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Abstract
This study digs out some new algebraic properties of an Osborn loop that will

help in the future to unveil the mystery behind the middle inner mappings T(x) of an
Osborn loop. These new algebraic properties, will open our eyes more to the study of
Osborn loops like CC-loops which has received a tremendious attention in this 21st and
VD-loops whose study is yet to be explored. In this study, some algebraic properties
of non-WIP Osborn loops have been investigated in a broad manner. Huthnance was
able to deduce some algebraic properties of Osborn loops with the WIP i.e universal
weak WIPLs. So this work exempts the WIP. Two new loop identities, namely left self
inverse property loop(LSIPL) identity and right self inverse property loop(RSLPL) are
introduced for the first time and it is shown that in an Osborn loop, they are equivalent.
A CC-loop is shown to be power associative if and only if it is a RSLPL or LSIPL.
Among the few identities that have been established for Osborn loops, one of them is
recognized and recommended for cryptography in a similar spirit in which the cross
inverse property has been used by Keedwell following the fact that it was observed
that Osborn loops that do not have the LSIP or RSIP or 3-PAPL or weaker forms of
inverse property, power associativity and diassociativity to mention a few, will have
cycles(even long ones). These identity is called an Osborn cryptographic identity(or
just a cryptographic identity).

1 Introduction

Let L be a non-empty set. Define a binary operation (·) on L : If x · y ∈ L for all x, y ∈ L,
(L, ·) is called a groupoid. If the system of equations ;

a · x = b and y · a = b

∗2000 Mathematics Subject Classification. Primary 20NO5 ; Secondary 08A05
†Keywords and Phrases : Osborn loops, cryptography
‡All correspondence to be addressed to this author.

1



have unique solutions for x and y respectively, then (L, ·) is called a quasigroup. Furthermore,
if there exists a unique element e ∈ L called the identity element such that for all x ∈ L,
x · e = e · x = x, (L, ·) is called a loop. We write xy instead of x · y, and stipulate that · has
lower priority than juxtaposition among factors to be multiplied. For instance, x · yz stands
for x(yz). For each x ∈ L, the elements xρ = xJρ, x

λ = xJλ ∈ L such that xxρ = e = xλx are

called the right, left inverses of x respectively. xλi
= (xλ)λ and xρi

= (xρ)ρ for i ≥ 1. L is
called a weak inverse property loop (WIPL) if and only if it obeys the weak inverse property
(WIP);

xy · z = e implies x · yz = e for all x, y, z ∈ L

while L is called a cross inverse property loop (CIPL) if and only if it obeys the cross inverse
property (CIP);

xy · xρ = y.

The triple α = (A,B, C) of bijections on a loop (L, ·) is called an autotopism of the loop if
and only if

xA · yB = (x · y)C for all x, y ∈ L.

Such triples form a group AUT (L, ·) called the autotopism group of (L, ·). In case the three
bijections are the same i.e A = B = C, then any of them is called an automorphism and
the group AUM(L, ·) which such forms is called the automorphism group of (L, ·). For an
overview of the theory of loops, readers may check [32, 7, 8, 12, 21, 34].

Osborn [31], while investigating the universality of WIPLs discovered that a universal
WIPL (G, ·) obeys the identity

yx · (zEy · y) = (y · xz) · y for all x, y, z ∈ G (1)

where θy = LyLyλ = R−1
yρ R−1

y = LyRyL
−1
y R−1

y .

A loop that necessarily and sufficiently satisfies this identity is called an Osborn loop.

Eight years after Osborn’s [31] 1960 work on WIPL, in 1968, Huthnance Jr. [23] studied
the theory of generalized Moufang loops. He named a loop that obeys (1) a generalized
Moufang loop and later on in the same thesis, he called them M-loops. On the other hand,
he called a universal WIPL an Osborn loop and this same definition was adopted by Chiboka
[9]. Basarab [3, 4, 5] and Basarab and Belioglo [6] dubbed a loop (G, ·) satisfying any of the
following equivalent identities an Osborn loop:

OS2 : x(yz · x) = (xλ\y) · zx (2)

OS3 : (x · yz)x = xy · (zE−1
x · x) (3)

where Ex = RxRxρ = (LxLxλ)−1 = RxLxR
−1
x L−1

x for all x, y, z ∈ G

and the binary operations ’\’ and ’/’ are respectively defines as ; z = x · y if and only if
x\z = y if and only if z/y = x for all x, y, z ∈ G.

It will look confusing if both Basarab’s and Huthnance’s definitions of an Osborn loop are
both adopted because an Osborn loop of Basarab is not necessarily a universal WIPL(Osborn
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loop of Huthnance). So in this work, Huthnance’s definition of an Osborn loop will be
dropped while we shall stick to that of Basarab which was actually adopted by M. K.
Kinyon [25] who revived the study of Osborn loops in 2005 at a conference tagged ”Milehigh
Conference on Loops, Quasigroups and Non-associative Systems” held at the University of
Denver, where he presented a talk titled ”A Survey of Osborn Loops”.

Let t = xλ\y in OS2, then y = xλt so that we now have an equivalent identity

x[(xλy)z · x] = y · zx.

Huthnance [23] was able to deduce some properties of Ex relative to (1). Ex = Exλ = Exρ .
So, since Ex = RxRxρ , then Ex = Exλ = RxλRx and Ex = (LxρLx)

−1. So, we now have the
following equivalent identities defining an Osborn loop.

OS2 : x[(xλy)z · x] = y · zx (4)

OS3 : (x · yz)x = xy · [(xλ · xz) · x] (5)

Definition 1.1 A loop (Q, ·) is called:

(a) a 3 power associative property loop(3-PAPL) if and only if xx · x = x · xx for all x ∈ Q.

(b) a left self inverse property loop(LSIPL) if and only if xλ · xx = x for all x ∈ Q.

(c) a right self inverse property loop(RSIPL) if and only if xx · xρ = x for all x ∈ Q.

The identities describing the most popularly known varieties of Osborn loops are given
below.

Definition 1.2 A loop (Q, ·) is called:

(a) a VD-loop if and only if

(·)x = (·)L−1
x Rx and x(·) = (·)R−1

x Lx

i.e R−1
x Lx ∈ PSλ(Q, ·) with companion c = x and L−1

x Rx ∈ PSρ(Q, ·) with companion
c = x for all x ∈ Q where PSλ(Q, ·) and PSρ(Q, ·) are respectively the left and right
pseudo-automorphism groups of Q. Basarab [5]

(b) a Moufang loop if and only if the identity

(xy) · (zx) = (x · yz)x

holds in Q.

(c) a conjugacy closed loop(CC-loop) if and only if the identities

x · yz = (xy)/x · xz and zy · x = zx · x\(yx)

hold in Q.
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(d) a universal WIPL if and only if the identity

x(yx)ρ = yρ or (xy)λx = yλ

holds in Q and all its isotopes.

All these three varieties of Osborn loops and universal WIPLs are universal Osborn loops.
CC-loops and VD-loops are G-loops. G-loops are loops that are isomorphic to all their loop
isotopes. Kunen [29] has studied them.

In the multiplication group M(G, ·) of a loop (G, ·) are found three important permuta-
tions, namely, the right, left and middle inner mappings R(x,y) = RxRyR

−1
xy , L(x,y) = LxLyL

−1
yx

and T(x) = RxL
−1
x respectively which form the right inner mapping group Innλ(G), left in-

ner mapping group Innρ(G) and the middle inner mapping Innµ(G). In a Moufang loop G,
R(x,y), L(x,y), T(x) ∈ PSρ(G) with companions (x, y), (x−1, y−1), x−3 ∈ G respectively.

Theorem 1.1 (Kinyon [25])
Let G be an Osborn loop. R(x,y) ∈ PSρ(G) with companion (xy)λ(yλ\x) and L(x,y) ∈

PSλ(G) ∀ x, y ∈ G. Furthermore, R−1
(x,y) = [L−1

yρ , R−1
x ] = L(yλ,xλ) ∀ x, y ∈ G.

The second part of Theorem 1.1 is trivial for Moufang loops. For CC-loops, it was first
observed by Drápal and then later by Kinyon and Kunen [28].

Theorem 1.2 Let G be an Osborn loop. Innρ(G) = Innλ(G).

Still mysterious are the middle inner mappings T(x) of an Osborn loop. In a Moufang loop,
T(x) ∈ PSρ with a companion x−3 while in a CC-loop, T(x) ∈ PSλ with companion x. Kinyon
[25], possess a question asking of what can be said in case of an arbitrary Osborn loop.

Theorem 1.3 (Kinyon [25])
In an Osborn loop G with centrum C(G) and center Z(G):

1. If T(a) ∈ AUM(G), then a · aa = aa · a ∈ N(G). Thus, for all a ∈ C(G), a3 ∈ Z(G).

2. If (xx)ρ = xρxρ holds, then xρρρρρρ = x for all x ∈ G.

Some basic loop properties such as flexibility, left alternative property(LAP), left in-
verse property(LIP), right alternative property(RAP), right inverse property(RIP), anti-
automorphic inverse property(AAIP) and the cross inverse property(CIP) have been found
to force an Osborn loop to be a Moufang loop. This makes the study of Osborn loops more
challenging and care must be taking not to assume any of these properties at any point in
time except the WIP, automorphic inverse property and some other generalizations of the
earlier mentioned loop properties(LAP, LIP, e.t.c.).

Lemma 1.1 An Osborn loop that is flexible or which has the LAP or RAP or LIP or RIP
or AAIP is a Moufang loop. But an Osborn loop that is commutative or which has the CIP
is a commutative Moufang loop.
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Theorem 1.4 (Basarab, [4])
If an Osborn loop is of exponent 2, then it is an abelian group.

Theorem 1.5 (Huthnance [23])
Let G be a WIPL. G is a universal WIPL if and only if G is an Osborn loop.

Lemma 1.2 (Lemma 2.10, Huthnance [23])
Let L be a WIP Osborn loop. If a = xρx, then for all x ∈ L:

xa = xλ2

, axλ = xρ, xρa = xλ, ax = xρ2

, xa−1 = ax, a−1xλ = xλa, a−1xρ = xρa.

or equivalently

Jλ : x 7→ x · xρx, Jρ : x 7→ xρx · xλ, Jλ : x 7→ xρ · xρx, J2
ρ : x 7→ xρx · x,

x(xρx)−1 = (xρx)x, (xρx)−1xλ = xλ()xρx, (xρx)−1xρ = xρ(xρx).

The aim of this study is to dig out some new algebraic properties of an Osborn loop that will
help in the future to unveil the mystery behind the middle inner mappings T(x) of an Osborn
loop. These new algebraic properties, will open our eyes more to the study of Osborn loops
like CC-loops, introduced by Goodaire and Robinson [19, 20], whose algebraic structures
have been studied by Kunen [30] and some recent works of Kinyon and Kunen [26, 28],
Phillips et. al. [27], Drápal [13, 14, 15, 17], Csörgő et. al. [11, 18, 10] and VD-loops whose
study is yet to be explored. In this study, the algebraic properties of non-WIP Osborn loops
have been investigated in a broad manner. Huthnance [23] was able to deduce some algebraic
properties of Osborn loops with the WIP i.e universal WIPLs. So this work exempts the
WIP. Two new loop identities, namely left self inverse property loop(LSIPL) identity and
right self inverse property loop(RSLPL) are introduced for the first time and it is shown
that in an Osborn loop, they are equivalent. A CC-loop is shown to be power associative
if and only if it is a RSLPL or LSIPL. Among the few identities that have been established
for Osborn loops, one of them is recognized and recommended for cryptography in a similar
spirit in which the cross inverse property has been used by Keedwell following the fact that
it was observed that Osborn loops that do not have the LSIP or RSIP or 3-PAPL or weaker
forms of inverse property, power associativity and diassociativity to mention a few, will have
cycles(even long ones). These identity is called an Osborn cryptographic identity(or just a
cryptographic identity).

2 Main Results

2.1 Some Algebraic Properties Of Osborn Loops

Theorem 2.1 Let (L, ·) be a loop. L is an Osborn loop if and only if (Lxλ , R−1
x , L−1

x R−1
x ) ∈

AUT (L). Hence for all x, y, z ∈ L:

1. (L(x), L(x), LxT(x)R
−1
x ) ∈ AUT (L) for some L(x) ∈ Innλ(L).
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2. (a) T(x) : x 7→ [(xλ · xy)(xλ · xyρ)]x.

(b) T(x) : x 7→ [(xλ · xzλ)(xλ · xz)]x.

(c) T(x) : y 7→ xλy · x i.e T(x) := LxλRx.

3. yx = x(xλy · x) i.e Rx = LxλRxLx.

4. (xλ · xy)(xλ · xyρ) = (xλ · xzλ)(xλxz) = e.

Proof
By OS2, L is an Osborn loop if and only if (Lxλ , R−1

x , L−1
x R−1

x ) ∈ AUT (L). By OS3, L is an
Osborn loop if and only if (Lx, LxLxλRx, LxRx) ∈ AUT (L).

1. Hence, (L(x), L(x), LxT(x)R
−1
x ) ∈ AUT (L) where L(x) = LxLxλ ∈ Innλ(L).

The autotopism (L(x), L(x), LxT(x)R
−1
x ) implies [(xλ · xy) · (xλ · xz)]x = (x · yz)T(x).

2. (a) So with z = yρ, xT(x) = [(xλ · xy) · (xλ · xyρ)]x.

(b) Similarly, with y = zλ, xT(x) = [(xλ · xzλ) · (xλ · xz)]x.

(c) With y = e or z = e, (xz)T(x) = (xλ · xz)x which implies that yT(x) = (xλ · y)x or
zT(x) = (xλ · z)x respectively.

3. Recall that T(x) = RxL
−1
x . Using this and T(x) = LxλRx, Rx = LxλRxLx.

4. Observe that xT(x) = x, so by (b)i. and (b)ii. the claim is true.

Lemma 2.1 Let (L, ·) be an Osborn loop. The following are true.

1. (xλ · xy)ρ = xλ · xyρ, (xλ · xyρ)λ = (xλ · xyλ)ρ.

2. Jρ : x 7→ xλxλ · x, J2
ρ : x 7→ xx · xρ, Jλ : x 7→ (xλ)λ · xλxρ, J2

λ : x 7→ xλ ·
xx, Jλ : x 7→ (xλ ·xxλ)2(xλ ·xx), Jλ : x 7→ (xλxλ ·x)λ(xλxλ ·x)2, J3

λ : x 7→ xλ ·xxλ

3.
xλ · xxρ2

= x, (x · xρxρ)λ = x · xρx = (x · xρxλ)ρ,

(xλ · xx)λ = xλ · xxλ, xλ3 · xλ2

x = xλ · xx,

(xλ2 · xλxρ)λ2 · (xλ2 · xλxρ)λ(xλ2 · xλxρ)ρ = xλ · xx, (xλ · xxλ)2(xλ · xx) = xλ2 · xλxρ,

(xλxλ · x)λ(xλxλ · x)2 = (xλ · xxλ)2(xλ · xx),

(xλ2 · xλxρ)λ(xλ2 · xλxρ)2 = xλ · xxλ, (xλ2 · xλxρ)λ = (xλ2 · xλxλ)ρ,

(xλ · xx)λ2 · (xλ · xx)λ(xλ · xx)ρ = xλ · xxλ.

4.
(x · xρyρ)λ = (x · xρyλ)ρ, (xλ · xyρ2

)λ = (xλ · xy)ρ,

(xλ2 · xλyρ)λ = (xλ2 · xλyλ)ρ, (xλ · xy)λ = (xλ · xyλ2

)ρ.
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5. |Jλ| = 2 iff |Jρ| = 2 iff Jλ = Jρ iff L is a LSIPL iff RSIPL

Proof
The whole these is gotten by intuitive use of (b), (c) and (d) of Theorem 2.1.

Corollary 2.1 Let L be a CC-loop. The following are equivalent.

1. L is a power associativity loop

2. L is a 3-PAPL.

3. L obeys xρ = xλ for all x ∈ L.

4. L is a LSIPL.

5. L is a RSIPL.

Proof
The proof the equivalence of the first three is shown in Lemma 3.20 of [30] and mentioned
in Lemma 1.2 of [33]. The proof of the equivalence of the last two and the first three can be
deduced from the last result of Lemma 2.1.

Remark 2.1 This new algebraic definition gives more insight into the algebraic properties
of Osborn loop. Particularly, it can be used to fine tune some recent equations on CC-loop
as shown in works of Kunen, Kinyon, Phillips and Drapal; [27, 26, 28], [13, 14], [30]. In
fact, in [27, 30], the authors focussed on the mapping Ex = RxRxρ = θ−1

x where θx = LxLxλ

and were able to established study its algebraic properties in a CC-loop. So we can see that
the investigations of Ex in CC-loops by Kunen, Kinyon and Phillips is a bit in line with
what Huthnance [23] did with θx in a universal WIPL and WIP Osborn loop. In this work,
attention has been paid primarily on Osborn loops. So this study is a general overview of the
earlier ones. The identities LSIPL and RSIPL are appearing for the first time.

2.2 Application Of An Osborn Loop Identity To Cryptography

Among the few identities that have been established for Osborn loops in Theorem 2.1, we
would recommend one of them for cryptography in a similar spirit in which the cross inverse
property has been used by Keedwell [24]. It will be recalled that CIPLs have been found
appropriate for cryptography because of the fact that the left and right inverses xλ and xρ

of an element x do not coincide unlike in left and right inverse property loops, hence this
gave rise to what is called ’cycle of inverses’ or ’inverse cycles’ or simply ’cycles’ i.e finite
sequence of elements x1, x2, · · · , xn such that xρ

k = xk+1 mod n. The number n is called the
length of the cycle. The origin of the idea of cycles can be traced back to Artzy [1, 2] where
he also found there existence in WIPLs apart form CIPLs. In his two papers, he proved
some results on possibilities for the values of n and for the number m of cycles of length n
for WIPLs and especially CIPLs. We call these ”Cycle Theorems” for now.

7



In the course of this study(Lemma 2.1), it has been established that in an Osborn loop,
Jλ = Jρ, LSIP and RSIP are equivalent conditions. Therefore, in a CC-loop, the power
associativity property, 3-PAPL, xρ = xλ, LSIP and RSIPL are equivalent. Thus, Osborn
loops without the LSIP or RSIP will have cycles(even long ones). This exempts groups,
extra loops, and Moufang loops but includes CC-loops, VD-loops and universal WIPLs.
Precisely speaking, non-power associative CC-loops will have cycles. So broadly speaking
and following some of the identities in Lemma 2.1, Osborn loops that do not have the LSIP or
RSIP or 3-PAPL or weaker forms of inverse property, power associativity and diassociativity
to mention a few, will have cycles(even long ones). The next step now is to be able to identify
suitably chosen identities in Osborn loops, that will do the job the identity xy · xρ = y or its
equivalents does in the application of CIPQ to cryptography. These identities will be called
Osborn cryptographic identities(or just cryptographic identities).

Definition 2.1 Let Q = (Q, ·, \, /) be a quasigroup. An identity w1(x, x1, x2, x3, · · · ) =
w2(x, x1, x2, x3, · · · ) where x ∈ Q is fixed, x1, x2, x3, · · · ∈ Q, x 6∈ {x1, x2, x3, · · · } is said
to be a cryptographic identity(CI) of the loop Q if it can be written in a functional form
xF (x1, x2, x3, · · · ) = x such that F (x1, x2, x3, · · · ) ∈ Mult(Q). F (x1, x2, x3, · · · ) = Fx is
called the corresponding cryptographic functional(CF) of the CI at x.

Lemma 2.2 Let Q = (Q, ·, \, /) be a loop with identity element e and let CFx(Q) be the set
of all CFs in Q at x ∈ Q. Then, CFx(Q) ≤Mult(Q) and CFe(Q) ≤ Inn(Q).

Lemma 2.3 Let Q = (Q, ·, \, /) be a quasigroup.

1. T(x) ∈ CFy(Q) if and only if y ∈ C(x),

2. R(x,y) ∈ CFz(Q) if and only if z ∈ Nλ(x, y),

3. L(x,y) ∈ CFz(Q) if and only if z ∈ Nρ(x, y),

where Nλ(x, y) = {z ∈ Q|zx · y = z · xy}, Nρ(x, y) = {z ∈ Q|y · xz = yx · z} and C(x) =
{y ∈ Q|xy = yx}.

Lemma 2.4 Let Q = (Q, ·, \, /) be an Osborn loop with identity element e. Then, the
identity yx = x(xλy · x) is a CI with its CF Fe ∈ CFe(Q).

Remark 2.2 The identity yx = x(xλy · x) ⇔ y = [x(xλy · x)]/x is more ”advanced” than
the CIPI and hence will posse more challenge for an attacker(even than the CIPI) to break
into a systems. As described by Keedwell, for a CIP, it is assumed that the message to
be transmitted can be represented as single element x of a CIP quasigroup and that this is
enciphered by multiplying by another element y of the CIPQ so that the encoded message is
yx. At the receiving end, the message is deciphered by multiplying by the inverse of y. But
for the identity y = [x(xλy · x)]/x, procedures of enciphering and deciphering are more than
one in an Osborn loop.
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[18] A. Drápal and P. Csörgő , On left conjugacy closed loops in which the left multiplication
group is normal, Pre-print.

[19] E. G. Goodaire and D. A. Robinson (1982), A class of loops which are isomorphic to
all loop isotopes, Can. J. Math. 34, 662–672.

[20] E. G. Goodaire and D. A. Robinson (1990), Some special conjugacy closed loops, Canad.
Math. Bull. 33, 73–78.

[21] E. G. Goodaire, E. Jespers and C. P. Milies (1996), Alternative loop rings, NHMS(184),
Elsevier, 387pp.

[22] R. L. Jr. Griess (1986), Code loops, J. Alg. 100, 224–234.

[23] E. D. Huthnance Jr.(1968), A theory of generalised Moufang loops, Ph.D. thesis, Georgia
Institute of Technology.

[24] A. D. Keedwell (1999), Crossed-inverse quasigroups with long inverse cycles and appli-
cations to cryptography, Australas. J. Combin. 20, 241-250.

[25] M. K. Kinyon (2005), A survey of Osborn loops, Milehigh conference on loops, quasi-
groups and non-associative systems, University of Denver, Denver, Colorado.

[26] M. K. Kinyon, K. Kunen (2004), The structure of extra loops, Quasigroups and Related
Systems 12, 39–60.

[27] M. K. Kinyon, K. Kunen, J. D. Phillips (2004), Diassociativity in conjugacy closed loops,
Comm. Alg. 32, 767–786.

[28] M. K. Kinyon, K. Kunen (2006), Power-associative conjugacy closed loops, J. Alg.
304(2), 679–711.

[29] K. Kunen (1999), G-loops and Permutation Groups, J. Alg. 220, 694–708.

[30] K. Kunen (2000), The structure of conjugacy closed loops, Trans. Amer. Math. Soc. 352,
2889–2911.

[31] J. M. Osborn (1961), Loops with the weak inverse property, Pac. J. Math. 10, 295–304.

[32] H. O. Pflugfelder (1990), Quasigroups and loops : Introduction, Sigma series in Pure
Math. 7, Heldermann Verlag, Berlin, 147pp.

[33] J. D. Phillips (2006), A short basis for the variety of WIP PACC-loops, Quasigroups
and Related Systems 1, 14, 73–80

[34] W. B. Vasantha Kandasamy (2002), Smarandache loops, Department of Mathematics,
Indian Institute of Technology, Madras, India, 128pp.

10


