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Abstract

We prove that the binomials xp
s+1 − αxpk+p2k+s

define perfect nonlinear
mappings inGF (p3k) for appropriate choices of the integer s and α ∈ GF (p3k).
We show that these binomials are inequivalent to known perfect nonlinear
monomials. As a consequence we obtain new commutative semifields for p ≥ 5
and odd k.
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1 Introduction

Let p be a prime and f : GF (pn) → GF (pn). Denote by N(a, b) the number

of solutions x ∈ GF (pn) of f(x + a) − f(x) = b where a, b ∈ GF (pn), and let

∆f = max{N(a, b)|a, b ∈ GF (pn), a 6= 0}. In [17] a mapping f is called differen-

tially k-uniform if ∆f = k. To resist the differential cryptanalysis the mapping f

used in the S-box of a DES-like cryptosystem must have a small differential unifor-

mity. A differentially 2-uniform function is called almost perfect nonlinear (APN).

Since f(x + a) + f(x) = f((x + a) + a) + f(x + a) for any f : GF (2n) → GF (2n)

and a ∈ GF (2n), the APN mappings provide the minimal uniformity over GF (2n).
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The differentially 1-uniform functions are called perfect nonlinear (PN). They exist

for any odd prime p. In geometry PN mappings are known as planar mappings.

Planar mappings were introduced in [10] to describe projective planes with certain

properties. In recent papers [7, 8] planar mappings are used to describe new finite

commutative semifields of odd order. In [13, 18] it is shown that a planar map-

ping yields either a skew Hadamard difference set or a Paley type partial difference

set depending on pn (mod 4). In [12, 11] planar and APN mappings are used to

construct optimal constant-composition codes and signal sets.

Until recently all known examples of APN mappings in fields of even order were

derived from an APN power mapping x 7→ xd for some integer d. In [14] it is shown

that the APN mappings x3 +ux36 in GF (210) and x3 +ux528 in GF (212), where u is

a suitable field element, cannot be obtained from a power one with presently known

equivalence transformations. These were the first such examples. The example of

GF (212) is shown to be a member of an infinite family [1, 4].

In this paper we show that the binomials introduced in [4] define PN mappings

over fields of an odd order. In Section 4 we show that these PN binomials are almost

always inequivalent to the known PN monomials. The concept of equivalence of two

polynomials is introduced in Section 2. In Section 5 we briefly survey the connection

between PN mappings and finite commutative presemifields and conclude that the

founded PN binomials yield new commutative presemifields of order p3k for p ≥ 5

and odd k.

2 Preliminaries

Let p be a prime. The p-weight of a nonnegative integer m is the sum of the

digits in its p-adic representation, i.e. if m =
∑

i bip
i then the p-ary weight of m is

∑
i bi ∈ Z. Recall, that any mapping of GF (pn) can be represented by a polynomial

over GF (pn) of degree less than pn. Moreover, different such polynomials define

different mappings. This allows us to identify the set of mappings of GF (pn) with

the set of polynomials over GF (pn) with degree less than pn. The algebraic degree

of a polynomial over GF (pn) is the maximal p-weight of the exponents in its nonzero

terms.
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The GF (p)-linear mappings L : GF (pn)→ GF (pn) are represented by the poly-

nomials of the algebraic degree 1 and with zero constant term, that is L(x) =
n−1∑
i=0

cix
pi, ci ∈ GF (pn). Such polynomials are called linearized or p-polynomials.

The sum of a linear mapping and a constant from GF (pn) is called an affine map-

ping.

Two mappings F,G : GF (pn) → GF (pn) are called extended affine equivalent

(EA-equivalent), if G = A1 ◦ F ◦ A2 + A for some affine permutations A1, A2 and

affine mapping A. EA-equivalent nonconstant mappings have the same algebraic

degree.

Let (1, ξ) be a basis of GF (p2n) over GF (pn). An affine mapping A : GF (p2n)→
GF (p2n) is uniquely described by the linear mappings L1, L2 : GF (p2n) → GF (pn)

and c ∈ GF (p2n) satisfying

A(z) = L1(z) + L2(z)ξ + c for any z ∈ GF (p2n).

A linear mapping L : GF (p2n) → GF (pn) is given by a linearized polynomial
∑n−1

i=0 aiz
pi +

(∑n−1
i=0 aiz

pi
)pn

with ai ∈ GF (p2n). Further note that if f : GF (pn)→
GF (pn) and x ∈ GF (pn), then

L(x + f(x)ξ) =

n−1∑

i=0

ai
(
x+ f(x)ξ

)pi
+
( n−1∑

i=0

ai
(
x + f(x)ξ

)pi)pn

=

n−1∑

i=0

(ai + ap
n

i )xp
i

+

n−1∑

i=0

(
aiξ

pi + (aiξ
pi)p

n)
f(x)p

i

(1)

=

n−1∑

i=0

bix
pi +

n−1∑

i=0

dif(x)p
i

,

where bi, di ∈ GF (pn).

Two mappings F, G : GF (pn) → GF (pn) are called Carlet-Charpin-Zinoviev

equivalent (CCZ-equivalent) if the set
{
x+G(x)ξ | x ∈ GF (pn)

}
⊂ GF (p2n) is the

image of the set
{
x+F (x)ξ | x ∈ GF (pn)

}
⊂ GF (p2n) under an affine permutation

of GF (p2n). In other words, two mapping of GF (pn) are CCZ-equivalent if their

graphs in GF (p2n) are affine equivalent. Thus F and G are CCZ-equivalent if and

only if there exits an affine permutation A(z) = L1(z) +L2(z)ξ + c1 + c2ξ such that

y = F (x)⇐⇒ L2(x+ yξ) + c2 = G(L1(x + yξ) + c1).
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Then L1(x+ F (x)ξ) is a permutation of GF (pn) and using (1) it must hold

n−1∑

i=0

bix
pi +

n−1∑

i=0

diF (x)p
i

+ c2 = G
( n−1∑

i=0

eix
pi +

n−1∑

i=0

hiF (x)p
i

+ c1

)
,

where all coefficients bi, ci, di, ei, hi are from GF (pn).

In [6], it is shown that CCZ-equivalent mappings have equal differential uni-

formity and that the EA-equivalence is a particular case of the CCZ-equivalence.

Over fields of even order there are CCZ-equivalent APN mappings which are not

EA-equivalent [5]. To our knowledge, there are not such examples known for PN

mappings. So it is not clear whether the CCZ-equivalence does not coincide with

the EA-equivalence for PN mappings.

Let p be odd. Currently known EA-inequivalent PN mappings are

(a) x2 in GF (pn) (folklore)

(b) xp
k+1 in GF (pn), k ≤ n/2 and n/(k, n) is odd ([10, 9])

(c) x10 + x6 − x2 in GF (3n), n ≥ 5 is odd ([9])

(d) x10 + x6 + x2 in GF (3n), n ≥ 5 is odd ([13])

(e) x(3k+1)/2 in GF (3n), k ≥ 3 is odd and (k, n) = 1 ([9, 15]).

Note that the mappings in (a)-(d) are of shape

n−1∑

i,j=0

ai,jx
pi+pj , ai,j ∈ GF (pn).

The polynomials of this type are called Dembowski-Ostrom polynomials.

3 A Family of PN binomials in GF (p3k)

In this section we generalize the results from [1, 4] to the fields of odd order and

obtain a new family of PN binomials over GF (p3k). Our proof is inspired by the

technique from [2, 3] and yields a new simple proof for the APN binomials in the

fields of even order.

In the following claim we collect some well known facts that are used in the

proofs.
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Claim 1. Let p be a prime.

(a) Let 1 ≤ l ≤ pn − 1 and a be nonzero element from GF (pn). Then xl = a has a

solution in GF (pn) if and only if a is a l-th power in GF (pn).

(b) Let u be a primitive element of GF (pn) and 1 ≤ l ≤ pn − 1 be a divisor of

pn − 1. Then a nonzero element a of GF (pn) is a l-th power in GF (pn) if and only

if a = ur with r divisible by l.

(c) Let p be odd and 1 ≤ s ≤ n − 1. Then the equation xp
s−1 = −1 has a solution

in GF (pn) if and only if n/(n, s) is even.

Proof. Statements (a) and (b) are clearly true. To prove (c) recall that (ps− 1, pn−
1) = pt − 1 where t = (s, n). Since −1 = u(pn−1)/2, then by (a)-(b) the equation

xp
s−1 = −1 has a solution if and only if pt−1 is a divisor of (pn−1)/2. Let n = t ·v.

Then pn − 1 = (pt − 1)(pt(v−1) + . . .+ pt + 1). Thus pt − 1 divides (pn − 1)/2 if and

only if pt(v−1) + . . .+ pt + 1 is even or equivalently it has even number of summands.

Theorem 1. Let p be a prime, n = 3k with (3, k) = 1 and u be a primitive element of

GF (pn). Choose a positive integer s such that k− s ≡ 0 (mod 3) and set (s, n) = t.

Then the mapping

F (x) = xp
s+1 − upk−1xp

k+p2k+s

is

• PN if p and n/t are odd,

• APN if p = 2 and t = 1.

Proof. Given a nonzero a ∈ GF (pn), set Da(x) = F (x + a) − F (x)− F (a). Then

it holds

Da(x) = axp
s

+ ap
s

x− upk−1(ap
k

xp
−k+s

+ ap
−k+s

xp
k

). (2)

Observe that Da(x) is linear, and thus the uniformity of F (x) is determined by the

maximal dimension of the kernel of Da(x), a ∈ GF (pn)∗. So let us consider the

equation

axp
s

+ ap
s

x− upk−1(ap
k

xp
−k+s

+ ap
−k+s

xp
k

) = 0.
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Substituting ax for x in the above equation we get

x + xp
s − β(xp

−k+s

+ xp
k

) = 0 (3)

where

β = up
k−1ap

−k+s+pk−ps−1 = up
k−1a(1−pk)(ps−k−1).

Observe that β is a (pk − 1)-th power and thus β1+pk+p2k
= 1.

Given a nonzero θ ∈ GF (p3k), consider the linearized polynomial

Lθ(X) = X + θXpk + θp
k+1Xp2k

.

Suppose that θ is a (pk − 1)-th power, then Lθ(y − θypk) = 0 for any y ∈ GF (p3k).

In particular, Lβ(−y + βyp
k
) = 0. Thus for any solution x of (3) we get

Lβ(xp
s − βxp−k+s

) = Lβ(−x + βxp
k

) = 0,

which implies

(1− βpk+1)xp
s

+ (β − 1)xp
k+s

+ (βp
k+1 − β)xp

−k+s

= 0. (4)

Taking equation (4) to the p−s-th power we obtain

(1− βpk−s+p−s)x+ (βp
−s − 1)xp

k

+ (βp
k−s+p−s − βp−s)xp−k = 0. (5)

Clearly β−p
k

is a (pk − 1)-th power as well. Direct calculations show that any

y ∈ GF (p3k) satisfies

Lβ−pk (−βyp−k+s

+ yp
s

) = 0.

Thus if x is a solution of (3) we get Lβ−pk (x− βxpk) = 0. Consequently,

(1− β−pk)x+ (β−p
k − β)xp

k

+ (β − 1)xp
−k

= 0. (6)

Note that 1− β 6= 0. Indeed, otherwise up
k−1 = a(pk−1)(ps−k−1). Thus a primitive

element u is a (ps−k − 1)-th power, a contradiction to the choice of s assuring

(ps−k − 1, pn − 1) 6= 1. Further, βp
k−s+p−s − βp

−s
= βp

−s
(β − 1)p

k−s
shows that

βp
k−s+p−s − βp−s 6= 0. Combining equations (5) and (6) we get

((1− β)(1− βpk−s+p−s) + (1− β−pk)(βpk−s+p−s − βp−s))x
− ((1− β)(1− βp−s) + (β − β−pk)(βpk−s+p−s − βp−s))xpk = 0. (7)
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Note that

(1− β)(1− βpk−s+p−s) + (1− β−pk)(βpk−s+p−s − βp−s)
= (1− β)(1− βp−s) + (β − β−pk)(βpk−s+p−s − βp−s) .

Hence equation (7) can be reduced to

((1− β)(1− βpk−s+p−s) + (1− β−pk)(βpk−s+p−s − βp−s))(x− xpk) = 0. (8)

Observe that

((1− β)(1− βpk−s+p−s) + (1− β−pk)(βpk−s+p−s − βp−s)) 6= 0 . (9)

Indeed otherwise

βp
−s

= (1− β−1)p
k(pk−s−1)(1− β)−(pk−s−1)

since βp
k−s+p−s = β−p

−(k+s)
. This implies that β is a (pk−s − 1)-th power. Since

β = up
k−1a(1−pk)(ps−k−1), then up

k−1 is a (pk−s − 1)-th power. Now the assumptions

k − s ≡ 0 (mod 3) and (3, k) = 1 yield that u must be a (p2 + p + 1)-th power in

GF (pn), a contradiction.

Hence (8) and (9) show that x = xp
k
. Then equation (3) is reduced to

(1− β)(x+ xp
s

) = 0. (10)

Remember that 1− β 6= 0 and therefore x + xp
s

= 0. The nonzero solutions of the

last equation satisfy xp
s−1 = −1. The rest of the proof follows from Claim 1.

There is another family of PN binomials over GF (p3k) which can be obtained

from the binomials described in Theorem 1 via EA-equivalence. Note that this

binomials correspond to the ones from [1].

Theorem 2. Let p be an odd prime, n = 3k with (3, k) = 1 and u be a primitive

element of GF (pn). Choose s to be a positive integer such that k + s ≡ 0 (mod 3)

and set (s, n) = t. Then the mapping G(x) = xp
s+1 − up

k−1xp
−k+pk+s

is PN over

GF (pn) if n/t is odd.

Proof. Firstly note that k + s ≡ 0 (mod 3) if and only if k − (2k + s) ≡ 0 (mod 3)

and then (s, n) = (2k + s, n). Thus if n/t is odd then by Theorem 1 the binomial

F (x) = xp
2k+s+1 − u−(pk−1)xp

k+pk+s
is PN. Remark that G(x) = −upk−1F (xp

−k
).
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4 On the equivalence with monomials

In this section we consider the EA- and CCZ-equivalence of PN binomials from

Theorem 1 with PN monomials.

Firstly we prove an auxiliary result on the certain multisets in Z/3kZ.

Claim 2. Let s ∈ Z/3kZ be such that s 6= k, 2k; 2s, 4s 6= 0; 2s, 3s, 4s 6= k, then the

multiset {0, s+ k, j, j + s}, j ∈ Z/3kZ, does not coincide with

(a) the multiset {a, a + s, b, b + s} for any a, b ∈ Z/3kZ,

(b) the multiset {a, a+s+k, b, b+s} for any a, b ∈ Z/3kZ such that (a, b) 6= (0, j),

(c) the multiset {a, a + s+ k, b, b+ s+ k} for any a, b ∈ Z/3kZ.

Proof. (a) Let {0, s + k, j, j + s} = {a, a + s, b, b + s}. There are four cases

depending on the value of a.

Case a = 0: Note a + s = s 6= s + k. Suppose a + s = s = j then j + s = 2s ∈
{b, b+ s}. If j + s = 2s = b, then b+ s = 3s must be s+ k. This is impossible since

k 6= 2s. Let j+s = 2s = b+s, then b = s and b = s+k, a contradiction. Hence a+s

must be j+s, and consequently a = j = 0. Then {0, s+k, j, j+s} = {02, s+k, s}
and {a, a+s, b, b+s} = {0, s, b, b+s}. So {b, b+s} must be equal to {0, s+k}.
If b = 0, then b + s = s 6= s + k. Finally, if b = s + k, then b + s = 2s + k 6= s + k.

Thus a 6= 0.

Case a = s + k: Note a + s = 2s + k 6= 0. Suppose a + s = 2s + k = j then

j + s = 3s + k ∈ {b, b + s}. If j + s = 3s + k = b, then b + s = 4s + k must

be 0, this contradicts the assumption on k, s. So let j + s = 3s + k = b + s, then

b = 2s + k , which again cannot be equal to 0. In the case a + s = 2s + k = j + s,

we have j = s + k = a. Then {0, s + k, j, j + s} = {0, (s + k)2, 2s + k} and

{a, a + s, b, b + s} = {s + k, 2s + k, b, b + s}. So {b, b + s} must be equal to

{0, s+ k}, which is impossible. Hence a 6= s+ k.

Note that if a = j, then b must be in {0, s + k}. This is impossible by the

previous arguments. So let a = j + s. But then b = j is also not possible.

The proof of (b) and (c) is analogous.
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Theorem 3. Let p be an odd prime, n = 3k and 0 ≤ r < n. Let s satisfy the

condition of Claim 2. Then the mapping f(x) = xp
s+1−upk−1xp

k+p−k+s
with nonzero

u ∈ GF (pn) is not CCZ-equivalent to any Dembowski-Ostrom monomial g(x) =

xp
r+1 over GF (pn).

Proof. Suppose the mappings f(x) and g(x) are CCZ-equivalent. Then there are

polynomials

L1(x, y) = a+

n−1∑

i=0

aix
pi +

n−1∑

i=0

biy
pi

and

L2(x, y) = c+
n−1∑

i=0

cix
pi +

n−1∑

i=0

eiy
pi

where a, c, ai, bi, ci, ei ∈ GF (pn), such that L2(x, f(x)) is a permutation and it holds

a+
n−1∑

i=0

aix
pi +

n−1∑

i=0

bif(x)p
i

=
(
c+

n−1∑

i=0

cix
pi +

n−1∑

i=0

eif(x)p
i
)pr+1

. (11)

Let α = up
k−1. Then (11) is equivalent to

a+
n−1∑

i=0

aix
pi +

n−1∑

i=0

bix
pi+ps+i −

n−1∑

i=0

biα
pixp

k+i+p−k+s+i

= c1+pr + c

n−1∑

i=0

cp
r

i x
pi+r + cp

r
n−1∑

i=0

cix
pi +

n−1∑

i=0

cic
pr

j x
pi+pj+r (12)

+ cp
r
n−1∑

i=0

eix
pi+ps+i − cpr

n−1∑

i=0

eiα
pixp

k+i+p−k+s+i

+ c

n−1∑

i=0

ep
r

i x
pr+i+pr+s+i

− c
n−1∑

i=0

ep
r

i α
pr+ixp

k+r+i+p−k+r+s+i

+
n−1∑

i,j=0

cie
pr

j x
pi+pr+j+pr+s+j +

n−1∑

i,j=0

eic
pr

j x
pi+ps+i+pr+j

−
n−1∑

i,j=0

cie
pr

j α
pj+rxp

i+pk+r+j+p−k+r+s+j −
n−1∑

i,j=0

eic
pr

j α
pixp

k+i+pr+j+pi−k+s

+

n−1∑

i,j=0

eie
pr

j (xp
i+ps+i+pr+j+pr+s+j − αpixpk+i+ps−k+i+pr+j+pr+s+j

− αp
j+r

xp
i+ps+i+pk+r+j+p−k+r+s+j

+ αp
i+pj+rxp

k+i+ps−k+i+pk+r+j+p−k+r+s+j

).
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We modify the last part of (12) to

n−1∑

i,j=0

eie
pr

j−rx
pi+ps+i+pj+ps+j −

n−1∑

i,j=0

ei−ke
pr

j−rα
pi−kxp

i+ps+k+i+pj+ps+j

−
n−1∑

i,j=0

eie
pr

j−k−rα
pj−kxp

i+ps+i+pj+pj+k+s

+

n−1∑

i,j=0

ei−ke
pr

j−k−rα
pi−k+pj−kxp

i+ps+k+i+pj+ps+k+j

.

The last sum is equal to

n−1∑

i,j=0

eie
pr

j+i−rx
pi(1+ps+pj+ps+j) +

n−1∑

i,j=0

ei−ke
pr

j+i−k−rα
pi−k+pj+i−kxp

i(1+ps+k+pj+pj+s+k)

−
n−1∑

i,j=0

(ei−ke
pr

j+i−r + ej+ie
pr

i−k−r)α
pi−kxp

i(1+ps+k+pj+pj+s).

Claim 2 implies that the coefficient of the monomial xp
i(1+ps+k+pj+pj+s) is (ei−ke

pr

j+i−r+

ej+ie
pr

i−k−r)α
pi−k for any i, j. Note that the p-weight of 1+ps+k+pj+pj+s is 4 because

of the assumptions on s and k. The lefthand side of (12) has no term with such

exponents, which forces

ei−ke
pr

j+i−r + ej+ie
pr

i−k−r = 0. (13)

Choosing j = −k in (13) we get that ei−ke
pr

i−k−r = 0 for all i. Suppose ei−k 6= 0

for some fixed i, then ei−r = 0. Then from (13), we can get ej+i−r = 0 for any

0 ≤ j ≤ n− 1, a contradiction. Thus, ei = 0 for any 0 ≤ i ≤ n− 1.

Now equation (12) is reduced to

a+

n−1∑

i=0

aix
pi +

n−1∑

i=0

bix
pi+ps+i −

n−1∑

i=0

biα
pixp

k+i+p−k+s+i

(14)

= c1+pr + c
n−1∑

i=0

cp
r

i x
pi+r + cp

r
n−1∑

i=0

cix
pi +

n−1∑

i=0

cic
pr

j x
pi+pj+r .

Note that the lefthand side of (14) contains only exponents of type (ps + 1)pi

and (pk+s + 1)pj and (ps + 1)pi 6= (pk+s + 1)pj (mod pn) by choice of s, k.

Suppose that bm 6= 0 for some m, then the coefficients of the terms xp
m+s+pm and

xp
m+k+pm−k+s

are nonzero on the lefthand side of (14). Hence on the righthand side

of (14) it must hold

cmc
pr

m+s−r 6= −cm+sc
pr

m−r (15)
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and

cm+kc
pr

m−k+s−r 6= −cm−k+sc
pr

m+k−r. (16)

Further observe that there are no terms of the type xp
m+pm+k

and xp
m+k+pm+s

on the

lefthand side of (14) since s 6= k, 2k, 3k/2 and k 6= 3s. Then from the righthand side

of (14) we get the following conditions

cmc
pr

m+k−r = −cm+kc
pr

m−r (17)

and

cm+kc
pr

m+s−r = −cm+sc
pr

m+k−r. (18)

Suppose cm+k−r = 0, then (16) implies cm+k 6= 0. Then from (17) and (18) it follows

cm−r = 0 and cm+s−r = 0, a contradiction to (15). So let cm+k−r 6= 0. Note that

lefthand side of (14) has no term of type x2pi, therefore from the righthand side of

(14) we get cm+kcm+k−r = 0. Since cm+k−r 6= 0 then cm+k = 0. Using (17) and (18)

we get cm = 0 and cm+s = 0, which contradicts to (15).

Hence we must have bi = 0 for all i. In that case the lefthand side of (14) has

no terms with exponents of p-weight 2. Thus on the righthand side of (14) it must

hold

cic
pr

j = −cj+rcp
r

i−r. (19)

Taking i = j + r, we get cj+rc
pr

j = 0 and thus at least one of cj or cj+r must be 0

for any j. Assume cj 6= 0 for some j, and thus cj+r = 0. Then (19) implies ci = 0

for all 0 ≤ i ≤ n − 1, a contradiction. Hence cj = 0 for every 0 ≤ j ≤ n − 1, and

consequently L2(x, f(x)) = c, a contradiction to the assumption L2(x, f(x)) = c is

a permutation on GF (pn).

Observe if an integer s 6= k in Theorem 1 leads to a PN binomial then s satisfies

the assumptions of Theorem 3. In the case s = k the binomial defined in Theorem 1

is of shape xp
k+1−upk−1xp

k+1 = (1−upk−1)xp
k+1, which is obviously EA-equivalent to

xp
k+1. Recall that EA-equivalence is a particular case of CCZ-equivalence, and thus

Theorem 3 shows that the mapping f(x) = xp
s+1− upk−1xp

−k+pk+s
, u ∈ GF (pn)∗, is

not EA-equivalent to xp
r+1, 0 ≤ r ≤ n− 1 over GF (pn).
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Theorem 4. Let p ≥ 5 be prime and s 6= k. Then the PN binomials described in

Theorem 1 are not CCZ-equivalent to the known PN mappings.

Proof. The only known PN mappings in GF (pn) with p ≥ 5 are those obtained from

the monomial PN mappings via CCZ-equivalence. Theorem 3 completes the proof.

Theorem 5. Let p = 3, k be even and s 6= k. Then the PN binomials described in

Theorem 1 are not EA-equivalent to the known PN mappings.

Proof. From Theorem 3 it follows that the PN binomials are not EA-equivalent to

both x3r+1 and x2. There is one more family of PN mappings in GF (3n), n even,

namely x
3e+1

2 . But since 3e+1
2

is not a Dembowski-Ostrom polynomial, it is not

EA-equivalent to the binomials considered in Theorem 1.

5 Semifields of PN mappings

A finite presemifield is a finite set S with two binary operations + and ∗ satisfying

the following axioms:

• (S,+) is an Abelian group with identity 0.

• a ∗ (b + c) = a ∗ b + a ∗ c and (a + b) ∗ c = a ∗ c+ b ∗ c for all a, b, c ∈ S.

• If a ∗ b = 0, then a or b is 0.

If, in addition to this, we also have

• there exists an element 1 6= 0 such that 1 ∗ a = a = a ∗ 1 for all a ∈ S,

then the presemifield is called a semifield. Presemifields are commutative if a ∗ b =

b ∗ a for all a, b ∈ S.

The additive group of a finite presemifield is elementary Abelian. Consequently,

any finite presemifield can be represented by (GF (pn),+, ∗), where + is the ad-

dition in GF (pn) and ∗ : GF (pn) × GF (pn) → GF (pn). Two finite presemifields

(GF (pn),+, ∗) and (GF (pn),+, ?) are called isotopic if there exist linearized permu-

tation polynomials L,M,N over GF (pn) such that

M(x) ? N(y) = L(x ∗ y) for any x, y ∈ GF (pn).

12



Any presemifield S = (GF (pn),+, ∗) is isotopic to a semifield. Indeed, fix any

nonzero a ∈ GF (pn) and define ? : GF (pn)×GF (pn)→ GF (pn) as follows

x ∗ y = (x ∗ a) ? (a ∗ y).

Then the element a ∗ a is the identity element of (GF (pn),+, ?). Note that if ∗ is

commutative then so is also ?.

The following is the list of known classes of unisotopic finite commutative semi-

fields of odd order:

• finite field of order pn for any n

• Albert’s commutative twisted fields of order pn for any n

• Dickson semifields of order pn for even n

• Coulter-Matthews semifields of order 3n for odd n

• Ding-Yuan semifields of order 3n for odd n

• Ganley semifields of order 32r for odd r

• Cohen-Ganley semifields of order 32r

• Coulter-Henderson-Kosick semifield of order 38

• Penttila-Williams semifield of order 310.

If f is a PN Dembowski-Ostrom polynomial over GF(pn) then Sf = (GF (pn),+, ∗)
is a commutative presemifield with the multiplication ∗ defined by

x ∗ y =
1

2
(f(x+ y)− f(x)− f(y)). (20)

Conversely, any commutative presemifield S = (GF (pn),+, ∗) yields a PN mapping

fS : GF (pn) → GF (pn) by fS : x 7→ x ∗ x. Moreover, the mapping fS has a

polynomial representation given by a sum of a PN Dembowski-Ostrom polynomial

and an affine polynomial [7]. Hence the classification of finite presemifields of odd

order and the one of PN Dembowski-Ostrom polynomials are equivalent. In [7] it is

shown that in certain cases the PN Dembowski-Ostrom polynomials define isotopic

presemifields if and only if they are EA-equivalent:

Theorem 6 ([7]). Let f, g ∈ GF (pn) be PN Dembowski-Ostrom polynomials and

the presemifields Sf and Sg be defined by (20).

13



(a) Let n be odd. Then the presemifields Sf and Sg are isotopic if and only if f and

g are EA-equivalent.

(b) Sf is isotopic to GF (pn) if and only if f is EA-equivalent to x2.

(c) Sf is isotopic to a commutative twisted field of Albert if and only if f is EA-

equivalent to xp
r+1 with n/(n, r) odd.

The above discussion and Theorems 1,4 imply the following result.

Theorem 7. Let p be an odd prime, n = 3k with (3, k) = 1 and u be a primitive

element of GF (pn). Choose 0 < s < 3k such that k− s ≡ 0 (mod 3) and n/(s, n) is

odd. If ∗ : GF (pn)×GF (pn)→ GF (pn) is defined as follows

x ∗ y = xp
s

y + xyp
s − upk−1(xp

k

yp
2k+s

+ xp
2k+s

yp
k

).

Then S = (GF (pn),+, ∗) is a commutative presemifield. Moreover this presemifield

is not isotopic to any other known one if p ≥ 5, k is odd and s 6= k.
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