the expansion) is 1/(w + ν(w)) where

ν(w) = 4/3− (−1)w/(3 · 2w−2)

4 The name ‘interleaving’ is due to Möller. Algorithm 1 of [21] is not an interleaving algorithm but the first two
paragraphs of page 195 of [21] do describe interleaving.
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(see page 68 of [11]). We stress, for the non-experts, that sliding windows over NAFs are not the same as
width-w NAFs.

More generally, one can use signed fractional windows [34, 35]. The basic idea is to choose an integer W
and to precompute only the W points {P, [3]P, . . . , [2W − 1]P} (in other words, W is not necessarily 2w−1

(i.e., points up to [2w − 1]P ) as in the standard window methods or 2w−2 as in width-w-NAF methods).
The density of fractional window methods has been determined by Schmidt-Samoa, Semay and Takagi in
[42]. Theorem 1 of [42] is that the density of expansions produced by the fractional window method is
1/(w + 2 + W/2w) where w = blog2(W )c. Theorem 4 of [42] shows that sliding windows over NAFs is
equivalent to signed fractional sliding windows for some choice of W .

Finally, one can consider fractional sliding windows over NAFs and this is what we use in our implemen-
tation. This does not seem to have been considered in the literature but it seems to give the same density as
signed fractional sliding windows. It is an open problem to theoretically determine the density in this case.

In fact, for our main example (working with p = 2127 − 1) the choice W = 11 for the fractional sliding
window size (i.e., precomputing {P, [3]P, . . . , [21]P}) was as at least as good as any other. Since 21 = (10101)2
is the largest 5-bit integer in non-adjacent form, for our experiments the “fractional” window turns out to
be an integral 5-bit window over NAF expansions. Note that the points {ψ(P ), [3]ψ(P ), . . . , [21]ψ(P )} can
be obtained on the fly at little cost.

The multiexponentiation algorithm used for our experiments is therefore very similar to Algorithm 3.51
of [26], which uses interleaving over width-w NAFs (the authors of [26] tell us that there is a typo in line 2
of Algorithm 3.5.1: one should replace “3.30” with “3.35”).

As usual, we work with projective representations, either Jacobian coordinates for curves in Weierstrass
form, or inverted Edwards coordinates. In the former case one definitely prefers to use mixed additions
in the main loop as they are much faster. However this requires that any precomputed values must be
“normalized”, that is converted to affine form, before entering the loop. This conversion, if done naively
for each precomputed point, would require expensive field inversions so care must be taken to minimize
the impact of (or otherwise seek to avoid) this normalization step. There are a number of ways to achieve
this, requiring only one inversion, for example the precomputation strategy of Dahmen, Okeya and Schepers
(DOS) [15] (as recommended in [9]) or the method of Longa and Miri [32]. For the case of inverted Edwards
coordinates the difference between a full addition and a mixed addition is much smaller, and so we find that
even one inversion is not worth it, and precomputations are carried out directly in projective coordinates.

8 Experimental Results

We now give some timing comparisons for the computation of [n]P (and also signature verification) on
elliptic curves at the 128-bit security level. Our timings are for the case of quadratic twists as presented in
Section 2.1.

8.1 The Example Curve

It is natural to use the Mersenne prime p = 2127 − 1, which is also used in Bernstein’s surface1271 genus 2
implementation [6]5. This prime supports a very fast modular reduction algorithm.

Since p ≡ 3 (mod 4) we represent Fp2 as Fp(i) where i =
√−1. Note that since p 6= 5 mod 8 the previously

described key generation process is not applicable here. However it can easily be modified to handle this case
as well.

We consider the inverted Edwards curve6

E′ : x2 + y2 = x2y2 + 42
5 Note that the Pollard rho algorithm using equivalence classes in this case requires approximately 2125 group

operations, the same as for Bernstein’s Curve25519 or Surface1271. Whether this is precisely the same security
level as AES-128 is unclear, but since Curve25519 and Surface1271 have been used for benchmarking we feel our
choice is justified.

6 Fans of the “Hitchiker’s guide to the galaxy” by Douglas Adams will be delighted with this curve.
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over Fp where p = 2127 − 1. The quadratic twist of E(Fp2) is

E′ : x2 + uy2 = x2y2 + 42u

where u = 2 + i is a non-square in Fp2 . One finds that #E′(Fp2) = 4r where r is the 252 bit prime

7237005577332262213973186563042994240687174781720151773744092855959733682433.

The homomorphism on affine points is
ψ(x, y) = (cxp, yp)

for an easily computed constant c.

8.2 Comparison Curve

For comparison purposes we consider an elliptic curve E defined over Fp2 where p2 = 2256 − 189 is a 256-
bit pseudo-Mersenne modulus. This provides approximately the same level of security as the curve in the
previous subsection. It might seem more natural to compare directly with the Curve25519 implementation.
This we will do later. However the implementation of Curve25519 uses Montgomery coordinates, rather than
inverted Edwards coordinates, and the goal of this section is to precisely determine the effect of moving to
the GLV method and Fp2 while keeping as many other variables unchanged as possible.

We now give a comparison of elliptic curves over Fp2 with our curves over Fp2 . Table 1 gives opera-
tion counts for our test implementation. The notation SSW means sliding windows of width 5 over NAF
expansions, GLV+JSF means using joint sparse forms for the multiexponentiation and GLV+INT means
interleaving fractional sliding windows over NAFs (as noted earlier, for our parameters it seems to be optimal
to take W = 11 and so these are actually integral windows of width 5) as described in Section 7. In our
implementations we averaged the cost over 105 point multiplications.

Table 1. Point multiplication operation counts (Edwards curves over Fp2 versus Edwards curves over Fp2)

Method Fp muls Fp adds/subs

E(Fp2), 256-bit p2 SSW 2277 2125

E(Fp2), 127-bit p SSW 5640 15601

E(Fp2), 127-bit p GLV+JSF 3890 10467

E(Fp2), 127-bit p GLV+INT 3557 9554

The table includes the often neglected costs of field additions and subtractions. Note that when im-
plementing Fp2 arithmetic, each multiplication using Karatsuba requires five Fp additions or subtractions
(assuming Fp2 = Fp(

√−1)), so the number of these operations increases substantially.
Clearly the superiority (or otherwise) of the method depends on the relative cost of 128-bit and 256-bit

field multiplications (and additions or subtractions) on the particular platform.
To give a more accurate picture we have implemented both methods on two widely differing platforms, a

1.66GHz 64-bit Intel Core 2, and on an 8-bit 4MHz Atmel Atmega1281 chip (which is a popular choice for
wireless sensor network nodes). We present the results in the following two subsections.

8.3 8-bit Processor Implementation

Our first implementation is on a small 4MHz 8-bit Atmega1281 processor. Here the base field multiplication
times will dominate, so this function was written in optimal loop-unrolled assembly language. We use the
MIRACL C library [43], which includes tools for the automatic generation of such code (and which holds
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Table 2. Point multiplication timings – 8-bit processor. Twisted Inverted Edwards coordinates for E(Fp2) versus
Montgomery for E(Fp2)

Atmel Atmega1281 processor Method Time (s)

E(Fp2), (256-bit p2) SSW 5.10

E(Fp2) (127-bit p) SSW 5.63

E(Fp2), (127-bit p) GLV+JSF 3.98

E(Fp2), (127-bit p) GLV+INT 3.57

the current speed record for this particular processor [44]), and we use the cycle accurate AVR Studio tool
to measure the time for a single variable point multiplication.

Table 2 show that our best method for point multiplication takes about 0.70 of the time required for the
256 bit E(Fp2) curve

Observe that simply switching to an E(Fp2) curve at the same security level does not by itself give any
improvement, in fact it is somewhat slower. The theoretical advantage of using Karatsuba in the latter case
appears to be outweighed by the extra “fussiness” of the Fp2 implementation; and of course Karatsuba can
also be applied to the Fp case as well if considered appropriate. Looking at the timings, a field multiplication
takes 1995 µs over Fp2 (256-bit), as against 2327 µs over Fp2 (127-bit p), although for a field squaring the
situation is reversed, taking 1616 µs over Fp2 as against only 1529 µs over Fp2 . Field addition and subtraction
favours the Fp2 case (124 µs versus 174 µs). However using the new homomorphism and applying the GLV
method, our new implementation is still clearly superior.

Note that for this processor it is probably more appropriate in practice to use the JSF method for point
multiplication, as it is much better suited to a small constrained enviroment, with limited space for online
precomputation.

8.4 64-bit Processor Implementation

It has been observed by many researchers that software implementations over smaller prime fields, where
field elements can be stored in just a few CPU registers (as will be the case here), suffer disproportionally
when implemented using general purpose multi-precision libraries (for example, see Avanzi [2]). This effect
could work against us here, as we are using the general purpose MIRACL library [43]. Special purpose
libraries like the mpFq library [23] which generate field-specific code, and implementations which work hard
to squeeze out overheads, such as Bernstein’s implementations [6] are always going to be faster. So in order
to be competitive we wrote a specialised hand-crafted x86-64 assembly language module to handle the base
field arithmetic, and integrated this with the MIRACL library. Given that each field element can be stored
in just two 64-bit registers, this code is quite short, and did not take long to generate, optimize and test.

In the context of a 64-bit processor, while one might hope that timings would be dominated by the O(n2)
base field multiplication operations, for small values of n the O(n) contribution of the numerous base field
additions and subtractions becomes significant, as also observed by Gaudry and Thomé [23]. Observe that
on the 64-bit processor a 128-bit field element requires just n = 2 (and indeed the description as “multi-
precision” should really give way to “double precision”). Therefore it is to be expected that the speed-up we
can achieve in this case will be less than might have been hoped.

So is our new method faster? There is really only one satisfactory way to resolve the issue – and that
is to identify the fastest known E(Fp2) implementation on a 64-bit processor for the same level of security,
and try to improve on it. We understand that the current record is that announced by Gaudry and Thomé
at SPEED 2007 [23], using an implementation of Bernstein’s curve25519 [4]. This record is in the setting of
an implementation of the elliptic curve Diffie-Hellman method, which requires a single point multiplication
to determine the shared secret key.

We point out that the clever implementation and optimizations of curve25519 are for the sole context
of an efficient Diffie-Hellman implementation, whereas our system is immediately applicable to a wide range
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of ECC protocols. In particular the implementation of curve25519 uses Montgomery’s parameterisation
of an elliptic curve and is suitable for point multiplication (i.e., single scalar multiplication) but not for
multiexponentiation as used in some signature schemes. One advantage of the Montgomery representation
is that it provides point compression at no extra cost, whereas in our system (as with most other ECC point
compression systems) the receiver usually must compute a square root to recover the point.

On the other hand we have the use of a particularly nice modulus 2127 − 1, which brings many benefits.
For example a base field square root of a quadratic residue x can be calculated as simply x2125

.

Table 3. Point multiplication timings – 64-bit processor (Edwards curves versus Montgomery)

Intel Core 2 processor Method Clock cycles

E(Fp2), 255-bit p2 Montgomery [23] 386,000

E(Fp2), 127-bit p SSW 430,000

E(Fp2), 127-bit p GLV+JSF 326,000

E(Fp2), 127-bit p GLV+INT 293,000

E(Fp2), 127-bit p GLV+INT+PointCompress 320,000

To obtain our timings we follow Gaudry and Thomé, and utilise two different methods, one based on
actual cycle counts, and a method which uses an operating system timer. There are problems with both
methods [23], so here we average the two. In practise the two methods were in close agreement, but not of
sufficient accuracy to justify exact numbers – so we round to the nearest 1000 cycles. See Table 3 for our
results. As can be seen, our best method takes 0.83 of the time of the Gaudry and Thomé implementation.
Note that point decompression, as required by a Diffie-Hellman implementation which wishes to minimise
the size of the public key, needs approximately an extra 26,000 clock cycles for our implementation.

It is interesting to observe from Table 3 that a careful implementation over a quadratic extension which
does not exploit our homomorphism is substantially slower, taking 430,000 cycles. So again it seems that
merely switching to a smaller field size is not by itself advantageous on a 64-bit processor, although some of
the difference can be explained by the particularly clever parameterization chosen for curve25519. However
by using the GLV method we are able to make up this difference, and indeed overtake the previous record
(our result of 320,000 cycles is 0.83 the time of the cycle count in [23]; skipping point compression gives 0.76
the time).

To ensure a fair comparison, we exploited the very useful eBATS project [12] (now incorporated into
eBACS [13]). Our eBAT implements a Diffie-Hellman key exchange algorithm, and can be directly and
independently compared with an implementation based on curve25519. There are two main functions for a
Diffie-Hellman implementation, one which calculates the key pair, and a second which calculates the shared
secret. For the key pair calculation we exploit the fact that for our method a multiplication of a fixed point
can benefit from extensive off-line precomputation, and use a fixed-base comb algorithm (see Section 3.3.2
of [26]), and so this calculation requires only 146,000 cycles. For the shared secret calculation we use the
GLV+INT method, plus the cost of a point decompression.

Our latest eBAT can be downloaded from:
ftp://ftp.computing.dcu.ie/pub/crypto/gls1271-3.tar
Profiling the code reveals that our version (with point compression) spends 49% of its time doing base field
multiplications and squarings, 15% of the time doing base field additions and subtractions and nearly 6% of
the time is required for the few modular inversions.

8.5 ECDSA/Schnorr Signature Verification

Verification of both ECDSA and Schnorr signatures requires the calculation of [a]P + [b]Q, where P is
fixed. In our setting we must calculate [a0]P + [a1]ψ(P ) + [b0]Q + [b1]ψ(Q) – in other words a 4-dimensional
multiexponentiation algorithm is required. The methods of Bernstein [4] and Gaudry-Thomé [23] are based
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on Montgomery arithmetic and are not directly applicable for signature verification. A multi-dimensional
Montgomery ladder exists [5, 14], but is not very competitive; it is also necessary to compute some points
exactly (i.e., compute square roots) to initialise the computation.

Again we use an interleaving algorithm, using windows over a NAF expansion. Since P is now fixed,
precomputation of multiples of P (and therefore of ψ(P )) can be carried out offline, and so a larger window
size of 6 can be used for the multiplication of P . This requires the precomputation and storage of 42 points.
For the online precomputation required on Q, we again use sliding windows of size 4 over NAF expansions.

Table 4. Signature Verification timings – 64-bit processor – Edwards curve.

Intel Core 2 processor Method Fp muls Fp adds/subs Clock cycles

E(Fp2), 127-bit p GLV+INT 4419 11710 398,000

E(Fp2), 127-bit p INT 6547 17882 542,000

In Table 4 we compare our method with an implementation that does not use the GLV method. The
notation GLV+INT means a 4-dimensional multiexponentiation as described above and the notation INT
means the 2-dimensional interleaving algorithm which calculates [a]P + [b]Q directly for random a, b < r,
using size 6 sliding windows over NAFs for the fixed point P , and size 5 sliding windows over NAFs for the
variable point Q (one could of course use fractional windows here).

Antipa et al [1] propose a variant of ECDSA with faster signature verification (note that their method
does not apply to Schnorr signatures). The basic method gives essentially the same performance as our
method (they transform [a]P + [b]Q to a 4-dimensional multiexponentiation with coefficients ≈ √

r). Their
scheme, like ours, assumes that P is fixed and that certain precomputation has been done.

The paper [1] also gives a variant where the public key is doubled in size to include Q and Q1 =
[2dlog2(r)/3e]Q. Their method transforms [a]P +[b]Q to a 6-dimensional multiexponentiation with coefficients
of size ≈ r1/3. In this context (i.e., enlarged public keys) we can improve upon their result. Let M =
2dlog2(r)/4e and suppose the public key features Q and Q1 = [M ]Q. The GLV idea transforms [a]P + [b]Q to
[a0]P+[a1]ψ(P )+[b0]Q+[b1]ψ(Q) where a0, a1, b0, b1 ≈

√
r. We now write a0 = a0,0+Ma0,1 where a0,0, a0,1 ≈

r1/4 and similarly for a1, b0, b1. Hence the computation becomes an 8-dimensional multiexponentiation with
coefficients of size ≈ r1/4. Another advantage of our method is that it applies to Schnorr signatures whereas
the method of [1] is only for ECDSA and other variants of ElGamal signatures.

Finally, we mention that the methods in [36] can also be applied in our setting.

9 Security Implications

The homomorphism ψ of Theorem 1 (at least, in the case when φ is an isomorphism) defines equivalence
classes of points in E′(Fpm) of size 2m by [P ] = {±ψi(P ) : 0 ≤ i < m}. By the methods of Gallant-
Lambert-Vanstone [20] and Wiener-Zuccherato [49] one can perform the Pollard rho algorithm for the discrete
logarithm problem on these equivalence classes. This speeds up the solution of the discrete logarithm problem
by a factor of

√
m compared with general curves. Hence one bit should be added to the key length to

compensate for this attack.
A more serious threat comes from the Weil descent philosophy, and in particular the work of Gaudry [22].

Gaudry gives an algorithm for the discrete logarithm problem in E′(Fpm) requiring time O(p2−4/(2m+1))
group operations (with bad constants) which, in principle, beats the Pollard methods for m ≥ 3. This has
been improved by Gaudry, Thomé, Thériault and Diem [24] to O(p2−2/(dm)) group operations. The proposal
for elliptic curves in the case m = 2 is immune to Gaudry’s Weil descent attack.

Gaudry’s method also applies to abelian varieties: if A is an abelian variety of dimension d over Fpm then
the algorithm has complexity O(p2−4/(2dm+1)) (or O(p2−2/(dm)) using [24]) group operations. Hence, for
Jacobians of genus 2 curves over Fp2 one has an algorithm running in time O(p1.5), rather than the Pollard
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complexity of O(p2). Gaudry’s method is exponential time and so one can secure against it by increasing the
field size. For example, to achieve 128-bit security level with genus 2 curves over Fp2 or elliptic curves over
Fp4 one should take p to be approximately 85 bits rather than the desired 64 bits (this is a very conservative
choice; Gaudry’s algorithm requries expensive computations such as Gröbner bases and so one can probably
safely work with primes smaller than 80 bits).

10 Open problems

We list some avenues for future research which arise from our work.

1. Give benchmark timings for Schnorr and/or ECDSA signature verification comparing standard methods,
the methods of this paper, and the methods of Antipa et al [1].

2. Develop fast methods to compute Babai rounding for the GLV method, especially with larger dimensional
lattices.

3. Study the performance of 4-dimensional GLV expansions for curves over Fp2 with j-invariant 0 or 1728
as in Section 4. Give benchmark timings compared with previous best results.
Consider the same problem in genus 2, with 8-dimensional GLV expansions for special curves as in
Section 6.

4. Study the performance of 4-dimensional GLV expansions by working with elliptic curves over Fp4 , perhaps
with p = 273 − 69 or p = 279 − 67. Provide benchmark timings.

5. There are two ways to compute the coefficients of a GLV/Frobenius expansion. In the GLV setting one
uses Babai rounding with respect to a reduced lattice basis (the lattice reduction is a precomputation
and there is no motivation to optimise it) to solve a closest vector problem (CVP) and hence decompose
a given integer n. In the Frobenius expansion setting, one uses division with remainder in a polynomial
quotient ring (see for example Solinas [47]). With the CVP method one has precise control on the length
of the expansion, but less control over the size of coefficients. With the polynomial division approach one
has precise control over the coefficient size, but less control on the length. For expansions of “medium
length” which is the better approach? Where is the crossover at which the polynomial division algorithm
becomes more efficient than Babai rounding?

6. Give a theoretical analysis of the average running time for point multiplication algorithms which use
fractional sliding windows over NAF expansions. Note that the result for integral sliding windows over
NAFs is given as Theorem 4 of [42].

7. Determine the effectiveness of the Gaudry/Gaudry-Thomé-Thériault-Diem algorithm for the DLP on
elliptic curves over Fp4 or divisor class groups of genus 2 curves over Fp2 . Hence, deduce minimum key
sizes for 128-bit security.
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A Timings for Weierstrass curves using Jacobian coordinates

The version of the paper published at Eurocrypt contains details of an implementation using Weierstrass
curves and Jacobian coordinates. For completeness we quote from that paper the timings obtained with this
implementation.

Table 5. Point multiplication operation counts.

Method Fp muls Fp adds/subs

E(Fp2), 256-bit p2 SSW 2600 3775

E(Fp2), 127-bit p SSW 6641 16997

E(Fp2), 127-bit p GLV+JSF 4423 10785

E(Fp2), 127-bit p GLV+INT 4109 10112
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Table 6. Point multiplication timings – 8-bit processor.

Atmel Atmega1281 processor Method Time (s)

E(Fp2), (256-bit p2) SSW 5.49

E(Fp2) (127-bit p) SSW 6.20

E(Fp2), (127-bit p) GLV+JSF 4.21

E(Fp2), (127-bit p) GLV+INT 3.87

Table 7. Point multiplication timings – 64-bit processor.

Intel Core 2 processor Method Clock cycles

E(Fp2), 255-bit p2 Montgomery [23] 386,000

E(Fp2), 127-bit p SSW 490,000

E(Fp2), 127-bit p GLV+JSF 359,000

E(Fp2), 127-bit p GLV+INT 326,000

Table 8. Signature Verification timings – 64-bit processor.

Intel Core 2 processor Method Fp muls Fp adds/subs Clock cycles

E(Fp2), 127-bit p GLV+INT 5174 12352 425,000

E(Fp2), 127-bit p INT 7638 19046 581,000
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