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Abstract

In 1998, Cai and Cusick proposed a lattice-based public-key cryptosystem
based on the similar ideas of the Ajtai-Dwork cryptosystem, but with much less
data expansion. However, they didn’t give any security proof. In our paper,
we present an efficient ciphertext-only attack which runs in polynomial time
against the cryptosystem to recover the message, so the Cai-Cusick lattice-based
public-key cryptosystem is not secure. We also present two chosen-ciphertext
attacks to get a similar private key which acts as the real private key.

Keywords: lattice, Cai-Cusick Cryptosystem, Gram-Schmidt orthogonaliza-
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1 Introduction

Lattices are discrete subgroups of Rn and have been widely used in cryptology, both
in cryptanalysis and cryptography.

Since the seminal work of Ajtai [1] connecting the average-case complexity of
lattice problems to their complexity in the worst case, cryptographic constructions
based on lattices have drawn considerable attention. The first lattice-based cryp-
tosystem was proposed by Ajtai and Dwork [3] with a security proof based on worst-
case hardness assumptions. After their results, several lattice-based cryptosystems
[7, 8, 4, 6, 10, 11, 2] have been proposed .

Lattice-based cryptosystem have many advantages: first, the computations in-
volved are very simple and usually require only modular addition ; second, by now
they resist the cryptanalysis by quantum algorithms while there already exist the ef-
ficient quantum algorithms for factoring integers and computing discrete logarithms.
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Of course, the most charming things we pursue are the security based on the worst-
case hardness of lattice problems and the efficiency on the speed, key size, expansion
rate and so on. However, the trouble in the real life is that the lattice-based cryp-
tosystems which are efficient have no security proofs based on the hardness of lattice
problems while those which have security proofs are not efficient.

Although the Ajtai-Dwork cryptosystem has a security proof, Nguyen and Stern
[9] gave a heuristic attack to show that the implementations of the Ajtai-Dwork
cryptosystem would require very large keys in order to be secure, making it imprac-
tical in a real-life environment because of its key size and expansion rate.

In 1998, Cai and Cusick [4] proposed an efficient lattice-based public-key cryp-
tosystem with much less data expansion by mixing the Ajtai-Dwork cryptosystem
with a knapsack. However, they didn’t give any security proof except showing that
their cryptosystem could resist some potential attacks. In our paper, we present an
efficient ciphertext-only attack to recover the message. However, we don’t recover
the private key in the attack. The probability analysis show that our attack can
succeed with probability near 1 so that the cryptosystem is not secure. We also
present two chosen-ciphertext attacks to get a similar private key which acts as the
real private key if we have a decryption oracle working as the decryption algorithm.

As we know, it’s the first cryptanalysis of the Cai-Cusick lattice-based public-
key cryptosystem. Experiments show that the ciphertext-only attack indeed always
succeeds to recover the message in short time, as the results of the probability
analysis indicate.

The remainder of the paper is organized as follows. In section 2, we describe the
Cai-Cusick lattice-based public-key cryptosystem. Section 3 presents our ciphertext-
only attack to recover the message and the analysis of its succeeding probability. In
section 4, we present two chosen-ciphertext attacks to recover a private key.

2 The Cai-Cusick Cryptosystem

Let us first fix some notations. R is the field of real numbers, Z is the ring of integers,
Rn is the space of n-dimensional real vectors v, with the dot product 〈v, u〉 ,v, u ∈ Rn

and Euclidean norm ‖v‖ = 〈v, v〉1/2, span(v1, v2, · · · , vm) = {
m∑

i=1
xivi|xi ∈ R}, where

vi ∈ Rn. If A is a subspace of Rn, then A⊥ = {x ∈ Rn|〈x, v〉 = 0,∀v ∈ A}.
Sn−1 = {x ∈ Rn|‖x‖ = 1}, Hi(u) = {x ∈ Rn|〈x, u〉 = i}, where i ∈ Z+, u ∈ Sn−1.

We just give a simple description of the Cai-Cusick cryptosystem in this section,
and see more details in [4] or [5].
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2.1 Description of the Cai-Cusick Cryptosystem

Key Generation:

• Select u uniformly at random from Sn−1 .

• Select a real number b > 0.

• Select v0, · · · , vm uniformly at random from HN0(u), · · · ,HNm(u) respectively,

where m = b1
2nc, Nk >

k−1∑
i=0

Ni + b for k = 1, · · · ,m and N0 > b.

• Select randomly a permutation σ on m + 1 letters.

Public Key: vσ(0), · · · , vσ(m) and b.
Private Key: u and σ.
Encryption: Let M = (a0, a1, · · · , am) be the message, where ai ∈ {0, 1} and C
be the ciphertext. Select r uniformly at random from {x ∈ Rn|‖x‖ ≤ b/2}, and
compute

C =
m∑

i=0

aivσ(i) + r.

Decryption: Compute

〈u, C〉 =
m∑

i=0

ai〈u, vσ(i)〉+ 〈u, r〉 =
m∑

i=0

aσ−1(i)Ni + 〈u, r〉.

Since |〈u, r〉| ≤ ‖u‖‖r‖ = ‖r‖ ≤ b/2, so if aσ−1(m) = 1, then 〈u, C〉 ≥ Nm − b/2,

otherwise, 〈u, C〉 ≤
m−1∑
i=0

Ni + b/2 < Nm − b/2. Hence, we can decide whether

aσ−1(m) = 1 by comparing 〈u, C〉 with Nm − b/2, i.e.

aσ−1(m) =
{

1, if 〈u, C〉 ≥ Nm − b/2;
0, otherwise.

After getting aσ−1(m), substituting C by C−aσ−1(m)Nm, we can continue the process
until all aσ−1(i) are recovered. Then, using σ to recover M .

2.2 Some Remarks on the Cai-Cusick Cryptosystem

Remark 1. Cai and Cusick [4] showed that if we did not employ the random per-
mutation σ, there is an attack as follows:
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From the given vectors v0, v1, · · · , vm, we can use linear programming to find an
x ∈ Rn satisfying:

〈x, v0〉 > b
〈x, v1〉 > 〈x, v0〉+ b

...
...

...

〈x, vm〉 > 〈x,
m−1∑
i=0

vi〉+ b

Then we can use x instead of u to recover the correct message. So σ is essential
to the security of the cryptosystem.

Remark 2. Cai and Cusick [4] also gave a method to generate v0, v1, · · · , vm. Let
B be a large integer, say B � 2n. Choose any b′ > b, for each i, 0 ≤ i ≤ m, let vi =
2ib′u +

√
B2 − 22ib′2ρi, where the ρi’s are independently and uniformly distributed

on the (n − 2)-dimensional unit sphere orthogonal to u. Note that ‖vi‖ = B, and
they showed that if the lengths of the vector vi were not kept essentially the same,
there can be statistical leakage of information.

3 The Ciphertext-only Attack

3.1 The Principle of the Ciphertext-only Attack

As in [4], we may assume vσ(0), vσ(1), · · · , vσ(m) are linearly independent, the Gram-
Schmidt orthogonalization of vσ(0), vσ(1), · · · , vσ(m) is defined by v∗σ(i) = vσ(i) −
i−1∑
j=0

µi,jv
∗
σ(j), where µi,j =

〈vσ(i), v
∗
σ(j)〉

〈v∗σ(j), v
∗
σ(j)〉

.

We get

(vσ(0), vσ(1), · · · , vσ(m)) = (v∗σ(0), v
∗
σ(1), · · · , v∗σ(m))


1 µ1,0 · · · µm,0

0 1 · · · µm,1
...

...
. . .

...
0 0 · · · 1

 .

4



So

C = (vσ(0), vσ(1), · · · , vσ(m))


a0

a1
...

am

 + r,

= (v∗σ(0), v
∗
σ(1), · · · , v∗σ(m))


1 µ1,0 · · · µm,0

0 1 · · · µm,1
...

...
. . .

...
0 0 · · · 1




a0

a1
...

am

 + r.

We can write r =
m∑

i=0
riv

∗
σ(i)+ω, where ri ∈ R and ω ∈ span(v∗σ(0), v

∗
σ(1), · · · , v∗σ(m))

⊥,

then

‖r‖ =

√√√√ m∑
i=0

r2
i ‖v∗σ(i)‖2 + ‖ω‖2 ≥ |rm|‖v∗σ(m)‖.

Moreover, we have

〈v∗σ(m), C〉 = am‖v∗σ(m)‖
2 + rm‖v∗σ(m)‖

2

i.e.
〈v∗σ(m), C〉
‖v∗σ(m)‖2

= am + rm.

Since |rm|‖v∗σ(m)‖ ≤ ‖r‖ ≤ b/2, then |rm| ≤
b

2‖v∗σ(m)‖
. If ‖v∗σ(m)‖ > b, then |rm| <

1/2, we will have

am =


1, if

〈v∗σ(m), C〉
‖v∗σ(m)‖2

∈ (
1
2
,
3
2
) ;

0, if
〈v∗σ(m), C〉
‖v∗σ(m)‖2

∈ (−1
2
,
1
2
).

If we have recovered am, substituting C by C−amvσ(m), and use the same method to
recover am−1. The process can be continued until all ai are recovered if ‖v∗σ(i)‖ > b

stands for all i ∈ {0, 1, · · · ,m}.
It remains to show that ‖v∗σ(i)‖ > b. Next, we prove that with probability very

near 1, ‖v∗σ(i)‖ > b for all i ∈ {0, 1, · · · ,m} .
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3.2 Probability Analysis

First, we prove some lemmas and always suppose i ≤ m = b1
2nc.

Lemma 1. Let w ∈ Sn−1
+ = {x ∈ Rn|‖x‖ = 1, 〈x, u〉 > 0} be uniformly distributed

on the unit (northern) hemisphere. Let u be the north pole. Then

Pr[〈u, w〉 > t] =
∫ arccos(t)

0

sinn−2(θ)
In−2

dθ

where 0 ≤ t ≤ 1, and In−2 =
∫ π

2
0 sinn−2(θ)dθ.

Proof. Since in [4], for w ∈ Sn−1
+ , the density function for the value of the dot

product h = 〈w, u〉 is
pn−1(h) = (

√
1− h2)n−3/In−2.

Hence

Pr[〈u, w〉 > t] =
∫ 1

t
pn−1(h)dh =

∫ arccos(t)

0

sinn−2(θ)
In−2

dθ

when we take h = cos(θ).

Corollary 1. Choose w uniformly at random from Sn−1, then

Pr[|〈w, u〉| > t] = Pr[〈w, u〉 > t] =
∫ arccos(t)

0

sinn−2(θ)
In−2

dθ.

Corollary 2. If t is small enough, we have∫ arccos(t)

0

sinn−2(θ)
In−2

dθ > 1− t

In−2
≈ 1−

t
√

2(n− 2)√
π

.

Proof. We have

∫ arccos(t)

0

sinn−2(θ)
In−2

dθ = 1−

∫ π
2

arccos(t) sinn−2(θ)dθ

In−2
> 1−

π
2 − arccos(t)

In−2
.

Let β = π
2 − arccos(t), then sin(β) = t. Since t is small enough, so β ≈ sin(β) = t,

and we know In ≈
√

π
2n in [4], the corollary follows.

Theorem 1. Given v0, v1, · · · , vi−1, choose vi uniformly at random from {x ∈
Rn|‖x‖ = L}, where L � b, then

Pr[‖v∗i ‖ > b] > 1−
b
√

2(n− 2)
L
√

π
.
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Proof. Given v0, v1, · · · , vi−1, we can get the corresponding Gram-Schmidt orthogo-
nalization v∗0, v

∗
1, · · · , v∗i−1, and choose a normal orthogonal basis ui, ui+1, · · · , un−1

of span(v∗0, v
∗
1, · · · , v∗i−1)

⊥ . For any vi ∈ {x ∈ Rn|‖x‖ = L}, vi can be written as

vi = t0v
∗
0 + · · ·+ ti−1v

∗
i−1 + tiui + · · ·+ tn−1un−1.

Then
v∗i = tiui + · · ·+ tn−1un−1.

so ‖v∗i ‖ ≥ |tn−1|‖un−1‖ = |tn−1| = |〈vi, un−1〉| = L|〈 1
Lvi, un−1〉|. Since L � b,

Pr[‖v∗i ‖ > b] ≥ Pr[|〈 1
L

vi, un−1〉| >
b

L
] > 1−

b
√

2(n− 2)
L
√

π

by Corollary 1 and Corollary 2. Notice that 1−
b
√

2(n− 2)
L
√

π
is very near 1.

Lemma 2. For any permutation τ on i letters, denote v∗0, v
∗
1, · · · , v∗i the Gram-

Schmidt orthogonalization of v0, v1, · · · , vi, and v†τ(0), · · · , v†τ(i−1), v
†
i the Gram-Schmidt

orthogonalization of vτ(0), · · · , vτ(i−1), vi, then v∗i = v†i .

Proof. Since vi can be uniquely written as vi = µ+ν, where µ ∈ span(v0, · · · , vi−1), ν ∈
span(v0, · · · , vi−1)⊥, so v∗i = ν = v†i .

As Cai and Cusick proposed, we choose v0, · · · , vm uniformly at random from

HN0(u), · · · ,HNm(u) respectively, and Nk >
k−1∑
i=0

Ni+b for k = 1, · · · ,m and N0 > b,

with ‖vk‖ = B � 2n . Moreover, vk can be uniquely written as

vk = Nku +
√

B2 −N2
kρk (1)

where 〈u, ρk〉 = 0 and ‖ρk‖ = 1. Let ηk =
√

B2 −N2
kρk, we denote η∗0, η

∗
1, · · · , η∗i

the Gram-Schmidt orthogonalization of η0, η1, · · · , ηi. Let v∗0, v
∗
1, · · · , v∗i be the

Gram-Schmidt orthogonalization of v0, v1, · · · , vi, and u†, v†0, v
†
1, · · · , v†i be the Gram-

Schmidt orthogonalization of u, v0, v1, · · · , vi, we have:

Lemma 3. ‖v∗i ‖ ≥ ‖v†i ‖ = ‖η∗i ‖.

Proof. If we denote v‡0, v
‡
1, · · · , v‡i−1, u

‡, v‡i the Gram-Schmidt orthogonalization of
v0, v1, · · · , vi−1, u, vi, then obviously we have ‖v∗i ‖ ≥ ‖v‡i ‖. By Lemma 2, ‖v‡i ‖ =
‖v†i ‖, so ‖v∗i ‖ ≥ ‖v†i ‖.
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Next, we prove v†i = η∗i by induction. v†0 = v0 −
〈v0, u〉
〈u, u〉

u = η∗0. Suppose v†j = η∗j

holds for j ≤ k, then

v†k+1 = vk+1 −
〈vk+1, u〉
〈u, u〉

u−
k∑

j=0

〈vk+1, v
†
j〉

〈v†j , v
†
j〉

v†j

= ηk+1 −
k∑

j=0

〈vk+1, η
∗
j 〉

〈η∗j , η∗j 〉
η∗j

= ηk+1 −
k∑

j=0

〈ηk+1, η
∗
j 〉

〈η∗j , η∗j 〉
η∗j

= η∗k+1.

So the lemma follows.

By induction we can also prove that Ni > 2ib. Since B � 2n and B ≥ Nm,

it’s reasonable to believe that
√

B2 −N2
i � b for i ∈ {0, 1, · · · ,m}. In fact, we

won’t choose b too large in the real life, otherwise the entries of every vk may be

huge. Moreover, if

√
B2 −N2

m

B
=

√
1− (

Nm

B
)2 is too small, or equivalently,

Nm

B

is too near 1, then
1
B

vm will be a good approximation to u, so we can try all the
1
B

vσ(i)’s to decrypt some ciphertexts, and will easily get
1
B

vm as u to break the

cryptosystem. Even when B >
√

1 + 2−mNm,

b√
B2 −N2

i

<
b√

(1 + 2−m)N2
m −N2

m

=
b√

2−mN2
m

<
b√

2−m22mb2
<

1
2

m
2

is very small. So, we always suppose
b√

B2 −N2
i

is small enough below.

Theorem 2. If we choose v0, · · · , vm uniformly at random from HN0(u), · · · ,HNm(u)
respectively with ‖vi‖ = B for i = 0, · · · ,m, then

Pr[‖v∗i ‖ > b] > 1−
b
√

2(n− 3)√
B2 −N2

i

√
π

.

Proof. Choosing vi uniformly at random from HNi(u) is equivalent to choosing ρi

uniformly at random from {x ∈ Rn|〈x, u〉 = 0, ‖x‖ = 1} by (1). Using the similar

method to prove Theorem 1, we can prove Pr[‖η∗i ‖ > b] > 1−
b
√

2(n− 3)√
B2 −N2

i

√
π

, then

by Lemma 3 , the theorem follows.
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Notice that the proof of Theorem 2 just depends on the lengths Ni’s but inde-
pendent of the order N0 < N1 < · · · < Nm. Hence, it still holds when we take a
permutation σ:

Corollary 3. If we choose v0, · · · , vm uniformly at random from HN0(u), · · · ,HNm(u)
respectively with ‖vi‖ = B, for i = 0, · · · ,m, then for any permutation σ on m + 1
letters we have

Pr[‖v∗σ(i)‖ > b] > 1−
b
√

2(n− 3)√
B2 −N2

σ(i)

√
π

.

Corollary 4. If we choose vi = 2ib′u+
√

B2 − 22ib′2ρi as Cai and Cusick proposed,
and suppose

√
B2 − 22ib′2 � b, for i = 0, · · · ,m, then for any permutation σ on

m + 1 letters we have

Pr[‖v∗σ(i)‖ > b] > 1−
b
√

2(n− 3)√
B2 − 22σ(i)b′2

√
π

.

Remark 3. From the results above, ‖v∗σ(i)‖ > b holds with probability near 1, so
we can use our method to attack the Cai-Cusick Cryptosystem successfully with
probability near 1. In fact, if for some i, it happens that ‖v∗σ(i)‖ ≤ b, and suppose
the unknown bits of the message then are ak0 , · · · , aks, then we can try all kj’s
where j = 0, · · · , s and kj 6= σ(i) to compute the Gram-Schmidt orthogonalization
of vk0 , · · · , vkj−1

, vkj+1
· · · , vkj

, until we find ‖v∗l ‖ > b for some l, then we recover al

first. In our experiments, it happens that ‖v∗σ(i)‖ > b all the time.
As we see, the main work in our attack is to compute the Gram-Schmidt orthog-

onalization of vσ(0), vσ(1), · · · , vσ(m) and this can be precomputed with O(n3) multi-
plications. After we have done this, the main computations involved in our attack
is just to compute m + 1 dot products which just costs O(n2) multiplications.

4 Two Chosen-Ciphertext Attacks

Since σ is essential to the security of the cryptosystem, we give two chosen-ciphertext
attacks to recover σ and then use linear programming to break the cryptosystem.

Assume we have a decryption oracle D which works as the decryption algorithm,
we query D with a vector C ∈ Rn, and will get M = D(C), if C is a cipher, then M
is the corresponding message.

We say vi < vj if Ni < Nj , or equivalently, i < j, so if we have gotten vσ(i0) <
vσ(i1) < · · · < vσ(im), then σ(ik) = k, for k = 0, · · · ,m, hence we recover σ.
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4.1 The Foundation of the Chosen-Ciphertext Attack

Let PI = [
∑
i∈I

Ni−b/2,
∑
i∈I

Ni +b/2] = {x ∈ R|
∑
i∈I

Ni−b/2 ≤ x ≤
∑
i∈I

Ni +b/2}, where

I is a subset of {0, 1, · · · ,m}, CS = {PI |I ⊆ {0, 1, · · · ,m}}, center(PI) =
∑
i∈I

Ni.

We say PI < PJ if center(PI) < center(PJ). So we can order all the elements in
CS as below:

P∅ < PI1 < PI2 < · · · < P{0,1,··· ,m}.

We define I◦ for I 6= ∅ such that PI◦ is the nearest one before PI in the sequence
above, i.e. for any PJ < PI , J 6= I◦, we have PJ < PI◦ .

The lemma below can be easily gotten:

Lemma 4. PI
⋂

PJ = ∅, if I 6= J .

Proof. Suppose PI < PJ , since I 6= J ,

(
∑
i∈J

Ni − b/2)− (
∑
i∈I

Ni + b/2) > b− b = 0.

Let the message space MS = {(a0, a1, · · · , am)|ai ∈ {0, 1}}, and we define a 1−1
map ϕ from CS to MS:

ϕ : CS → MS

by ϕ(PI) = (a0, a1, · · · , am), where

ai =
{

1, if σ(i) ∈ I;
0, otherwise.

Notice that for any ciphertext C, the corresponding message M is decided only
by 〈u, C〉, so we get our basic theorem. Before stating the theorem, we prove some
lemmas first.

Lemma 5. For any C ∈ Rn, there must exist an I ⊆ {0, 1, · · · ,m}, s.t. center(PI◦)−
b/2 ≤ 〈u, C〉 < center(PI)− b/2, if −b/2 ≤ 〈u, C〉 < center(P{0,1,··· ,m})− b/2.

We define I(u, C) = I◦ as in Lemma 5.

Lemma 6. If I = {i}, then I◦ = {0, 1, · · · , i − 1} is the set consists of all the
non-negtive integer less than i.

Proof. For any k ∈ {i, i+1, · · · ,m}, Nk ≥ center(PI), so k 6∈ I◦. For any subset I ′ ⊂
{0, 1, · · · , i− 1}, it is obvious that PI′ < P{0,1,··· ,i−1}, so I◦ = {0, 1, · · · , i− 1}.
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Lemma 7. If |I| > 1, and denote max(I) the maximal element in I, then max(I) =
max(I◦) and (I − {max(I)})◦ = I◦ − {max(I)}.

Proof. First, if |I| > 1, we prove max(I) = max(I◦). Otherwise, if max(I) 6=
max(I◦), then max(I) > max(I◦). Let I ′ = {max(I)}, then PI◦ < PI′ < PI ,
contradiction.

If (I − {max(I)})◦ 6= I◦ − {max(I)}, then PI◦−{max(I)} < P(I−{max(I)})◦ , since
PI◦−{max(I)} < PI−{max(I)}. So,

P(I◦−{max(I)})
⋃
{max(I)} < P(I−{max(I)})◦

⋃
{max(I)} < P(I−{max(I)})

⋃
{max(I)} = PI

i.e.
PI◦ < P(I−{max(I)})◦

⋃
{max(I)} < PI

contradiction.

By Lemma 6 and Lemma 7, we can easily get our theorem below:

Theorem 3. For any C ∈ Rn, we have

D(C) =


(0, 0, · · · , 0), if 〈u,C〉 < N0 − b/2;
ϕ(PI(u,C)), if −b/2 ≤ 〈u, C〉 < center(P{0,1,··· ,m})− b/2;
(1, 1, · · · , 1), if 〈u,C〉 ≥ center(P{0,1,··· ,m})− b/2.

4.2 The First Chosen-Ciphertext Attack

We claim that

Lemma 8. if {σ(i)}
⋃
{σ(j)} 6= {0, 1}, i 6= j, then

D(vσ(i) − vσ(j)) =
{

(0, 0, · · · , 0), if vσ(i) < vσ(j);
(a0, a1, · · · , am), ∃i ∈ {0, 1, · · · ,m}, s.t.ai = 1, otherwise.

Proof. By Theorem 3, if vσ(i) < vσ(j), then 〈u, vσ(i)−vσ(j)〉 < 0, so we get (0, 0, · · · , 0).
If vσ(j) < vσ(i) and {σ(i)}

⋃
{σ(j)} 6= {0, 1}, 〈u, vσ(i) − vσ(j)〉 = Nσ(i) − Nσ(j) >

σ(i)−1∑
k=0,k 6=σ(j)

Nk + b > N0, so we can get the message (a0, a1, · · · , am), satisfying there

exists i s.t. ai = 1.

The First Chosen-Ciphertext Attack: For all
m(m + 1)

2
pairs vσ(i), vσ(j), ifD(vσ(i)−

vσ(j)) = (0, 0, · · · , 0), we suppose vσ(i) < vσ(j), and vσ(j) < vσ(i), otherwise. After
having done this, we get vσ(i0), vσ(i1), · · · , vσ(im) and hope that vσ(i0) < vσ(i1) <
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· · · < vσ(im). According to Lemma 8, we know that σ(ij) = j, j > 1. It remains to
decide if vσ(i0) < vσ(i1). Assume vσ(i0) < vσ(i1), we can get σ′ and u′ as private key,
choose message (a0, a1, · · · , am), where ai0 = 1 and the others are 0, let C be the
corresponding ciphertext. If we can get the correct message using σ′ and u′, then
vσ(i0) < vσ(i1), else vσ(i1) < vσ(i0).

4.3 The Second Chosen-Ciphertext Attack

The Second Chosen-Ciphertext Attack: If we have a vector w ∈ Rn s.t. 〈u, w〉 = b,
then for any k ∈ {0, 1, · · · ,m}, N0 − b ≤ 〈u, vσ(k) − w〉 ≤ Nm − b, so

D(vσ(k) − w) = ϕ(PI(u,vσ(k)−w)) = (a0, a1, · · · , am).

Since
σ(k)−1∑

i=0
Ni < 〈u, vσ(k) −w〉 = Nσ(k) − b < center(P{σ(k)})−

b

2
, then I(u, vσ(k) −

w) = {0, 1, · · · , σ(k) − 1} by Lemma 6. Hence we check the ai’s, if ai = 1, then
vσ(i) < vσ(k), else vσ(k) < vσ(i).

Therefore, we can decrypt vσ(i) − w for some i’s, until we get vσ(i0) < vσ(i1) <
· · · < vσ(im) to recover σ. Moreover, to recover σ, we only need query the oracle D
for dlog2(m)e times at the best case, and m− 1 times at the worst case , much less

than
m(m + 1)

2
times in the first attack.

It remains to find w. Choose randomly v ∈ {vσ(0), vσ(1), · · · , vσ(m)}, since
〈u, v〉 > 0, then we try to find a real number s > 0 by using bisection method,
s.t. D(sv) = (0, 0, · · · , 0) but D((s + ε)v) 6= (0, 0, · · · , 0), where ε > 0 we set first is

small enough, then 〈u, sv〉 ≈ N0 − b/2, let w =
b

N0 − b/2
sv, then 〈u, w〉 ≈ b.

Remark 4. Notice that although the vector C we choose to query the oracle D
may not be a legal ciphertext, the oracle D still decrypt it. If we only have another
oracle D′ which just gives an alert when the vector C is an illegal ciphertext instead
of decrypting it, we may spend more time to find a proper real number s > 0 by
bisection method, such that sC is not only a legal ciphertext, but also meets the need
as in querying D.

5 Conclusion

As we see, the Cai-Cusick lattice-based public-key cryptosystem is not secure. We
present a ciphertext-only attack and prove that it will succeed with probability
very near 1 to recover the message in short time. What’s more, our experiments
support our view very well. The two efficient chosen-ciphertext attacks in Section
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4 show that the private key of the cryptosystem is easy to be recovered under the
chosen-ciphertext attack.
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