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Abstract

We present an efficient, covert-channel-resistant, receipt-free ballot casting scheme that can be used
by humans without trusted hardware. In comparison to the recent Moran-Naor proposal, our scheme pro-
duces a significantly shorter ballot, prevents covert channels in the ballot, and opts for statistical sound-
ness rather than everlasting privacy (achieving both seems impossible). The human interface remains the
same, based on Neff’s MarkPledge scheme, and requires of the voter only short-string operations.
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1 Introduction

Elections require two seemingly contradictory properties: Alice, the voter, should be able to verify that her
vote was properly captured into the final tally, but should not be able to convincingly reveal this vote to a
coercer even if she is willing to be coerced. Classic voting schemes—the ones we use in democratic elections
around the world—compromise on verifiability in favor of incoercibility (also called receipt freeness): voters
trust election officials to implement a secure chain of custody of anonymized ballots, though even a small
mistake could undetectably corrupt the election result.

Cryptographic voting schemes strive to achieve both verifiability and receipt-freeness. Typically, these
schemes are structured much like public elections of yore: cast ballots are available for all to see on a
public bulletin board, and the tabulation process is public. The major difference is that ballots are encrypted
through the entire public audit process. Using various proof techniques, the voting machine demonstrates
to Alice that her vote was properly encrypted, and the election trustees demonstrate to any observer that the
encrypted ballots are properly tallied.

While many contributions have been made to the field of cryptographic voting over the last 25 years,
the ballot casting portion has garnered significant interest only recently. Early research presumed that each
voter would own a trusted device to perform cryptographic operations on her behalf. Unfortunately, this
does not accurately model real-world voters for the foreseeable future. In 2004, Chaum [8] and Neff [5]
independently introduced mechanisms that enable an unaided human to cast an encrypted ballot without
trusting the voting machine. Recently, Moran and Naor [19] presented a new definitional framework for
receipt-freeness and a new ballot-casting scheme, based on Neff’s earlier technique. In a concluding remark,
they mention that preventing covert channels in the ballot is “an interesting open problem.”

1.1 Our Contributions

We propose a new ballot casting scheme, MarkPledge2, which builds on Neff’s MarkPledge scheme [5].
MarkPledge2 generates a much shorter ballot than either MarkPledge or the Moran-Naor scheme. In
addition, it solves an important open problem: the voting machine in MarkPledge2 can no longer leak
the voter’s choice in her encrypted ballot without producing a corrupt ballot and getting caught with high
probability. We prove receipt-freeness in the model proposed by Moran and Naor, with notably weaker
assumptions made regarding the voting device.
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Privacy and Soundness. The Moran-Naor scheme provides everlasting privacy and computational sound-
ness, while MarkPledge provides computational privacy and statistical soundness. In other words, an ex-
ceptionally powerful adversary could violate voter privacy in MarkPledge or corrupt the election result in
the Moran-Naor scheme. The choice between these two approaches is difficult, and there is no obviously
superior approach: policy makers will have to decide which security property to prioritize.

In MarkPledge2, we present our improved ballot size and covert-channel resistance in the statistically
sound and computationally private setting of MarkPledge. We leave as an interesting open problem the
application of these techniques to the computationally sound and statistically private setting of Moran-Naor,
which will likely require more than simply replacing encryptions with commitments.

1.2 Ballot Casting Schemes

In cryptographic ballot casting schemes, Alice typically interacts with a voting machine to generate an
encryption (or commitment) of her plaintext ballot. Alice cannot generate this encrypted ballot on her own,
as she would clearly have an easily transferable receipt of her actions. At the same time, Alice should not
trust the voting machine to correctly capture her vote. Thus, the voting machine generates the encrypted
ballot and provides a non-transferable proof to Alice that it did so correctly.

In MarkPledge, Moran-Naor, and our new proposal MarkPledge2, Alice chooses an index from a
fixed list of candidates. Once she enters her selection, the voting machine produces a ballot ciphertext (or,
in the case of Moran-Naor, a commitment) and performs a zero-knowledge proof, with Alice providing
the challenge, that it did so correctly. Then, to ensure that the protocol is incoercible, the voting machine
simulates proofs that this same ballot encodes every other possible candidate. The voting machine includes
all proof transcripts, one real and the rest simulated, on Alice’s receipt. A third party thus cannot tell which
proof was performed correctly and which were simulated.

Human Verifier. The MarkPledge, Moran-Naor, and MarkPledge2 ballot casting schemes ensure that
Alice can verify her vote with only minimal computation inside the voting booth: she only checks the
proper order of the proof messages for her chosen candidate. Then, outside the booth, Alice relies on a
computer—possibly her own—to ensure that the proof transcripts are correct.

To enable this human verification in practice, the voting machine’s first proof message and Alice’s
challenge must be very short strings, so that Alice can compare and manipulate them. (Icons, or any other
memorable representation with relatively small domain, can also be used.) It isn’t enough to adapt existing
proof protocols by selecting short first and second proof messages: they must remain short and identically
distributed at simulation time. The crux of a human-verifiable voting scheme is precisely to provide a
proof protocol whose first two messages are naturally short and whose soundness is maximized with respect
to the challenge length. In addition, for our covert-channel resistance approach, we need the proof to be
simulatable in a particular order—messages 2, 1, then 3—that is not supported by typical 3-round zero-
knowledge proofs.

1.3 An Overview of MarkPledge2

The MarkPledge Structure The key idea of the MarkPledge2 protocol, like MarkPledge, is to use a
special bit-encryption scheme BitEnc that enables a human-friendly “partial reveal proof.” A bit encryption
c = BitEncpk (b), b ∈ {0, 1} is generated as the El Gamal encryption(s) of a special plaintext representation
m of bit b. Then, c can be partially decrypted according to a challenge chal, such that the partial decryption
narrows down the possible values of m to only two options: one that represents b = 1, and the other that
represents b = 0. One can then prove that c encodes a 1 by pledging its plaintext representation m, accepting
a challenge chal, and partially decrypting c accordingly to confirm the pledge. Given m a representation of
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bit b and a challenge chal, the structure of this scheme makes it easy to compute the single value m′, a
representation of b̄ that matches the reveal prescribed by chal. This last property is crucial for simulation.

In MarkPledge, m is a sequence of pairs (m1,1,m1,2), . . .
(mκ,1,mκ,2), with each mi,j a single bit, and c is the corresponding sequence of pairs of Exponential El
Gamal encryptions of the mi,j . If b = 1, then mi,1 = mi,2, i ∈ [1, κ], while if b = 0, mi,1 = 1 −mi,2, i ∈
[1, κ]. If the pairs are not consistent within m, the plaintext is considered invalid and denoted ⊥. One can
pledge that c encrypts a 1 by revealing, for each pair, the bit that each message encodes. For example, a
pledge of 11001 indicates that m = (1, 1), (1, 1), (0, 0), (0, 0), (1, 1). A challenge chal is then a string of
κ bits, where each bit chal[i] determines whether to decrypt the first or second element of pair i. Clearly, if
m is an encoding of 1, the pledge string will match the revealed string no matter what the challenge. If m
is an encoding of 0, the pledge string will match the revealed string for only one possible challenge value,
with probability 2−κ. Figure 1 illustrates this setup. The Moran-Naor scheme is very similar, though it uses
commitments instead of ciphertexts.

A Shorter Bit Ciphertext In MarkPledge2, we find a bit encryption mechanism that achieves the same
properties with a much shorter representation for a given challenge length κ. Specifically, we consider
SO(2, q), the special orthogonal group of two-by-two matrices with elements in Zq, which is isomorphic
to the group of rotations represented as vectors in Z2

q . Subgroups of this group cleanly expose equivalence
classes of “1-vectors”, “0-vectors”, and “test-vectors”, such that any 1-vector and 0-vector are bisected by
a test-vector. Each vector can be encrypted using two Exponential El Gamal ciphertexts, which lets one
homomorphically compute the dot product of an encrypted 1 or 0 vector with a plaintext test vector: any
two vectors bisected by the test vector in question will yield the same dot product value, which is then our
reveal string. A pledge string is an index into the 1-vector equivalence class; if one pledges a 1-vector when
c actually encrypts a 0-vector, the only way to go undetected is if the challenge is the single test vector that
bisects the claimed 1-vector and actually encrypted 0-vector.

The Ballot The MarkPledge2 scheme is effectively MarkPledge augmented with the more efficient bit
encryption scheme. If there are M candidates on the ballot, the voting machine produces a sequence of M
bit encryptions c1, . . . , cM . Then, it proves that ca, where a is Alice’s choice, is indeed the bit encryption
of 1, by pledging its representation ma, accepting chal from Alice, and partially revealing ma accordingly.
It can then simulate that the other bit encryptions ci are also encryptions of 1, using additional challenges
provided by Alice. The difference is merely in the timing: for ca, the voting machine must pledge ma before
it sees Alice’s challenge, while for the others it reads Alice’s challenge first. The verification of the partial
reveals of m1, . . . ,mM are performed outside the voting booth, by any computer. (Any improper ballots –
those that do not have exactly one ci which is a 1 encryption – will always be detected at tabulation time.)

BitEnc(0) =

BitEnc(1) =

chal =

11 1 1

. . .

. . .

0 1 1. . .

01 0 1 1 0

0 0
BitEnc(1)

BitEnc(0)

chal

Figure 1: MarkPledge vs. MarkPledge2: Given a challenge and a pledge string, there are only two possible
plaintexts, a ‘1’ plaintext, and a ‘0’ plaintext. In MarkPledge, plaintexts are sequences of pairs of bits, while in
MarkPledge2, they are elements of SO(2, q), which can be mapped to vectors in Z2

q .
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Preventing Covert Channels in the Ballot We provide a technique for preventing the voting machine
from using valid ballot ciphertexts, which are displayed for all to see on the bulletin board, to subliminally
communicate information about the voter’s choice. In particular, our technique addresses one of the main
threats described in Karlof et al. ’s systems-perspective analysis of cryptographic voting systems [10]. This
technique applies to MarkPledge and MarkPledge2, as it does not depend on the specific bit encryption
scheme. Like Benaloh and Tuinstra [3], we assume, in addition to the private channel between the voting
device and the voter, a one-time one-way private channel from the election trustees to the voting device.

At a high level, for a given pre-computed ballot withM candidates, all of the bit encryptions (c1, . . . , cM )
are generated before election day via multi-party computation among the election trustees. The voting ma-
chine contains only the ballot identifiers and the corresponding plaintext representations (m1, . . . ,mM ) such
that moffset encodes 1 for a single random offset , and mi encodes 0 for i 6= offset . The voter’s choice is then
an index that rotates the ciphertexts to appropriately match the 1 bit-encryption with the selected candidate,
a value which obviously depends both on a, the selected candidate and offset the position of the 1-bit in
the pre-computed plaintexts. The voting machine’s output is highly constrained: if it produces a ballot that
passes the trustees’ verification, all of its outputs are deterministic functions of the ballot identifier, Alice’s
candidate choice a, and Alice’s challenge. Thus, there is “no room” for the voting machine to encode any
information covertly within the ballot.

All partial reveals are now performed by the election trustees with results posted to the bulletin board,
which leaves the voting machine with only simple plaintext operations. Simplifying the voting machine
equipment is always a concern for voting officials, so this change is an important practical benefit as well.

1.4 Previous & Related Work

Humans and Basic Cryptography. In 1994, Naor and Shamir introduced visual cryptography [21], a
secret-sharing method that uses visual superposition as a kind of human XOR. A number of improvements
were proposed to improve contrast and usability [12, 13]. In 1997, Naor and Pinkas introduced visual
authentication [20], a technique to help humans authenticate computers using visual cryptography methods.
Chaum used visual cryptography to build one of the first encrypted voter receipt techniques in 2004 [8, 9].

Humans and Interactive Proofs. The literature is rich with protocols that allow humans to securely au-
thenticate to computer systems. Hopper and Blum [16] were the first to use the Learning Parity with Noise
(LPN) problem as a basis for human authentication, based on Blum et. al.’s earlier LPN-related work [4].
Interestingly, the low-computational-power constraint now applies to certain computing environments, like
RFIDs, which led Juels and Weis to define an LPN-based authentication system for RFIDs [17]. A plethora
of works deal with a human proving to a computer that he is, indeed, human. A large number of such proto-
cols, often called CAPTCHAs (Completely Automated Public Turing Test to Tell Computers and Humans
Apart), use hard Artificial Intelligence problems to exploit tasks that only humans can do efficiently, e.g.
reading garbled text. These were first formalized by von Ahn et. al. [28, 29]. By contrast, ballot casting
schemes like MarkPledge2 are human interactive proofs where a human being is the verifier.

Receipt-Free Elections. Benaloh and Tuinstra first introduced and implemented receipt-free voting [3].
Enhancements and variations were quickly proposed [27, 23, 24], under the assumption of a private channel
between the administrator and voter. Canetti and Gennaro showed how to accomplish incoercible multiparty
computation without this assumption [7]. Moran and Naor [19] extended Canetti and Gennaro’s model. The
voting literature is plentiful: a large number of receipt-free schemes have been proposed [11, 15, 2], all of
which assume a computationally capable voter. Some schemes even achieve optimal ballot secrecy [18, 19].
Our proposal, like MarkPledge and the Naor-Moran scheme, provides receipt-freeness without fully trusted
hardware. All three schemes require a private channel between the voting machine and the voter.
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1.5 Organization

In Section 2, we review notation and number theory. In Section 3, we define the model, soundness and
receipt-freeness. We present MarkPledge2 in Section 4 and covert-channel resistance in Section 5.

2 Preliminaries

2.1 Notation and Terminology

We denote PPT and PT∗ the class of probabilistic polynomial-time and non-uniform polynomial time
Turing machines. All algorithms and parties are denoted using caligraphic letters, e.g. A. All vectors are
denoted using bold font, e.g. u or v. A protocol run between partiesA and B with inputs a and b respectively
and output out is denoted out = 〈A(a),B(b)〉. When we use the term “efficient,” we mean “efficient from
a practitioner’s viewpoint,” a far stricter constraint than polynomial time.

2.2 Number Theory of SO(2, q).

Background Recall that an orthogonal matrix is a square matrix whose transpose is its inverse. O(n, F )
is then the group of n × n orthogonal matrices with matrix elements in field F , and matrix multiplication
the group operation. O(n, q) with q a prime refers to the group of n × n orthogonal matrices with matrix
elements in GFq. Because a matrix’s transpose is its inverse, all have determinant 1 or −1. SO(n, q), the
special orthogonal group, is thus defined as the subgroup of O(n, q) of matrices with determinant 1.

Geometric Interpretation In this work, we consider specifically SO(2, q), with elements of the form:[
α β
−β α

]
with α2 +β2 = 1. SO(2, q) is a cyclic group with order a multiple of 4, which we thus denote 4Λ. Elements
of SO(2, q) can be represented as 2-vectors by associating each matrix with its first row. Thus, we consider
elements u of the form (α, β). We interpret elements in SO(2, q) as rotations, and the group’s operation
as rotation composition. Considering vector operations in Z2

q with generator γ, multiplicative notation in
SO(2, q), and · the vector dot-product of the 2-vector representations of elements of SO(2, q), for all integer
values of i and k: (

γi+2k − γi
)
· γi+k = 0

Given the geometric interpretation, this is to be expected, as γi+k bisects γi and γi+2k.

Lemma 1 Given t ∈ SO(2, q), α0 ∈ Zq, there are exactly two elements u,v ∈ SO(2, q), such that
u · t = v · t = α0.

The details, including geometric interpretation, order, and lemma proof, are in Appendix D.

3 Model

Our model is similar to Moran and Naor’s. We assume a typical, precinct-based, supervised voting setting,
with one election race with M candidates (and no write-ins). As in most election schemes, we assume the
existence of an authenticated bulletin board where any authorized party can post messages, and any observer
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can read the posted messages in synchronized order. We assume only one voting machine. We note that
this is only meant to simplify exposition, whereas the Moran-Naor scheme actually requires this constraint
because of its tabulation phase.

In this paper, we focus on the ballot casting stage: we assume the existence of a robust universally-
verifiable mixnet [25, 27, 22] that shuffles and decrypts cast ballots available on the bulletin board, then
proves it did so correctly. We also assume the existence of at least one honest verifier (e.g. Jimmy Carter).
We do not use the Universal Composability model [6], because our focus is on efficient techniques. Instead,
we prove security using a standalone definition of soundness. We do, however, consider receipt freeness in
the model of Moran and Naor.

Parties We identify the following parties:

• Voters: there are N voters V1, . . . ,VN , each with a chosen candidate index a ∈ [1,M ].
• Voting Machine: the voting machineM is a computer inside the voting booth with a touch-screen

input and a printer. The voting machine can post to the bulletin board at the end of election day.
• Trustees: there are K trustees denoted T1, . . . , TK . Each can post to the bulletin board.
• Verifiers: there are many verifiers, as anyone in the public can be a verifier. A verifier can read the

bulletin board and complain if he detects an error. As these verifiers are effectively helpers where the
voter is concerned, we denote any honest helperH.

Human Capabilities We assume a voter has the ability to type, read, and compare κ-bit strings, where κ
is, in practice, at most 20. These strings may be represented alphanumerically or using some other clever
technique, e.g. icons. We also assume a voter can provide a short random input of this same size κ.

Physical Commitment As in MarkPledge and the Moran-Naor scheme, we assume that the voting ma-
chine can perform a physical commitment where Alice, the voter, receives no information about the value
of the commitment. This can be achieved using a printer with a partial shield, so that Alice can tell that lines
of text have been printed, but not what has been printed. This is crucial to ensure that Alice cannot base her
random challenge on the value of the commitment.

Soundness For soundness, we assume every trustee, every voter other than Alice, and the voting machine
may all be adversarial. Still, if Alice’s ballot is encrypted incorrectly, we want either Alice or a Helper to
catch the problem with reasonable probability. More formally, given an honest voter V selecting candidate
a and an honest helper H, for any corrupt set of trustees T ∗1 , . . . , T ∗K ∈ PT∗, any corrupt voting machine
M∗ ∈ PT∗:

Pr
[
(sk , pk) = 〈T ∗1 , . . . , T ∗K〉; (receipt, bV) = 〈M∗(pk),V(a)〉 ;

bH = H(pk , receipt) :

Decsk (receipt) 6= a ∧ bV = 0 ∧ bH = 0
]
≤ 1

2

taken over the coin flips of the voter V . The Helper H is expected to check that the system’s public key pk
is “good”. In a real protocol, the secret key sk does not exist in a single location: decryption can only occur
using a distributed protocol among the trustees. For human-verifiable schemes, one should strive to reduce
the soundness error to far less than 1/2. In MarkPledge2, as in MarkPledge and the Moran-Naor scheme,
we achieve the best possible soundness given a human’s ability to compare κ-bit strings: 2−κ.
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Receipt-Freeness For receipt-freeness, we assume at least one trustee is honest (which is already required
for the robust mixnet’s privacy). We assume the voting machine has no communication channel with the
outside world other than the ballots and receipts it produces. This last assumption implies some enforcement
of practical constraints: the voting machine must be simple, shielded, un-networked, and easily resettable at
the end of election day.

We use the Moran-Naor model, which extends the Canetti-Gennaro incoercibility model. The real-world
protocol is compared to an ideal world, and the protocol is declared receipt-free if any coercion outcome in
the real world can be recreated indistinguishably in the ideal world model with the same coercion attempts
by the adversary and coercion response by the voters. We review this model in detail in Appendix A.

4 The MarkPledge2 Scheme

We seek a plaintext representation for a bit encryption scheme that allows for partial reveals of the plaintext,
down to exactly one possible representation of 0 and one possible representation of 1. Recall that SO(2, q)
is a group of order 4Λ, where group elements are vectors of norm 1 representing rotations, and the group
operation is effectively rotation composition. We partition the group into representations of 1, representa-
tions of 0, and test elements, such that any pair of a 1-vector and a 0-vector is bisected by a test vector on
either side. The dot product of either the 1 or 0 vector with the test vector will be the same. Note how a
quarter of the elements are 1-vectors, another quarter are 0-vectors, and the remaining half are test vectors.
Each test vector t can be paired up with its Z2

q inverse −t, another test vector, so that in the end there are Λ
1-vectors, Λ 0-vectors, and Λ test vectors.

Then, a bit encryption of a 0 or a 1 is the pair of Exponential El Gamal encryptions of a corresponding
vector’s coordinates. A pledge is a 1-vector, a challenge is a test vector, and a partial reveal is the dot-product
of the plaintext 1-vector and the challenge vector, an encryption of which can be computed homomorphically
from the encrypted 1-vector and the plaintext challenge vector. Thus, given a test vector and a dot-product
value, as per Lemma 1, there are exactly two possible values for the encrypted vector, one of which is a
1-vector, and the other a 0-vector. To simulate the reveal for an encrypted 0-vector given a challenge, one
uses as a pledge the unique 1-vector whose dot-product with the given test vector is the same as that with
the encrypted 0-vector.

4.1 Bit Encryption

Consider El Gamal in the q-order subgroup of Z∗p, where q|(p − 1). We will, in particular, make use of
Exponential El Gamal, like the original MarkPledge, where Encpk (m; r) = (gr, gmyr), with x the secret
key, and y = gx mod p the public key. We can use Exponential El Gamal efficiently because we will never
need to recover a long plaintext m: we will only compare decryptions and check for ciphertexts that decrypt
to m = 0.

Defining Classes within SO(2,q) Given q, the order of the El Gamal subgroup, let Γ be a subgroup of
SO(2, q) of order 4λ with γ a generator. Note that, like the primes p and q, the parameter λ is just another
election parameter. It can be any integral divisor of |SO(2, q)|/4.1 Ideally, λ is selected such that a human
can easily compare strings taken from a set of size λ. For simplicity, we assume that λ = 2κ, where κ is the
bit length of a human-verifiable string, though a carefully selected alphabet can accommodate any λ. We
define:

1That is, an integral divisor of (q +1)/4 or (q− 1)/4 depending on whether q ≡ 3 or q ≡ 1 mod 4 respectively. See Appendix
D.
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• Zero = { ζi : ζi = γ4i+1 ; i ∈ [0, λ[},
• One = {ϑi : ϑi = γ4i−1 ; i ∈ [0, λ[},
• Test = { τi : τi = γ2i ; i ∈ [0, λ[}.

As the names imply, we consider any element of Zero a 0-plaintext, and any element of One a 1-plaintext.
Test is the challenge domain: challenges from the verifier will be selected from this class.

Relating the Classes We denote the difference vector δk c = ϑk−ζc−k, using standard vector subtraction
in Z2

q , and we note that, in the geometric interpretation, τc = γ2c effectively bisects ϑk = γ4k−1 and
ζc−k = γ4c−4k+1 = γ2c+(2c−(4k−1)). The geometric interpretation is found in Figure 2.

τc

ϑk

ζc−k

δkc

Figure 2: The geometric interpretation of the interplay between elements of One, Zero, and Test. Given ϑk ∈ One
and τc ∈ Test, there is exactly one element of Zero, ζc−k , such that the difference vector δk c is orthogonal to τc.

Thus, for a given element t ∈ Test and a given u ∈ Zero, there is exactly one element v ∈ One such that
u · t = v · t (and no other element of Zero with the same dot product). This follows from Lemma 1 and the
careful choice of indices for the classes One, Zero, and Test.

Vector Encryption We can perform component-wise encryption of vectors in Z2
q . Using Exponential El-

Gamal, we gain the ability to perform homomorphic vector addition of two encrypted vectors, and homo-
morphic vector dot-product with one encrypted vector and one plaintext vector. We abuse the single-value
notation to represent vector encryption:

Encpk (s; r) =
(
Encpk (s[0]; r[0]),Encpk (s[1]; r[1])

)
Note that, with vector components in exponential El Gamal ciphertext, homomorphic vector addition is
trivial using component-wise homomorphic multiplication.

In addition, if we denote Q = Encpk (s; r) , then we can homomorphically compute an encryption
of the dot product s · t where t is a plaintext element of Z2

q . Here, multiplicative notation denotes ho-
momorphic multiplication (component-wise exponentiation of ciphertexts), while additive notation denotes
homomorphic addition (component-wise multiplication of ciphertexts):

Q · t = (Q[0]t[0] +Q[1]t[1]) = Encpk (s · t; r · t)

The result is a single ciphertext, which is to be expected when performing a vector dot-product. Notice also
how the randomization value in the resulting ciphertext is also the result of a dot-product, given that the
homomorphic operation actually performs an exponentiation of the El Gamal ciphertexts.
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Bit Encryption Let b be the bit we wish to encrypt. We define an SO(2, q)-based method of bit encryption.
First, pick a random vector γ4r′+2b+1 using randomness r′ ∈ Zλ. This vector will be in Zero if b = 0, and
in One if b = 1. Then, perform encryption of this vector using randomness r ∈ Z2

q :

BitEncpk (b, (r, r′)) = Encpk (γ4r′+2b+1; r)

4.2 The MarkPledge2 Protocol

The MarkPledge2 protocol presents the exact same interface as MarkPledge [5], except BitEnc is now
performed using the bit-encryption mechanism just described, and the proof algebra is adjusted accordingly.

MarkPledge2 Ballot Casting Protocol

1. Alice enters the booth, where she interacts with the voting machine to select candidate a ∈ [1,M ].

2. The voting machine prepares

(a) r1, . . . , rM , randomization vectors in Z2
q

(b) ka
R←− [1, λ[, a random index into One and the associated element ϑka . ϑka is effectively a

randomly selected “1-vector” which will be used when producing the bit encryption of ba,

(c) (li)i∈[1,M ],i 6=a, indexes into Zero, and the associated elements (ζli),

(d) ca = Qa = Encpk (ϑka ; ra), for the chosen index a,

(e) ci = Qi = Encpk (ζli ; ri), for all i ∈ [1,M ], i 6= a,

then physically commits on the receipt to the values (Q1, . . . ,QM ). Note how these values are
committed using the printer shield before Alice has entered her challenge chala.

3. For each candidate index i 6= a, Alice is prompted for a short challenge chali. Each such challenge is
an index into the class Test, thus specifying a specific test vector τchali .

4. The voting machine computes ki = chali − li, for i 6= a. These are the indexes of elements of One,
one for each candidate where the voting machine actually encrypted an element of Zero.

The voting machine then physically commits to (i.e. prints under the shield) the values (k1, . . . , kM ).
Note that ka is being committed to before Alice has entered chala.

5. Alice enters chala, which corresponds to τchala .

At this point, the previously physically committed data can be revealed.

6. The voting machine then computes

(a) la = chala − ka, an element of Zero for the chosen index a. This is the corresponding element
of Zero for the one selected option a, now that the prover knows chala.

(b) (δk1 chal1 , . . . , δkM chalM ), the difference vectors between ζli and ϑki
. Note that δki chali is or-

thogonal to τchali (as per Lemma 1).

(c) ρi = ri · τchali , for all i ∈ [1,M ].
This is effectively the revealed random factors of the encrypted dot products.
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and prints to the receipt (ρ1, . . . , ρM ) and (chal1, . . . , chalM ), which now contains:

receipt =
(
Q1, . . . ,QM , k1, . . . , kM , ρ1, . . . , ρM , chal1, . . . , chalM

)
7. Alice accepts the receipt if she confirms that her challenges (chal1, . . . , chalM ) are properly printed

on the receipt next to their designated candidate.

8. Once outside the booth, Alice further verifies her receipt with the help of a program:

(a) homomorphically computeQ′i = Qi − ζchali−ki
, for all i ∈ [1,M ].

Thus, Q′i is either the null vector (if i 6= a), or the difference vector δki chali (if i = a). In
either case,Q′i is orthogonal to τchali . Because ζchali−ki

is a plaintext vector, this homomorphic
subtraction can be performed so thatQ′i keeps the same randomization asQi, which is ri.

(b) homomorphically computeQ′i · τchali and check that it is equal to Encpk (0; ρi).
This verifies thatQ′i and τchali are orthogonal. Thus,Qi must be the encryption of ϑki

or ζli .

Ballot Canonicalization It is important to notice that even though encrypted ballots will be passed through
a mixnet, ballots will eventually be decrypted: any uniqueness of the underlying plaintext could be used to
identify the voter and violate her ballot secrecy. Thus, before ballots enter the mixnet, we propose to
canonicalize them. All encrypted 1-vectors should be transformed into the canonical 1-vector γ−1, and all
encrypted 0-vectors into the canonical 0-vector γ. Given that the bit encryptions are partially revealed to the
public, each ciphertext Qi is publicly known to be the encryption of either the 0-vector ζli or the 1-vector
ϑki

. It is then trivial to publicly determine the plaintext linear transformation that transforms ζli into γ and
ϑki

into γ−1, and to publicly apply this transformation homomorphically to Qi. The mixnet output will
then reveal nothing more than the specific candidate choice.

4.3 Soundness and Receipt-Freeness

Intuitively, MarkPledge2 is sound because the voting machine can only cheat if it guesses the voter’s
challenge test vector ahead of time. It has a 2−κ chance of doing so correctly. We prove this in detail in
Appendix B. Intuitively, MarkPledge2 is receipt-free because Alice cannot take any action that depends on
private information she sees in the booth and that affects her vote. We prove this in detail in Appendix C.

We note, however, that a corrupt voting machine could leak Alice’s vote by cleverly selecting the ran-
domization factors that affect the ciphertexts in the ballot and thus on the bulletin board. Thus, for now,
we must assume that the voting machine is honest for receipt-freeness. Next, we show how to reduce this
requirement: we only require that the voting machine have no other communication channel than the ballots.

4.4 Practical Optimization

It may be too much of a burden for Alice to generate and remember a different challenge for each candidate.
Just like MarkPledge [1], MarkPledge2 can be adapted so that Alice need only enter a single challenge
that can be used for the real proof and all of the simulated proofs. In this case, the voting machine commits
to its real pledge string on screen before Alice enters her challenge, and Alice verifies only two values: the
pledge string for her candidate, and the single challenge string she entered. This tweak presents two major
benefits: Alice can now ignore all data regarding candidates she rejected, and the special shielded printer is
no longer necessary. One complication arises: Alice’s challenge cannot depend on the pledge string, as this
would clearly make the protocol coercible. Thus, when this optimization is used, Alice must commit to her
challenge ahead of time, e.g. when she signs in to vote.
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5 Resistance to Covert Channels

In the currently described scheme, as well as in MarkPledge and the Moran-Naor scheme, the voting
machine can easily select ciphertexts so as to reveal information about a, Alice’s chosen candidate, e.g.
using the last few bits of the ciphertexts. We now propose a method to prevent this. We ensure that, in order
to discern information about the voter’s choice from the receipt data, an adversary must have cooperation
from at least a threshold number of Trustees. We present this solution in the context of MarkPledge2,
though it is immediately applicable to MarkPledge. It is not immediately applicable to the Moran-Naor
scheme.

Intuitively, the solution is quite simple: only the first two steps of the three-round proof of bit encryption
need to be performed inside the voting booth. The last step, partial decryption, can be performed once
Alice has left the booth, by the election trustees rather than the voting machine. Thus, we limit the voting
machine’s power by pre-generating all of the ciphertexts, leaving the voting machine to deal only with the
plaintexts. Our proposal also greatly reduces the complexity of the voting machine itself, which is of great
interest to voting officials who strive for simple and cheap equipment.

5.1 Before the Election

The trustees generate the election public key pk using threshold El Gamal [26], such that each Ti has a secret
key share sk i. Consider, then, the trivial encryption of a ballot:

(c(0)
1 , . . . , c

(0)
M ) = (BitEncpk (1, (0, 0)),BitEncpk (0, (0, 0)), . . . ,BitEncpk (0, (0, 0)))

In turn, each trustee Ti then re-encrypts and shuffles these bit encryptions for each ballot. Re-encryption
includes modifying both the El Gamal randomization factor and the specific plaintext representation. We
abuse notation here to indicate component-wise multiplication:

BitReencpk (c, r, r′) = c× Encpk (γ4r′ ; r)

Thus, for k ∈ [1, Nβ] where N is the number of voters and β is a cut-and-choose factor, and for l ∈ [1,M ]
where M is the number of candidates, Ti generates random values rk,l ∈ Z2

q , r
′
k,l ∈ Zλ and outputs:

c
(i)
k,l = BitReencpk (c(i−1)

k,πk(l), (rk,l, r
′
k,l))

These values are then posted to the bulletin board for the next trustee to reencrypt and shuffle. To parallelize
the process, the ballots can be split into batches, then passed from one trustee to the next in circular order.

To verify that all trustees performed their re-encryption tasks correctly, we perform a cut-and-choose on
the final set of ballots, opening up (β − 1)/β of them, leaving N unrevealed ballots. If any problematic
ballot is encountered, the mistake is traced by asking each trustee to reveal how it shuffled and reencrypted
that faulty ballot. The guilty parties are removed and the process is restarted. A small-factor β cut-and-
choose is sufficient because any incorrect ballot that makes it through the cut-and-choose will be detected
at tabulation time. At the end of this setup phase, all ballot ciphertexts to be used are posted on the bulletin
board, indexed by unique ballot identifier.

5.2 The Voting Machine

Each trustee Ti communicates {πk, r′k,1, . . . , r′k,M}k∈[1,N ] to the voting machine via its private one-time
one-way channel. Thus, given ballot index k, the voting machine knows the plaintexts of the ciphertexts
(c(K)
k,1 , . . . , c

(K)
k,M ), including the exact single 1-vector and (M − 1) 0-vectors. When Alice enters the voting
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booth, her ballot card (usually a smart card inserted into the machine) indicates a ballot identifier. The
voting machine performs the MarkPledge2 protocol as expected, using the vector plaintexts to compute
the simulated pledge strings, and prints on the receipt a circular offset, modulo M , which indicates how
to rotate the sequence (c(K)

k,1 , . . . , c
(K)
k,M ) to capture Alice’s chosen candidate. The voting machine does not

perform the partial reveal step: it can’t. It also need not print the full ciphertexts, only the pledge strings,
voter challenges, and ballot identifier. Note how the voting machine only needs plaintexts.

5.3 After Ballot Casting

Once Alice casts her ballot, each trustee homomorphically computes the difference vectors (Q′1, . . . ,Q
′
M ),

then the dot-products (Q′1 ·τchal1 , . . . ,Q
′
M ·τchalM ), as per Step 8 of the protocol. Then, instead of revealing

the random factors (ρ1, . . . , ρM ) which would be difficult to perform without revealing how the trustees
shuffled the bit encryptions, the trustees perform a joint verifiable decryption [26, 14] of this dot-product,
proving that the plaintext is 0.

We note that the proof protocol must lend itself to simulation where messages are generated in order
2, 1, then 3, rather than the typical 2, 3, 1 order of special-sound proofs. This requirement exists because
step 3 is only performed by election trustees after Alice has left the voting booth, and it is another important
property of the proof protocol presented here (as well as that of MarkPledge and Moran-Naor).

5.4 Soundness and Receipt-Freeness

From the voter’s point of view, the only difference between this variation and the previous protocol de-
scription is in the partial reveal step, which is now performed by threshold verifiable decryption rather than
simply revealing the randomization values. Assuming the soundness of this proof is at least as high as
the soundness of our human verification (which is trivial to accomplish), the protocol’s overall soundness
remains the same. Receipt-freeness is also unchanged: from the point of view of the voter and potential
coercer, nothing has changed.

We have, however, achieved an interesting additional improvement with this resistance to covert chan-
nels. Because the voting machines are now highly constrained and can only output valid ballots using pre-
generated ciphertexts, we can show that this system provides receipt-freeness even if the voting machine is
malicious: a voting machine that deviates from the protocol and tries to leak information to violate receipt-
freeness would be immediately caught, because the only ballot it can produce is a deterministic function of
the ballot identifier and the voter’s intent. This stands in contrast to the Moran-Naor receipt-freeness proof,
which assumes an honest voting machine. We leave to the full version of this paper the detailed discussion
of how to set up the voting process to detect and recover from malicious voting machines. We simply note
that receipt-freeness comes more naturally once we have covert-channel resistance.

6 Conclusion & Future Work

We’ve improved on Neff’s MarkPledge and the Moran-Naor ballot casting schemes. Our approach contin-
ues to be usable by unaided humans with exactly the same interface as before, but the ballot representation
is much shorter, and we show how to ensure that the receipt cannot become a covert channel. By the same
token, we greatly simplify the voting machine itself, which is promising for real-world deployment, where
the individual cost of such machines is crucial.

It will be interesting to see if our techniques can be adapted to the everlasting privacy setting. Though this
would involve computational rather than statistical soundness, it is important to provide multiple technical
options, so that policy makers can choose the compromise that is most sensible for their needs.
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A The Receipt-Freeness Model

We use the Moran-Naor model. We restate it in full for completeness, but we claim no novelty here.

A.1 The Ideal World

We consider N parties V1,V2, . . . ,VN with inputs x1, x2, . . . , xN . A trusted third party collects all inputs,
computes f(x1, x2, . . . , xN ), and broadcasts the result. The ideal adversary is denoted I. Each party Vi
also has a coercion-response input ci which indicates whether the party will comply with a coercion attempt
(ci = 1), or will continue to vote as she chooses and pretend to be coerced (ci = 0). The adversary I can
choose to:

• corrupt a subset V ∗ of the parties: I learns the inputs (xi)i∈V ∗ , takes control of {Vi}i∈V ∗ , and
replaces the inputs (xi)i∈V ∗ with (x′i)i∈V ∗ .

• coerce a subset V c of the parties: I sends to each of {Vi}i∈V c a new input x′i. If ci = 1, then Vi
sends its real input xi to I and uses the prescribed x′i as its new input. If ci = 0, then Vi ignores x′i
and sends a randomly generated fake input xci to I. One exception exists: if I submits input⊥, which
means forced abstention, Vi uses ⊥ regardless of its coercion-resistance bit ci.

I can choose to adaptively corrupt or coerce parties one at a time, based on what it learns regarding pre-
viously coerced parties’ original input. Once I signals to the trusted third party that its setup is complete,
the trusted third party collects the inputs, including corrupt inputs (x′i)i∈V ∗ and successfully coerced inputs
(though the trusted third party doesn’t know which are honest, corrupt, or coerced), then computes the cor-
responding output and broadcasts it. The view of the ideal adversary includes its own random coins, the
corrupted parties’ original inputs (xi)i∈V ∗ , the coerced parties’ supposed original inputs (some of which
may be fake), and the output of the trusted third party. Note that I does not see the coercion-response bits
c1, . . . , cN , though it may indirectly learn some of them from the rest of its view.

A.2 The Real World

We considerN parties V1,V2, . . . ,VN with inputs x1, x2, . . . , xN and coercion-resistant inputs c1, c2, . . . , cN .
The real-world adversary is denoted A. All parties are probabilistic polynomial time interactive Turing ma-
chines, with pairwise communication tapes, synchronous and atomic message exchanges, and no erasures.

Again as in Moran-Naor, each Vi has a private communication channel with the adversary A and a spe-
cial coercion-status register (“honest”,“corrupt”,“coerced”) thatA can write once. Each party Vi effectively
contains three ITMs with joint tapes, one for each of the honest, coerced-but-resisting, coerced-willfully-
or-corrupt behaviors. A specific protocol under consideration defines the honest and coerced-but-resisting
behaviors, while the coerced-willfully-or-corrupt behavior is defined generically here:

• corrupt: when A corrupts Vi, Vi becomes a puppet for A using the private channel they share. Thus,
A can send any message it wants in Vi’s place, and can request any past view or portion of Vi’s tape.

• coerced willfully: when A sets the coercion flag for Vi and Vi’s coercion-resistance bit is set to
comply, Vi sends xi to A and executes the puppet strategy, as if it were corrupt.

A can corrupt or coerce any party at any time, adaptively. A’s view of the protocol consists of its
random coins, the complete views of the corrupted parties, and the communication between A and the
coerced parties.
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A.3 Receipt Freeness

Definition 1 A protocol is receipt-free if, for every real adversaryA, there exists an ideal adversary I, such
that, for every input vector x1, x2, . . . , xN and any coercion-response vector c1, c2, . . . , cN :

1. I’s output in the ideal world is indistinguishable from A’s output in the real world with the same
input and coercion-resistance vectors, with distributions taken over the random coins of I,A, and the
parties Vi.

2. I corrupts (or coerces) exactly the same parties as A (respectively).

B Proofs of Soundness and Receipt-Freeness

We now provide the proofs of soundness and receipt-freeness that did not fit in the main body of the paper.
Recall our definition of soundness, with malicious trustees T ∗1 , T ∗2 , . . . , T ∗K , malicious voting machineM∗,
and an honest voter V:

Pr
[
(sk , pk) = 〈T ∗1 , . . . , T ∗K〉; (receipt, bV) = 〈M∗(pk),V(a)〉 ;

bH = H(pk , receipt) :

Decsk (receipt) 6= a ∧ bV = 0 ∧ bH = 0
]
≤ 1

2

In MarkPledge2, as in MarkPledge, we assume that all ballots produced by an honest or malicious
voting machine are at least valid: they contain exactly one bit encryption of 1 and M − 1 bit encryptions of
0. We can safely make this assumption because ballots are eventually decrypted, and any “bad ballot” can
simply be traced back to the original voting machine that produced it. Our proof of soundness focuses on
the voting machine producing a ballot that matches the voter’s intent.

Theorem 1 Assuming a verifiable threshold encryption scheme, a voting machine that only produces valid
ballots, a voter with the ability to read, enter, and compare κ-bit strings, MarkPledge2 is a sound ballot
casting algorithm with soundness 1− 2−κ.

Proof. We prove this by contradiction. Assume a bad voting machineM∗ that manages to produce a ballot
for a candidate other than the voter’s selected option a, without either the Voter V or the HelperH noticing.
To achieve this,M∗ might fool V orH (or both, but one is enough).

1. Fooling the Helper: M∗ can try to fool the Helper H by incorrectly revealing the pledge strings.
Before the distributed generation of the ballot, the reveal is performed via the randomization factors,
which cannot be faked with the El Gamal cryptosystem (or any other cryptosystem with unique de-
cryption). When the distributed ballot generation improvement is used, the proof of decryption using
threshold El Gamal has soundness error negligible in the cryptosystem security parameter: soundness
is much higher than 1−2−κ, since κ is smaller than any reasonable cryptographic security parameter.
Thus, the HelperH is fooled with negligible probability.

2. Fooling the Voter: Because we assume a well-formed ballot, and that V checks every step of the
protocol correctly—in particular that the ciphertexts Q1, . . . ,QM and the pledges k1, . . . , kM are
printed on the receipt before the challenges are issued—M∗ can only fool the voter by encrypting a
0-vector asQa, so that its 1-vector is used for a different candidate a′, a′ 6= a.
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Assuming this happens, and since pledges are revealed correctly when the Helper is not fooled, there
is only one possible challenge that will let M∗ succeed: the test vector that bisects the pledged 1-
vector and encrypted 0-vector. Assuming the voter selects her challenges randomly and enters the one
for her chosen candidate only after the pledge strings are printed,M∗ has a 2−κ chance of receiving
the right challenge that will let it cheat.

Thus, the easiest way forM∗ to cheat is to cheat the human verifier, and the best chance it has to do so is
2−κ. Soundness is thus 1− 2−κ.

�

C Receipt Freeness

Theorem 2 Assuming an ideal mixnet functionality and semantic security of the El Gamal cryptosystem,
MarkPledge2 is receipt-free.

Proof. To prove receipt freeness, we first describe the voter’s coercion-resistance strategy, which details how
a voter can double-cross a coercer indistinguishably. We then construct an ideal-model adversary that can
output something indistinguishable from any real-world advesary, not knowing which parties will choose
the coercion-resistance strategy. The rest of this section provides all relevant details. �

C.1 Coercion-Resistance Strategy

The voter Vi’s only interactions with the voting machine are:

1. the selection of a candidate, before which the machine has produced no confidential information.
2. the generation and entry of a challenge, after the voting machine has committed to its pledge strings

in a physical way, which means the voter cannot see these ciphertexts.

Thus, Vi’s coercion-resistance strategy is very simple: she behaves exactly as a puppet would, except
that she continues to use her preferred candidate xi in her interactions with the voting machine, responding
to the adversary with the responses a puppet would give. Specifically:

• if the adversary instructs Vi to use a specific set of challenges, Vi complies. Note that these challenges
cannot be based on either the ciphertexts Q1, . . . ,QM , or the pledge string ka, which are committed
to physically such that the voter must enter her challenges before she sees them. (We actually do
not need to physically commit to the ciphertexts, only to the chosen-candidate pledge string, as a
challenge based on the ciphertexts does not result in coercibility. However, for simplicity’s sake, we
assume everything before the voter enters her challenges is physically committed.)

• if the adversary instructs Vi to vote for a specific candidate x′i, Vi ignores this command when dealing
with the voting machine, but acts as if she had followed it when interacting with the adversary. Since
Vi’s only actions are the entry of her candidate choice xi and the entry of the challenges, this is trivial
even for a human to fake.
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C.2 Proof of Receipt Freeness

To abstract out the operation of the robust mixnet, we consider a hybrid situation for our real-world setup,
where the voting machine broadcasts all encrypted ballots to all parties including the adversary, then submits
all encrypted ballots to a decryption mixnet functionality, which shuffles, decrypts, and broadcasts the plain-
text results to all parties, including the adversary. (The broadcast of encrypted ballots is meant to mimick the
effects of a bulletin board.) The broadcast of all encrypted ballots and the shuffling does not begin until the
adversary A allows it to. Though we do not care to consider the mixnet’s inner workings, it remains impor-
tant to consider the output of this mixnet as part of the adversary’s view, in case such an output provides the
adversary with some insight that makes the protocol coercible. We also assume a public-key setting where
both I and A have access to pk , but not sk .

We construct an ideal adversary I. I uses the real-world adversarial strategy A as a black box, emulat-
ing to it the rest of the protocol. (I also emulates the abstract mixnet functionality.) The key intuition is that,
when I emulates the rest of the protocol, it knows which partiesA tries to coerce, but it doesn’t know which
will choose the coercion-resistance response. Thus, we show how I can forward coercion-and-corruption
messages appropriately to the ideal-model parties and fill in the real-world portions of the protocol. Eventu-
ally, I emulates the mixnet functionality so as to correct for any mistake it made in assuming that all coerced
voters would become puppets. This “false mixing” is an acceptable emulation because we assume an ideal
mixnet functionality.

Emulating the Corrupt and Coerced Parties. When A sends the command to coerce or corrupt a party
Vi, I instantiates a puppet strategy Vci to talk to A, for which it will emulate the voting machine M. I
creates this puppet strategy as a complete ITM with a random secret input xi and a consistent history. No-
tably, I does not immediately send a coercion/corruption message to the corresponding ideal party. Instead,
it waits until A sends the actual candidate touch-screen selection to the puppet according to our specific
MarkPledge2 protocol. At this point, I sends the appropriate “corrupt” or “coerce” message to the cor-
responding ideal-world party along with the new input x′i prescribed by A in its order to the puppet. Note
how, in the case of a corrupt party, I’s choice to adopt the puppet strategy is exactly what the ideal party
will do, but that it may not be so in the case of a coerced party.

Emulating the Untouched Parties. The adversary, real or ideal, sees nothing regarding the untouched
parties—those that it neither corrupts nor coerces—until their encrypted votes are broadcast just before
shuffling. For these parties, I picks random inputs xi, prepares a correctly distributed ballot ciphertext and
receipt for such an input, and stores them for future use. No messages are exchanged withA regarding these
untouched parties.

Emulating the Voting Machine. I emulates the voting machine M for the benefit of the corrupt and
coerced puppet parties. It does so exactly as a normal voting machine would, using the election public key
pk . When A orders the voting machine to broadcast all ciphertext votes, I does so using the ciphertexts it
generated interactively with the puppets of the corrupt and coerced parties (who are themselves talking to
the real-world adversary A), and the ciphertexts it generated on its own for the untouched parties.

Emulating the Mixnet. When I receives the order to shuffle fromA, it sends the signal to the trusted third
party to perform its voting tabulation function, and obtains the outputs: plaintext ballots. It then emulates
for A the mixnet functionality, using these exact outputs as the claimed result of the shuffling. In the end, I
outputs whatever A outputs.
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Receipt-Freeness. Note how I and A corrupt and coerce exactly the same parties in the real and ideal
worlds. By a standard hybrid argument, we can see that, if the outputs of I and A are distinguishable,
then there exists two variants of I with distinguishable outputs that only differ by one party’s response to a
coercion attempt. (We can safely ignore the differences regarding the untouched parties, since those depend
entirely on the semantic security of the cryptosystem.) The party’s actions in the MarkPledge2 protocol
include only candidate selection and challenge input. The challenges are exactly the same, thanks to the
coercion-resistance strategy, because the party has no private information to report to the adversary before
entering her challenge. Thus the only difference is the candidate selection, and thus the only difference
in the output is the non-revealed portion of the ciphertexts. If these are distinguishable, then the semantic
security of the underlying El Gamal cryptosystem has been broken.

D Structure of SO(2, q)

D.1 Order of SO(2, q)

Let R = GL(2, q) be the full matrix ring generated by SO(2, q), so R =
{(

a b
−b a

)
: a, b ∈ Zq

}
.

One easily verifies that R ≡ Zq[X]/(X2 + 1) under (X)↔
(

0 1
−1 0

)
.

Lemma 2 If q is prime, and q ≡ 3(mod 4), then SO(2, q) is cyclic of order q + 1.

Proof. X2 + 1 is an irreducible element of Zq[X], hence R is a field and R∗ is cyclic. Since det is
multiplicative2, SO(2, q) is a multiplicative subgroup of R∗, hence is cyclic.

To deduce its order, note that the map α(z) = zq−1 defines a multiplicative homomorphism, α : R∗ →
R∗. Since det is multiplicative, and since aq−1 = 1 for all a ∈ Z∗q , α(R∗) ⊂ SO(2, q). On the other
hand, there are only two elements of Zq whose determinant (norm) is 1 : {1,−1}. Since q − 1 = 4k + 2,
−1 ∈ α(R∗), which implies SO(2, q) ⊂ α(R∗). Thus we conclude:

1. SO(2, q) = { zq−1 : z ∈ R∗ }.
2. |SO(2, q)| = |R∗|/| ker(α)| = (q2 − 1)/(q − 1) = q + 1.
3. If G is a generator of the multiplicative group R∗, then g = Gq−1 is a generator of SO(2, q).

�

Lemma 3 If q is prime, and q ≡ 1(mod 4), then SO(2, q) is cyclic of order q − 1.

Proof.
We can find i ∈ Zq such that i2 = −1. Define matrices A and B in R by

A =
(

1/2 i/2
−i/2 1/2

)
B =

(
1/2 −i/2
i/2 1/2

)
(1)

Since A2 = A, B2 = B and AB = 0, each of the following statements can be verified mechanically.

1. Every element of R can be expressed uniquely as aA+ bB where a, b ∈ Zq.
2. Under this correspondence, R∗ consists of exactly those elements with both a 6= 0 and b 6= 0.
2Note that det is identical to NR|Zq , the norm of R over Zq as an algebraic extension.
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3. Further, since AB = 0, this correspondence defines a multiplicative homomorphism from R∗ to
Z∗q × Z∗q . It follows from 2 that this is an isomorphism.

4. Under this coorespondence, SO(2, q) consists of exactly those elements of R∗ for which ab = 1.
5. Hence SO(2, q) is naturally isomorphic to Z∗q via either of the two coordinate projections (i.e. z → a

or z → b). Since Z∗q is cyclic of order q − 1, so is SO(2, q).

�

D.2 Geometric Interpretation

One can interpret each of these elements in SO(2, q) as rotations. Consider u,v,w ∈ SO(2, q) such that
w = u⊗ v. Then consider the vector dot product: u ·w. First, we recall w:

w = (u0v0 − u1v1, u0v1 + u1v0)

then, we perform the dot product:

u ·w = u2
0v0 − u0u1v1 + u0u1v1 + u2

1v0

= (u2
0 + u2

1)v0

= v0

In other words, the dot product between two vector elements is the first coordinate of the ratio between
the two vectors, where by ratio we mean to use the inverse group operation. This property matches the
geometric interpretation of rotation transformations, where the dot product yields the effective cosine of the
angle between the two vectors (as they are both of norm 1.) Note also that the inverse of c retains the same
first coordinate v0, since, in SO(2, q), the inverse of a matrix is its transpose. This is also consistent with
the rotation interpretation: whichever direction one rotates, the resulting dot product between the start and
end vectors should be the same given a fixed angle of rotation.

The geometric interpretation can be particularly useful when combined with the dot-product operation.
In particular, consider γ a generator element of SO(2, q). Vector addition and dot-product are performed in
Z2
q , while exponentiation denotes operations in SO(2, q). We know from above that:

γi · γj = γj−i[0]

Then, if we have

γi · γj = γi · γk

we conclude that:

j − i = ±(k − i) mod 4Λ

This leads us to the property mentioned in the main body of the paper. Consider vector addition and dot-
product in Z2

q , ⊗ the SO(2, q) operation, and exponentiation the composed SO(2, q) operation:

(γi+2k − γi) · γi+k = (γi+2k · γi+k)− (gi · gi+k)
= γ−k[0]− γk[0]
= 0

This then leads to Lemma 1 from the main body of the paper, which we restate here.

20



Lemma 1 Given t ∈ SO(2, q), and α0 ∈ Zq, there are exactly two elements u,v ∈ SO(2, q), such that:

u · t = v · t = α0

Proof. Recall that the vector-representation of elements in SO(2, q) is (α, β) ∈ Z2
q , where α2 + β2 =

1 mod 4Λ. Denote δ ∈ SO(2, q) such that δ = α0. There is, of course, exactly one such element.
Then, by prior reasoning regarding vector dot product:

u · t = α0 =⇒ u = δ±1 ⊗ t

Denote γ a generator of SO(2, q), c ∈ Z∗4Λ such that t = γc, and d ∈ Z∗4Λ such that δ = γd. The
vectorsu and v are thus γ(c+d) and γ(c−d), and no other elements in SO(2, q) can have the same dot product
α0 with t.

�
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